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Abstract— Tortuosity is a parameter that indicates the tendency of a blood vessel segment to contain multiple twists and turns. 
Chronic hemodynamic changes in the body due to diabetes and hypertension will manifest as increased retinal vascular tortuosity, 
rendering tortuosity as a suitable indicator for diabetic and hypertensive retinopathy. Retinal tortuosity may be evaluated locally on a 
single segment or globally in the complete vascular network. Global tortuosity quantification consists of automated segmentation and 
partition of retinal vessel network, local tortuosity measurement, and global tortuosity index derivation from weighted combination of 
local tortuosity values. This paper proposes several weighting schemes and evaluates their performance when combined with different 
local tortuosity indexes. We perform rank correlation analysis to find the global tortuosity quantification that is most consistent with 
the ophthalmologists. Our results show that local tortuosity indexes that are robust to variations in scale and number of sampling 
points provide the best performance. Furthermore, weighting scheme based on chord length yields better results than the one based 
on arc length. The combination of Tortuosity Density (TD) local index and Tortuosity Density Global (TDG) weighting scheme 
provides the highest consistency with ophthalmologists, with the average rank correlation coefficient of 0.98 (p-value < 0.03).       
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I. INTRODUCTION 

Changes in the morphology of the retinal blood vessel 
network commonly appear in diseases such as diabetic 
retinopathy [1], hypertensive retinopathy [2], retinopathy of 
prematurity [3], [4], and familial retinal arteriolar tortuosity 
abnormality [5]. In those diseases, the most common 
morphological change appearing in the retina is in the 
tortuosity of the vessel, making it appears increasingly more 
winded, turned, and twisted; due to either the weakening of 
the vessel wall or the abnormal growth of the vessel network 
[6]. Retinal vessel wall weakening can be attributed to 
prolonged hemodynamic disturbances such as fluctuations in 
blood sugar level and high blood pressure, leading to the 
development of the tortuous retinal vascular network. 
Retinal tortuosity changes often occur earlier than the 
common clinical manifestations of retinopathy, i.e., micro-
aneurysm, hemorrhages, and exudates. Thus, increased 
tortuosity of retinal blood vessel segments may serve as the 
earliest indicator of hemodynamic-related retinopathy, such 
as the ones occurring from diabetes mellitus and 
hypertension [1], [2]. In retinopathy of prematurity and 
familial retinal arteriolar tortuosity abnormality, abnormal 
growth of vascular network appears respectively as 
increased tortuosity but diminishing vascular network 
coverage in specific areas of the retina [3] and increased 
tortuosity only in the arteriolar segments of the macular and 
peri-papillary area [4].  In both cases, regular observations of 

the retinal tortuosity are required to manage the diseases and 
determine the suitable cares.  

Careful detection and measurement of the changes in the 
retinal vascular network tortuosity may contribute to 
preventing the undesired outcomes of retinopathy such as 
vision loss and blindness. For this purpose, tortuosity can be 
evaluated either locally in a vessel segment or globally in the 
entire blood vessel network. However, manual assessment of 
retinal vascular tortuosity is a time consuming and highly 
subjective task. An automated quantitative assessment may 
provide a more accurate and reproducible result, especially 
when time series observation on a specific area of the vessel 
network is required [1].  

Some methods to quantify local tortuosity based on the 
calculation in digital retinal fundus imagery have been 
proposed in the literature [6]-14]. In general, all quantitative 
measurements of local tortuosity are performed on a smooth 
planar curve representing each single blood vessel segment 
[7]. The local tortuosity indexes are divided into four groups 
based on the primary determining feature incorporated by 
the algorithm, i.e., distance, curvature, angle variation and 
number of a twist. Each of these indexes has their 
characteristics when applied to vessels of different scales 
and orientation. In general, their performances are also 
influenced by the image resolution, since all calculations are 
performed on the series of coordinates representing a 
segment of the blood vessel.  
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Clinical applications often demand global calculation of 
retinal vascular tortuosity, especially in the cases of 
hemodynamic-related retinopathy. In such necessity, the 
global tortuosity values are derived from the combination of 
the local tortuosity measurements in all vessel segments. 
Sharbaf, et al. defined global tortuosity as the mean of 
tortuosity values (MT) calculated on individual segments of 
the entire vessel network [8]. Hart, et al. used the weighted 
additivity (WA) method where they weight the local 
tortuosity of every vessel segment by its arc length to 
generate global tortuosity index [9]-[10]. In this case, arc 
length is defined as the actual length of the curve 
representing a vessel segment.   

