1,070 research outputs found

    Mechanisms for Multi-unit Combinatorial Auctions with a Few Distinct Goods

    Get PDF
    We design and analyze deterministic truthful approximation mechanisms for multi-unit Combinatorial Auctions involving only a constant number of distinct goods, each in arbitrary limited supply. Prospective buyers (bidders) have preferences over multisets of items, i.e., for more than one unit per distinct good. Our objective is to determine allocations of multisets that maximize the Social Welfare. Our main results are for multi-minded and submodular bidders. In the first setting each bidder has a positive value for being allocated one multiset from a prespecified demand set of alternatives. In the second setting each bidder is associated to a submodular valuation function that defines his value for the multiset he is allocated. For multi-minded bidders, we design a truthful Fptas that fully optimizes the Social Welfare, while violating the supply constraints on goods within factor (1 + ), for any fixed > 0 (i.e., the approximation applies to the constraints and not to the Social Welfare). This result is best possible, in that full optimization is impossible without violating the supply constraints. For submodular bidders, we obtain a Ptas that approximates the optimum Social Welfare within factor (1 + ), for any fixed > 0, without violating the supply constraints. This result is best possible as well. Our allocation algorithms are Maximal-in-Range and yield truthful mechanisms, when paired with Vickrey-Clarke-Groves payments

    On the Efficiency of the Walrasian Mechanism

    Full text link
    Central results in economics guarantee the existence of efficient equilibria for various classes of markets. An underlying assumption in early work is that agents are price-takers, i.e., agents honestly report their true demand in response to prices. A line of research in economics, initiated by Hurwicz (1972), is devoted to understanding how such markets perform when agents are strategic about their demands. This is captured by the \emph{Walrasian Mechanism} that proceeds by collecting reported demands, finding clearing prices in the \emph{reported} market via an ascending price t\^{a}tonnement procedure, and returns the resulting allocation. Similar mechanisms are used, for example, in the daily opening of the New York Stock Exchange and the call market for copper and gold in London. In practice, it is commonly observed that agents in such markets reduce their demand leading to behaviors resembling bargaining and to inefficient outcomes. We ask how inefficient the equilibria can be. Our main result is that the welfare of every pure Nash equilibrium of the Walrasian mechanism is at least one quarter of the optimal welfare, when players have gross substitute valuations and do not overbid. Previous analysis of the Walrasian mechanism have resorted to large market assumptions to show convergence to efficiency in the limit. Our result shows that approximate efficiency is guaranteed regardless of the size of the market

    Efficiency Guarantees in Auctions with Budgets

    Full text link
    In settings where players have a limited access to liquidity, represented in the form of budget constraints, efficiency maximization has proven to be a challenging goal. In particular, the social welfare cannot be approximated by a better factor then the number of players. Therefore, the literature has mainly resorted to Pareto-efficiency as a way to achieve efficiency in such settings. While successful in some important scenarios, in many settings it is known that either exactly one incentive-compatible auction that always outputs a Pareto-efficient solution, or that no truthful mechanism can always guarantee a Pareto-efficient outcome. Traditionally, impossibility results can be avoided by considering approximations. However, Pareto-efficiency is a binary property (is either satisfied or not), which does not allow for approximations. In this paper we propose a new notion of efficiency, called \emph{liquid welfare}. This is the maximum amount of revenue an omniscient seller would be able to extract from a certain instance. We explain the intuition behind this objective function and show that it can be 2-approximated by two different auctions. Moreover, we show that no truthful algorithm can guarantee an approximation factor better than 4/3 with respect to the liquid welfare, and provide a truthful auction that attains this bound in a special case. Importantly, the liquid welfare benchmark also overcomes impossibilities for some settings. While it is impossible to design Pareto-efficient auctions for multi-unit auctions where players have decreasing marginal values, we give a deterministic O(logn)O(\log n)-approximation for the liquid welfare in this setting

    Approximately Optimal Mechanism Design: Motivation, Examples, and Lessons Learned

    Full text link
    Optimal mechanism design enjoys a beautiful and well-developed theory, and also a number of killer applications. Rules of thumb produced by the field influence everything from how governments sell wireless spectrum licenses to how the major search engines auction off online advertising. There are, however, some basic problems for which the traditional optimal mechanism design approach is ill-suited --- either because it makes overly strong assumptions, or because it advocates overly complex designs. The thesis of this paper is that approximately optimal mechanisms allow us to reason about fundamental questions that seem out of reach of the traditional theory. This survey has three main parts. The first part describes the approximately optimal mechanism design paradigm --- how it works, and what we aim to learn by applying it. The second and third parts of the survey cover two case studies, where we instantiate the general design paradigm to investigate two basic questions. In the first example, we consider revenue maximization in a single-item auction with heterogeneous bidders. Our goal is to understand if complexity --- in the sense of detailed distributional knowledge --- is an essential feature of good auctions for this problem, or alternatively if there are simpler auctions that are near-optimal. The second example considers welfare maximization with multiple items. Our goal here is similar in spirit: when is complexity --- in the form of high-dimensional bid spaces --- an essential feature of every auction that guarantees reasonable welfare? Are there interesting cases where low-dimensional bid spaces suffice?Comment: Based on a talk given by the author at the 15th ACM Conference on Economics and Computation (EC), June 201
    corecore