11 research outputs found

    Structural Return Maximization for Reinforcement Learning

    Full text link
    Batch Reinforcement Learning (RL) algorithms attempt to choose a policy from a designer-provided class of policies given a fixed set of training data. Choosing the policy which maximizes an estimate of return often leads to over-fitting when only limited data is available, due to the size of the policy class in relation to the amount of data available. In this work, we focus on learning policy classes that are appropriately sized to the amount of data available. We accomplish this by using the principle of Structural Risk Minimization, from Statistical Learning Theory, which uses Rademacher complexity to identify a policy class that maximizes a bound on the return of the best policy in the chosen policy class, given the available data. Unlike similar batch RL approaches, our bound on return requires only extremely weak assumptions on the true system

    A statistical learning approach to a problem of induction

    Get PDF
    At its strongest, Hume's problem of induction denies the existence of any well justified assumptionless inductive inference rule. At the weakest, it challenges our ability to articulate and apply good inductive inference rules. This paper examines an analysis that is closer to the latter camp. It reviews one answer to this problem drawn from the VC theorem in statistical learning theory and argues for its inadequacy. In particular, I show that it cannot be computed, in general, whether we are in a situation where the VC theorem can be applied for the purpose we want it to

    A statistical learning approach to a problem of induction

    Get PDF
    At its strongest, Hume's problem of induction denies the existence of any well justified assumptionless inductive inference rule. At the weakest, it challenges our ability to articulate and apply good inductive inference rules. This paper examines an analysis that is closer to the latter camp. It reviews one answer to this problem drawn from the VC theorem in statistical learning theory and argues for its inadequacy. In particular, I show that it cannot be computed, in general, whether we are in a situation where the VC theorem can be applied for the purpose we want it to

    A PCA and SPCA based procedure to variable selection in agriculture

    Full text link

    VC-dimension of univariate decision trees

    Get PDF
    PubMed ID: 25594983In this paper, we give and prove the lower bounds of the Vapnik-Chervonenkis (VC)-dimension of the univariate decision tree hypothesis class. The VC-dimension of the univariate decision tree depends on the VC-dimension values of its subtrees and the number of inputs. Via a search algorithm that calculates the VC-dimension of univariate decision trees exhaustively, we show that our VC-dimension bounds are tight for simple trees. To verify that the VC-dimension bounds are useful, we also use them to get VC-generalization bounds for complexity control using structural risk minimization in decision trees, i.e., pruning. Our simulation results show that structural risk minimization pruning using the VC-dimension bounds finds trees that are more accurate as those pruned using cross validation.Publisher's VersionAuthor Post Prin

    Relationship between classifier performance and distributional complexity for small samples

    Get PDF
    Given a limited number of samples for classification, several issues arise with respect to design, performance and analysis of classifiers. This is especially so in the case of microarray-based classification. In this paper, we use a complexity measure based mixture model to study classifier performance for small sample problems. The motivation behind such a study is to determine the conditions under which a certain class of classifiers is suitable for classification, subject to the constraint of a limited number of samples being available. Classifier study in terms of the VC dimension of a learning machine is also discussed
    corecore