 Global tortuosity index is intended to capture the overall 
quality of the blood vessel network. As such, an optimal 
weighting scheme that reasonably incorporates an individual 
contribution from each vessel segment, as well as the 
different complexity of the vascular network, is required. In 
this regard, the existing weighting schemes of MT and WA 
have their specific weaknesses. The MT weighting scheme 
cannot distinguish contributions from vessel segments of 
different length. For instance, a short vessel segment with 
high local tortuosity will dominate the value of global 
tortuosity measurement and mask the contributions from the 
remaining segments. The WA weighting scheme, on the 
other hand, fails to appreciate the different complexity of the 
vascular network, i.e., the different amount of branching 
points; because it only considers the crude arc length of each 
vessel segment. Under the WA weighting scheme, a vascular 
network with minimum and a maximum number of 
branching points but similar total crude arc lengths may have 
similar global tortuosity values.   

The aim of this study is to find an optimal weighting 
scheme for quantitative global tortuosity measurement based 
on the existing local tortuosity indexes [6]-[14]. We propose 
three novel weighting schemes, i.e., combined mean 
tortuosity with weighted additivity (MTWA), weighted 
additivity on chord length (WAC) and tortuosity density 
global (TDG) to be used in global tortuosity calculation. We 
evaluate their agreement with qualitative assessment 
provided by an ophthalmologist and use the existing MT and 
WA weighting schemes as a benchmark. Our study offers a 
comparative quantitative analysis of new and existing 
schemes; all evaluated on the identical dataset.  

This paper is structured as follows: After the introduction 
presented in section I, we describe the material and methods 
for global tortuosity quantification in section II and the 
results and discussions of our experiments in section III. The 
paper is concluded in section IV, where we also incorporate 
an additional insight into the potential future works related 
to this research.  

II. MATERIAL AND METHOD 

A. Dataset 

Dataset used in this study is a compilation of digital 
retinal images provided by the Eye Image Analysis Research 
Group (EIARG), University of Mashhad, Iran [8]. Images 
were taken with a mydriatic digital fundus camera Topcon 
TRC.50EX with the field of view (FOV) of 50 degrees. The 
dataset contains ten retinal images from ten patients with the 

spatial resolution of 575 x 479 pixels as shown in Fig. 1. 
Five ophthalmologists provided manual global tortuosity 
ranking on the ten images obtained from the Retina Research 
Centre, Mashhad University of Medical Science, Khatam-al-
Anbya Hospital of Mashhad, Iran.  The global tortuosity 
ranking was given as ordinal numbers from 1 to 10. Each 
number was annotated to a corresponding retinal image, 
indicating the increasing order of qualitatively lowest to 
highest global tortuosity.  

 
Fig. 1. Retinal image from EIARG dataset 

B. Global Tortuosity Evaluation 

Fig 2 illustrates the block diagram of global tortuosity 
evaluation in the retinal blood vessel. Before global 
tortuosity index calculation, the retinal image was processed 
to get the planar curve of all vessel segments in the entire 
blood vessel network. The identified network was then 
automatically partitioned into segments, in each of which a 
local tortuosity calculation was performed. The global 
tortuosity index was obtained by combining the local 
tortuosity calculation results from all segments according to 
specific index formulations. Finally, a Spearman’s rank 
correlation coefficients (ρ) are measured to analyze the 
consistency of the tortuosity ranking provided by our 
methods to the ground truth.  
 

 
Fig. 2. The methodology of global tortuosity evaluation 

1) Vessel Network Detection 
The steps of vessel network detection are shown in Fig 3.  

 

 

 

 

 

 

Fig. 3. The methodology of vessel network detection 

The first step in the vessel network detection is retinal 
image enhancement. This step extracts the green channel of 
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the retinal image represented by the RGB color channel 
system. Green channel is chosen because it provides the best 
vessels contrast. The enhanced green channel image is then 
complemented and processed to achieve a proportional 
distribution of pixel intensity. We use the standard 
implementation of histogram equalization to achieve 
intensity distribution proportionality. Fig 4 shows the result 
of this step. 

