75 research outputs found

    Improving Generalization for Abstract Reasoning Tasks Using Disentangled Feature Representations

    Full text link
    In this work we explore the generalization characteristics of unsupervised representation learning by leveraging disentangled VAE's to learn a useful latent space on a set of relational reasoning problems derived from Raven Progressive Matrices. We show that the latent representations, learned by unsupervised training using the right objective function, significantly outperform the same architectures trained with purely supervised learning, especially when it comes to generalization

    Training neural networks to encode symbols enables combinatorial generalization

    Get PDF
    Combinatorial generalization - the ability to understand and produce novel combinations of already familiar elements - is considered to be a core capacity of the human mind and a major challenge to neural network models. A significant body of research suggests that conventional neural networks can't solve this problem unless they are endowed with mechanisms specifically engineered for the purpose of representing symbols. In this paper we introduce a novel way of representing symbolic structures in connectionist terms - the vectors approach to representing symbols (VARS), which allows training standard neural architectures to encode symbolic knowledge explicitly at their output layers. In two simulations, we show that neural networks not only can learn to produce VARS representations, but in doing so they achieve combinatorial generalization in their symbolic and non-symbolic output. This adds to other recent work that has shown improved combinatorial generalization under specific training conditions, and raises the question of whether specific mechanisms or training routines are needed to support symbolic processing
    corecore