70 research outputs found

    Computational approaches for tortuosity determination in 3D structures

    Get PDF
    Tortuosity is a parameter of key importance to study transport properties in either solid phase (thermal, electrical) and/or fluid phase (acoustics, mass/heat flow, etc). This structure-related parameter expresses mathematically the real pathway distance in comparison to the straightest one when travelling along certain direction through the material’s internal structure. Tortuosity determination is not reliable in 2D and needs to be computed in 3D structures. However, computation of 3D algorithms in complex structures is not an easy task. This work discusses two methodological approaches based on their correspondent computation algorithms working on a collection of 3D tomography data sets of different cellular materials. The tortuosity analysis is carried out in both solid and fluid phases. Results will be compared and correlated. A detailed discussion in terms of these models and the materials will be given

    Connection between electrical conductivity and diffusion coefficient of a conductive porous material filled with electrolyte

    Get PDF
    The paper focuses on the cross-property connection between the effective electrical conductivity and the overall mass transfer coefficient of a two phase material. The two properties are expressed in terms of the tortuosity parameter which generalized to the case of a material with two conductive phases. Elimination of this parameter yields the cross-property connection. The theoretical derivation is verified by comparison with computer simulation

    Pulmonary Vascular Tree Segmentation from Contrast-Enhanced CT Images

    Full text link
    We present a pulmonary vessel segmentation algorithm, which is fast, fully automatic and robust. It uses a coarse segmentation of the airway tree and a left and right lung labeled volume to restrict a vessel enhancement filter, based on an offset medialness function, to the lungs. We show the application of our algorithm on contrast-enhanced CT images, where we derive a clinical parameter to detect pulmonary hypertension (PH) in patients. Results on a dataset of 24 patients show that quantitative indices derived from the segmentation are applicable to distinguish patients with and without PH. Further work-in-progress results are shown on the VESSEL12 challenge dataset, which is composed of non-contrast-enhanced scans, where we range in the midfield of participating contestants.Comment: Part of the OAGM/AAPR 2013 proceedings (1304.1876

    Multi-parametric quantitative microvascular imaging with optical-resolution photoacoustic microscopy in vivo

    Get PDF
    Many diseases involve either the formation of new blood vessels (e.g., tumor angiogenesis) or the damage of existing ones (e.g., diabetic retinopathy) at the microcirculation level. Optical-resolution photoacoustic microscopy (OR-PAM), capable of imaging microvessels in 3D in vivo down to individual capillaries using endogenous contrast, has the potential to reveal microvascular information critical to the diagnosis and staging of microcirculation-related diseases. In this study, we have developed a dedicated microvascular quantification (MQ) algorithm for OR-PAM to automatically quantify multiple microvascular morphological parameters in parallel, including the vessel diameter distribution, the microvessel density, the vascular tortuosity, and the fractal dimension. The algorithm has been tested on in vivo OR-PAM images of a healthy mouse, demonstrating high accuracy for microvascular segmentation and quantification. The developed MQ algorithm for OR-PAM may greatly facilitate quantitative imaging of tumor angiogenesis and many other microcirculation related diseases in vivo

    3-D Ultrasound Localization Microscopy for Identifying Microvascular Morphology Features of Tumor Angiogenesis at a Resolution Beyond the Diffraction Limit of Conventional Ultrasound

    Get PDF
    Angiogenesis has been known as a hallmark of solid tumor cancers for decades, yet ultrasound has been limited in its ability to detect the microvascular changes associated with malignancy. Here, we demonstrate the potential of 'ultrasound localization microscopy' applied volumetrically in combination with quantitative analysis of microvascular morphology, as an approach to overcome this limitation. This pilot study demonstrates our ability to image complex microvascular patterns associated with tumor angiogenesis in-vivo at a resolution of tens of microns - substantially better than the diffraction limit of traditional clinical ultrasound, yet using an 8 MHz clinical ultrasound probe. Furthermore, it is observed that data from healthy and tumor-bearing tissue exhibit significant differences in microvascular pattern and density. Results suggests that with continued development of these novel technologies, ultrasound has the potential to detect biomarkers of cancer based on the microvascular 'fingerprint' of malignant angiogenesis rather than through imaging of blood flow dynamics or the tumor mass itself

    Quantification of Global Tortuosity in Retinal Blood Vessels

    Get PDF
    Tortuosity is a parameter that indicates the tendency of a blood vessel segment to contain multiple twists and turns. Chronic hemodynamic changes in the body due to diabetes and hypertension will manifest as increased retinal vascular tortuosity, rendering tortuosity as a suitable indicator for diabetic and hypertensive retinopathy. Retinal tortuosity may be evaluated locally on a single segment or globally in the complete vascular network. Global tortuosity quantification consists of automated segmentation and partition of retinal vessel network, local tortuosity measurement, and global tortuosity index derivation from weighted combination of local tortuosity values. This paper proposes several weighting schemes and evaluates their performance when combined with different local tortuosity indexes. We perform rank correlation analysis to find the global tortuosity quantification that is most consistent with the ophthalmologists. Our results show that local tortuosity indexes that are robust to variations in scale and number of sampling points provide the best performance. Furthermore, weighting scheme based on chord length yields better results than the one based on arc length. The combination of Tortuosity Density (TD) local index and Tortuosity Density Global (TDG) weighting scheme provides the highest consistency with ophthalmologists, with the average rank correlation coefficient of 0.98 (p-value < 0.03)
    • …
    corecore