 
Fig. 4. Vessel network detection: the result of image enhancement 

The next step is optic disc removal by subtracting the 
result of image enhancement with an image obtained from 
an opening morphological operation. We use a 3 x 3 
structuring element in the shape of a ball followed by a 
median filter. To remove other objects except for the blood 
vessels in the entire image, we subtract this image with 
another result of an opening image operation; this time 
implemented using 15 x 15 structuring element in the shape 
of a disc.  The result from background removal is shown in 
Fig 5. 

 
Fig. 5. Vessel network detection: the result of background removal 

Contrast adjustment followed by binarization is further 
implemented to increase the visibility of blood vessels. In 
Fig 6, we show the vessel map obtained using the Otsu 
binarization algorithm.    

 

 
Fig. 6. Vessel network detection: initial binary vessel map 

In order to find the centerline of each vessel in the vessel 
map, it is necessary to thin the vessel map and extract the 
vessel skeleton of one-pixel diameter as shown in Fig 7. This 
result is obtained by using morphological skeletonization 
method. 

 
Fig. 7. Vessel network detection: skeletonized vessel map 

 
2) Vessel Segmentation 

In the next process, the vessel map is further partitioned 
into individual vessel segments to facilitate local tortuosity 
calculation. We define a vessel segment as a group of the 
pixel that extended either from an endpoint to the first 
bifurcation or crossover, between two bifurcations or 
crossovers, or between two endpoints. Vessel segmentation 
methodology is shown in Fig 8. 

 

 
Fig. 8. The methodology of vessel partitioning into segments 

The first step in vessel segmentation is to detect all 
bifurcation and crossover points from skeleton image. These 
points are identified within an 8-neighborhood pixel 
adjacency window. This window essentially compares a 
central pixel with its direct 8 neighboring pixels within a 3 x 
3-pixel area. Such a window is positioned at every skeleton 
pixel, i.e., every pixel with an intensity value of “1” in the 
skeleton image.  

Bifurcations points are defined as vessel pixels that have 
three 8-neighborhood adjacent pixels with a “1” intensity 
value. Crossover points are defined as vessel pixels that have 
four 8-neighborhood adjacent pixels with a “1” intensity 
value. As the bifurcation and crossover points are removed, 
the vessel network becomes divided into individual 
segments. Another morphological operation can thus 
determine the end and beginning of each segment. The 
corresponding morphological operation tries to identify 
endpoints, i.e., pixels that only have one 8-neighborhood 
adjacent pixel with a “1” intensity value. Fig 9 presents an 
example of bifurcations and crossover points identification, 
while Fig 10 presents the corresponding segmental 
endpoints. 
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Fig. 9. Vessel Segmentation: skeleton image with bifurcation and 
crossover point (yellow crosses) 

Each segments protruding from bifurcation and crossover 
points in the vessels network is then labeled to classify 
vessel segment object. Labeling is implemented with the 
connected component algorithm. It starts from an endpoint 
to another endpoint. Group of pixels that have the same label 
is defined as a vessel segment as shown in Fig 10. A number 
of the label indicates the number of a vessel segment in the 
vessel network. Tracking vessels pixel in each segment is 
necessary to ensure tortuosity measurement is started from 
an endpoint and finished at another endpoint. Pixel vessel 
segments are modeled as a continuous planar curve using 
cubic smoothing spline interpolation. Fig 11 is an example 
of two vessel segments produced by this process. 

 

 
Fig. 10.  Vessel segmentation: vessel labeling, where one vessel segment is 
defined as connected pixels between two red signs (end point)  

  

Fig. 11. Examples of individual vessel segments from the labeled image in 
Fig.10 

 
3) Tortuosity Measurement 

a) Quantification of Local Tortuosity 
Quantification of global tortuosity is based on the local 

tortuosity measures obtained in every vessels segment on a 

retinal vessel map. Vessel segment coordinates �(�, �) serve 
as an input to the measurement of local tortuosity. We use 
twelve local tortuosity quantification methods, which can be 
divided in four groups, i.e. local, tortuosity based on 
distance, curvature, angle variation, and numbera  of twists.  

 
• A method based on distance 

In distance-based methods, tortuosity index is derived 
from the ratio of the actual vessel length (arc length, ��) and 
a straight line connecting the two end-points of a vessel 
segment (chord length, �	 ). ��, �	, and tortuosity index 
��/�	 are calculated using equations (1), (2) and (3), with n 
is the number of points in a vessel segment [6]. Length 
calculations are intrinsically dependent on the number of 
sampling points used to represent the vessel segment 
coordinates. However, as two length measurements 
performed at similar scale are normalized against each other, 
such dependency is partially compensated. 
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• A method based on curvature 

The curvature is a local curve behavior that informs the 
rate of directional change at every point ��(
), �(
)�  in a 
curve. It can be measured from derivatives of the coordinates 
as shown in (4). 
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Curvature values measured along a vessel segment can be 
an indicator of tortuosity [10-11]. Integral of absolute 
curvature (��) in (5) and integral of squared curvature 
(���) in (6) are defined as local tortuosity indexes. 
Normalization with arc length (La) or chord length (Lc) 
allows comparison of various vessels with different lengths 
and scale variances. Patasius et al. [12] define local 
tortuosity index as the squared derivative of the curvature in 
every point over arc length, as in (7). 
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• A method based on angle variation 

Mean Directional Angle Change (����) is the average 
of angle direction at every point in a vessel curve [13]. The 
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local direction is obtained from the angle of a vector 
originated on a point in the curve (�i) and ended on the next 
and the previous n points (�i±n) as define in (8). Local angle 
tortuosity index is measured using (9), where � is the 
number of sample points in curve �. We perform the angle 
calculation on vectors formed at every 10 points, thus 
requiring a minimal segment length of 20 points.  With the 
requirement of determining the range of angle calculation, 
the MDAC method becomes dependent on scale and the 
nuthe mber of sampling points used to represent the blood 
vessel segment.  

i n i n iv p p+ += − , i n i n iv p p− −= −                   (8) 

( )
1

1
arccos

2.

n

i n i n
i

MDAC v v
N n + −

=

= ⋅
−               (9) 

Absolute Directional Angle Change (ADAC) considers 
local tortuosity of a vessel segment as the number of local 
direction angle (θi) with the minimal value of π/6 as in (10) 
[14]. Similar to MDAC, this method also requires the 
determination of range to calculate local direction angle, 
rendering the index to be influenced with scale and the 
number of sampling points as well.  
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• A method based on the number of twists 

A number of twists is an important property to quantify 
tortuosity in a vessel segment. It can be calculated from the 
number of change in curvature sign or the number of zero-
crossings from the second derivatives of curve coordinates. 
Bullitt et al. [15] proposed Inflection Count Metric (���) as 
a local tortuosity index based on numa ber of twists. It 
combines arc length and chord length ratio with numberthe  
of inflection point, ��� (twist) at a curve � as in (11).  
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Tortuosity Density (��) index evaluates vessel tortuosity 

in all sub-segments with constant curvature sign within a 
vessel segment [11]. Tortuosity index is defined as in (12) 
which n is numbthe er of sub-segment, ��(S) is vessels arc 
length, ��(��) and �	(��) are sub-segment arc length and 
chord length respectively. 
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Both methods incorporated the ratio of two length 
measurements, thus compensating their dependency on the 
scale and number of sampling points.  

b) Quantification of Global Tortuosity: Weighting 
Schemes 

Global tortuosity is obtained by combining any of local 
tortuosity indexes explained previously with a certain 
weighting scheme. The local tortuosity calculation is 

performed for every individual segment in the vascular 
network, and each resulted value is consequently weighted 
with a specific weighting scheme to produce a global 
tortuosity index.  

In this study, we test two existing weighting schemes 
from the literature and propose three modified weighting 
schemes. 

 
• Mean Tortuosity (MT) [8] 

Global tortuosity is calculated as the mean of all local 
tortuosity in an image as in (13), where m is the number of 
vessel segments, and TL is the local tortuosity index at each 
segment. This crude averaging method lacks the ability to 
weigh contributions from different lengths of blood vessel 
segments. Short segments with high local tortuosity are 
treated equally with longer segments with lower local 
tortuosity.  The global tortuosity value may become 
dominated by the short segments with striking tortuosity, 
while the generic tortuosity of the rest of the vascular 
network become masked. 
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• Weighted Additivity (WA) [9],[10] 

The global tortuosity index by weighted additivity method 
weights the local tortuosity of each vessel segment by its arc 
length (La) as in (14). 
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This method cannot distinguish differences in the 
complexity of the vascular network structure, i.e., the 
differences in the number and density of branching points. 
Images with similar total arc length may have similar global 
tortuosity even when their vascular networks are structurally 
different.  

 

• Mean Tortuosity with Weighted Additivity (MTWA) 

Based on the weaknesses of the MT and WA weighting 
schemes, we propose to combine the mean tortuosity and 
weighted additivity algorithm as in (15). By considering 
both the number of segments and the length of segments, we 
hope to obtain a more accurate weighting scheme.   
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                         (15)          

• Weighted Additivity on Chord (WAC) 

We also attempt to modify the weighted additivity 
algorithm from originally formulated on arc length (La) to 
chord length (Lc) as given in (16). It is known that both 
length measurements are sensitive to scale and number of 
sampling points. However, the extent of such influence can 
be expected to be more proportional in chord than in arc 
length calculation. In chord length calculation (i.e., 
Euclidean distance), all segments will be compromised 

1362



equally; while in arc length calculation (actual vessel 
length), the segments with higher tortuosity will be affected 
much more than the ones with lower tortuosity.  
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• Tortuosity Density Global (TDG) index  

This method extends the local tortuosity density (TD) 
algorithm in (12) to be used in the global calculation. TD 
algorithm considers a local segment as a sequential 
combination of shorter sub-segments. Our proposed TDG 
index treats individual local vessel segments as TD sub-
segments. In (17), m is the number of vessel segment, arc 
over chord length ratio is used as local tortuosity indexes, 
and the arc length of the entire vessel network is used as a 
normalization factor.  
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III.  RESULT AND DISCUSSION 

We evaluate the performance of our global tortuosity 
indexes by measuring the Spearman's rank correlation 
coefficient (ρ) between the image tortuosity rankings 
provided by our quantitative methods and the qualitative 
rankings provided by five independent ophthalmologists. We 
first assess the correspondence between each 
ophthalmologist to find out whether they are in good 
agreements. Table I shows high positive correlation (0.76 ≤ 
ρ ≤ 0.96, correlation range RC = 0.2) between the five 
ophthalmologists (D1, D2, D3, D4, and D5) with significance 
level at 0.002. These values inform that the ophthalmologist 
assessments are in good agreement with each other; 
therefore their rankings can be used as a reference to 
determine the performance of our proposed method. The 
range of correlation values can be considered as the 
representative range of inter-observer variations commonly 
found in subjective assessments. 

 

TABLE I 
SPEARMAN’S RANK CORRELATION COEFFICIENT BETWEEN FIVE 

OPHTHALMOLOGISTS (D1-D5) 

Ophthalmologists ρ (p-value <0.02) 

��� 0.77 

��� 0.94 

��� 0.93 

��� 0.86 

��� 0.76 

��� 0.88 

��� 0.88 

��� 0.96 

��� 0.86 

��� 0.93 

 

With the combinations of twelve local tortuosity indexes, 
five weighting schemes, and five individual rankings by 
ophthalmologists, we ended up with 60 pairs of Spearman's 
rank correlation analyses per weighting scheme, or 300 pairs 
of global tortuosity correlation analyses in total. We present 
the results of each 60 pairs of correlation analysis in the 
following Table II – Table VI, where each table corresponds 
to a specific weighting scheme.  

We decided to perform our correlation analysis on each 
ophthalmologist assessment instead of combining the five 
manual rankings into one. In this way, we can observe how 
our quantitative measurements perform with varying 
qualitative assessments provided by an ophthalmologist. The 
range of the lowest and highest inter-ophthalmologist 
correlations from Table 1 can further be compared to the 
range of the lowest and highest correlations for each tested 
quantitative index in Table II – Table VI to investigate 
whether quantitative methods are more consistent than 
qualitative evaluations. 

TABLE II 
SPEARMAN’S RANK CORRELATION COEFFICIENT FROM MEAN TORTUOSITY 

METHOD AND GROUND TRUTH 

Method 
Correlation ρ (p-value < 0.03) 

�  �! �" �# �$ Mean 
Distance ��/�	 0.88 0.74 0.85 0.82 0.76 0.81 

Curvature 

�� 0.53 0.29 0.43 0.33 0.25 0.37 
��� 0.81 0.62 0.78 0.72 0.65 0.72 

��/�� 0.75 0.54 0.67 0.59 0.54 0.62 
���/�� 0.93 0.76 0.86 0.81 0.83 0.84 
��/�	 0.73 0.55 0.69 0.6 0.62 0.64 

���/�	 0.94 0.78 0.92 0.86 0.79 0.86 
��� 0.85 0.55 0.83 0.75 0.65 0.73 

Angle 
variation 

���� 0.35 0.21 0.32 0.25 0.21 0.27 
���� 0.02 0.17 0.01 0.11 0.23 0.11 

Number 
of twist 

��� 0.35 0.18 0.33 0.21 0.09 0.23 
�� 0.94 0.81 0.89 0.91 0.87 0.88 

 
Table II illustrates the Spearman's rank correlation 

coefficient of tortuosity ranking from Mean Tortuosity (MT) 
weighting scheme compared to ground truth. Our experiment 
shows that �� is the best local tortuosity method to be used 
in conjunction with the MT weighting scheme (ρmean = 0.88, 
0.81 ≤ ρ ≤ 0.94, RC = 0.13). This result is in conjunction 
with the characteristics of �� inda the ex, which is more 
robust to variances in scale and vessel sampling points.
  

TABLE III 
 SPEARMAN’S RANK CORRELATION COEFFICIENT FROM WEIGHTED 

ADDITIVITY METHOD AND GROUND TRUTH 

Method 
Correlation ρ (p-value < 0.03) 

�  �! �" �# �$ Mean 
Distance ��/�	 0.71 0.84 0.77 0.84 0.77 0.79 

Curvature 

�� 0.61 0.4 0.77 0.66 0.45 0.58 
��� 0.81 0.78 0.93 0.9 0.77 0.84 

��/�� 0.95 0.93 0.96 0.98 0.96 0.96 
���/�� 0.91 0.89 0.93 0.96 0.94 0.93 
��/�	 0.91 0.89 0.93 0.96 0.94 0.93 

���/�	 0.91 0.89 0.93 0.96 0.94 0.93 
��� 0.95 0.93 0.95 0.97 0.93 0.95 

Angle 
variation 

���� 0.11 0.39 0.16 0.33 0.45 0.29 
���� 0.01 -0.3 -0.02 -0.18 -0.28 -0.15 

Number 
of twist 

��� 0.54 0.19 0.41 0.27 0.12 0.31 
�� 0.86 0.85 0.94 0.96 0.82 0.89 
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Table III shows the Spearman's rank correlation 
coefficient of tortuosity ranking from Weighted Additivity 
(WA) weighting scheme as opposed to ground truth. In our 
experiment, ��/�� consistently shows the highest 
correlation with all five ophthalmologists. The ��/�� is thus 
the best local tortuosity index to be used in conjunction with 
WA, with ρmean = 0.96 (0.93 ≤ ρ ≤ 0.98, RC = 0.05). This 
result is better than the previous weighting scheme, since it 
takes into account the length of the vessel segments 
involved.  

TABLE IV 
 SPEARMAN’S RANK CORRELATION COEFFICIENT FROM MEAN TORTUOSITY 

WEIGHTED ADDITIVITY METHOD AND GROUND TRUTH 

Method 
Correlation ρ (p-value < 0.03) 

�  �! �" �# �$ Mean 
Distance ��/�	 0.77 0.82 0.84 0.87 0.79 0.82 

Curvature 

�� 0.22 -0.1 0.23 0.05 -0.07 0.07 
��� 0.77 0.54 0.78 0.68 0.56 0.67 

��/�� 0.71 0.49 0.71 0.61 0.56 0.62 
���/�� 0.81 0.66 0.87 0.79 0.73 0.77 
��/�	 0.7 0.52 0.71 0.65 0.5 0.62 

���/�	 0.86 0.69 0.93 0.85 0.81 0.83 
��� 0.78 0.52 0.82 0.7 0.62 0.69 

Angle 
variation 

���� -0.12 -0.35 -0.14 -0.29 -0.38 -0.26 

���� -0.12 -0.35 -0.14 -0.29 -0.38 -0.26 

Number 
of twist 

��� 0.07 -0.23 0.04 -0.12 -0.23 -0.09 

�� 0.82 0.77 0.92 0.89 0.78 0.84 

 
Table IV describes the Spearman's rank correlation 

coefficient of tortuosity ranking from the Mean Tortuosity 
Weighted Additivity (MTWA) weighting scheme compared 
to ground truth. MTWA method gives the best performance 
when used together with �� local tortuosity index, giving 
ρmean = 0.84 (0.77 ≤ ρ ≤ 0.92, RC = 0.15). The tortuosity 
density index itself has contained normalization of arc length 
to chord length. Therefore weighting with arc length 
compensates for the sampling point dependency of the arc 
length and weighting with segment number further 
completes the weighting scheme. 

 

TABLE V 
 SPEARMAN’S RANK CORRELATION COEFFICIENT FROM WEIGHTED 

ADDITIVITY CHORD METHOD AND GROUND TRUTH 

Method 
Correlation ρ (p-value < 0.03) 

�  �! �" �# �$ Mean 
Distance ��/�	 0.78 0.82 0.84 0.89 0.85 0.84 

Curvature 

�� 0.62 0.39 0.75 0.63 0.43 0.56 
��� 0.8 0.61 0.91 0.84 0.76 0.78 

��/�� 0.8 0.61 0.91 0.84 0.76 0.78 
���/�� 0.95 0.92 0.94 0.96 0.92 0.94 
��/�	 0.86 0.84 0.93 0.94 0.87 0.89 

���/�	 0.98 0.86 0.93 0.96 0.89 0.92 
��� 0.98 0.96 0.96 0.98 0.95 0.97 

Angle 
variation 

���� 0.08 0.37 0.21 0.35 0.46 0.29 
���� 0.04 -0.28 0.04 -0.12 -0.28 -0.12 

Number 
of twist 

��� -0.52 -0.75 -0.57 -0.71 -0.75 -0.66 

�� 0.84 0.78 0.92 0.94 0.81 0.86 

 
Table V gives the Spearman's rank correlation coefficient 

of tortuosity ranking from the Weighted Additivity Chord 
(WAC) weighting scheme as opposed to the ground truth. 
Our experiments show that ��� local tortuosity index gives 
the highest correlations with D1, D2, D4 and D5. The ���   is 

shown to be the best local tortuosity method to be used in 
conjunction with the WAC algorithm, with ρmean = 0.97 
(0.95 ≤ ρ ≤ 0.98, RC = 0.03). The DCI local tortuosity index 
are normalized to arc length, therefore adding weighting sca 
heme based on chord length completes the global tortuosity 
index. 

Table VI illustrates the Spearman's rank correlation 
coefficient of tortuosity ranking from the Tortuosity Density 
Global (TDG) weighting scheme as compared to ground 
truth. TDG weighting scheme gives the best performance 
when used in conjunction with TD local tortuosity index, 
with ρmean = 0.98 (0.96 ≤ ρ ≤ 0.99, RC = 0.05).  The result can 
be expected since there is a natural match between the TD 
and the TDG weighting scheme, with the latter being the 
direct extension of the TD algorithm.  

 

TABLE VI 
 SPEARMAN’S RANK CORRELATION COEFFICIENT FROM THE TORTUOSITY 

DENSITY GLOBAL METHOD AND GROUND TRUTH 

Method 
Correlation ρ (p-value < 0.03) 

�  �! �" �# �$ Mean 
Distance ��/�	 0.89 0.97 0.94 0.95 0.85 0.92 

Curvature 

�� 0.71 0.56 0.71 0.61 0.51 0.62 
��� 0.82 0.69 0.88 0.79 0.66 0.77 

��/�� 0.62 0.42 0.54 0.44 0.43 0.49 
���/�� 0.95 0.87 0.99 0.94 0.88 0.93 
��/�	 0.93 0.79 0.87 0.81 0.78 0.84 

���/�	 0.95 0.87 0.99 0.94 0.88 0.93 
��� 0.93 0.85 0.96 0.89 0.78 0.88 

Angle 
variation 

���� 0.24 -0.09 0.22 0.04 -0.06 0.07 

���� -0.09 -0.36 -0.16 -0.3 -0.38 -0.26 

Number 
of twist 

��� -0.14 -0.33 -0.31 -0.32 -0.37 -0.29 

�� 0.99 0.96 0.99 0.97 0.97 0.98 

 
In global tortuosity quantification, vessel segments in a 

vessel map will have different scales. However, our local 
tortuosity calculations implement a single fixed scale in their 
calculations. The performance of local tortuosity methods 
such as TC, TSC, MDAC, ADAC, and ICM are naturally very 
dependent on scales and number of sampling points. This 
characteristic explains the lower correlation coefficient values 
obtained with these methods compared to the rests.  

Global tortuosity indexes derived from local indexes 
which contain normalized ratio to either arc length, chord 
length or arc length over chord length tends to fare much 
better than the rest due to its increased robustness to the 
variation of scales and number of sampling points.  Within 
these categories are the distance-based, normalized curvature-
based, and tortuosity density local indexes (i.e., La/Lc, TC/La, 
TC/Lc, TSC/La, TSC/Lc, TD). 

The best global tortuosity indexes for each of the five 
variations of weighting schemes generally provide a smaller 
range of correlation values compared to the range of inter-
ophthalmologist agreements (correlation range RC =0.2). The 
correlation ranges for global tortuosity indexes lie within the 
value of RC ≤ 0.15 for MT and MTWA and RC ≤ 0.05 for WA, 
WAC, and TD. This result means that the other four 
weighting schemes have successfully increased consistency 
on the evaluation of global tortuosity indexes.  

Among the novel three weighting schemes that we 
introduced, i.e., the MTWA, WAC, and TDG, the most 
optimum result is given by the combination of tortuosity 
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density (TD) local index and tortuosity density global (TDG) 
weighting scheme, with an average Spearman's rank 
correlation coefficient of 0.98. The DCI local index 
combined with the WAC weighting scheme came second 
with an average Spearman's rank correlation coefficient of 
0.97, while the TD local index and MTWA weighting scheme 
combination yield an average Spearman's rank correlation 
coefficient of 0.84. The TDG weighting scheme incorporates 
both the arc over chord length and the segment number 
normalization, thus presenting the weighting scheme with 
the complete inclusion of global traits of the retinal vascular 
network. 

Our result is also affected by errors introduced in the 
segmentation and partitioning of blood vessel network. 
Common problems in digital retinal images such as noise due 
to non-homogeneous illumination remain a challenging 
problem in automated vessel segmentation. Vessel 
partitioning is hindered by the missing information of depth 
in the conventional two-dimensional fundus images, thus 
making segmentation of arteries and venous segments 
troublesome. Unfortunately, our dataset was not equipped 
with manually traced skeletons of the retinal vascular 
network as well as manually annotated identification of blood 
vessel segments. We, therefore, are unable to evaluate the 
performance of our blood vessel segmentation and 
partitioning algorithms. 

Last, we only evaluated our algorithms on a minimal 
number of images. The result of methods described in this 
paper may be different as more images are included and if the 
images were of different resolutions. The main weakness of 
our quantitative tortuosity calculations is that it examines all 
scales and calibers of vessels with a similar fixed number of 
sampling points, thus providing different measurement 
fidelity for smaller and larger vessel segments. It is, however, 
an inherent problem of all quantitative tortuosity 
measurement indexes available to date. 

IV.  CONCLUSIONS 

From our experimental results, we conclude that local 
tortuosity indexes which values are sensitive to scale and 
number of sampling points (i.e. TC, TSC, MDAC, ADAC) 
are less appropriate for global tortuosity quantification than 
those who are more robust to such variations (i.e. La/Lc, 
TC/La, TC/Lc, TSC/La, TSC/Lc, TD). This nature stemmed 
from the inherently unaccounted variations of scale in the 
calculation of local tortuosity indexes. We also conclude that 
for retinal vasculature, global weighting scheme based on 
chord length is better than those that are based on arc length, 
because the influence of scales and sampling points in chord 
length is more proportional than in the arc length. The best 
result, however, is produced when length normalization is 
combined with segment number normalization as 
implemented in the TDG weighting scheme. The 
combination of TD as local tortuosity measure and TDG 
weighting scheme provides the highest average Spearman's 
rank correlation coefficient of 0.98 with five 
ophthalmologists.   

Future works of this study are to improve the 
segmentation and partition of blood vessels network as well 
as to evaluate the algorithms on a more substantial number 
of images. It is also crucial to improve the local tortuosity 

index methodology to proportionally take into account the 
variations in scale and number of sampling points. With a 
more robust and accurate local tortuosity measurement, it is 
more likely to achieve an equally robust and accurate global 
tortuosity index.  
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