669 research outputs found

    A Multi-perspective Analysis of Carrier-Grade NAT Deployment

    Full text link
    As ISPs face IPv4 address scarcity they increasingly turn to network address translation (NAT) to accommodate the address needs of their customers. Recently, ISPs have moved beyond employing NATs only directly at individual customers and instead begun deploying Carrier-Grade NATs (CGNs) to apply address translation to many independent and disparate endpoints spanning physical locations, a phenomenon that so far has received little in the way of empirical assessment. In this work we present a broad and systematic study of the deployment and behavior of these middleboxes. We develop a methodology to detect the existence of hosts behind CGNs by extracting non-routable IP addresses from peer lists we obtain by crawling the BitTorrent DHT. We complement this approach with improvements to our Netalyzr troubleshooting service, enabling us to determine a range of indicators of CGN presence as well as detailed insights into key properties of CGNs. Combining the two data sources we illustrate the scope of CGN deployment on today's Internet, and report on characteristics of commonly deployed CGNs and their effect on end users

    Internet Localization of Multi-Party Relay Users: Inherent Friction Between Internet Services and User Privacy

    Full text link
    Internet privacy is increasingly important on the modern Internet. Users are looking to control the trail of data that they leave behind on the systems that they interact with. Multi-Party Relay (MPR) architectures lower the traditional barriers to adoption of privacy enhancing technologies on the Internet. MPRs are unique from legacy architectures in that they are able to offer privacy guarantees without paying significant performance penalties. Apple's iCloud Private Relay is a recently deployed MPR service, creating the potential for widespread consumer adoption of the architecture. However, many current Internet-scale systems are designed based on assumptions that may no longer hold for users of privacy enhancing systems like Private Relay. There are inherent tensions between systems that rely on data about users -- estimated location of a user based on their IP address, for example -- and the trend towards a more private Internet. This work studies a core function that is widely used to control network and application behavior, IP geolocation, in the context of iCloud Private Relay usage. We study the location accuracy of popular IP geolocation services compared against the published location dataset that Apple publicly releases to explicitly aid in geolocating PR users. We characterize geolocation service performance across a number of dimensions, including different countries, IP version, infrastructure provider, and time. Our findings lead us to conclude that existing approaches to IP geolocation (e.g., frequently updated databases) perform inadequately for users of the MPR architecture. For example, we find median location errors >1,000 miles in some countries for IPv4 addresses using IP2Location. Our findings lead us to conclude that new, privacy-focused, techniques for inferring user location may be required as privacy becomes a default user expectation on the Internet

    Evolutionary gaming approach for decision making of Tier-3 Internet service provider networks migration to SoDIP6 networks

    Full text link
    This is the peer reviewed version of the following article: Dawadi, BR, Rawat, DB, Joshi, SR, Manzoni, P. Evolutionary gaming approach for decision making of Tier-3 Internet service provider networks migration to SoDIP6 networks. Int J Commun Syst. 2020; 33:e4399, which has been published in final form at https://doi.org/10.1002/dac.4399. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] With the increasing number of Internet of Things (IoT) devices, current networking world is suffering in terms of management and operations with lack of IPv4 addresses leading to issues like network address translation (NAT) proliferation, security and quality of services. Software-defined networking (SDN) and Internet Protocol version 6 (IPv6) are the new networking paradigms evolved to address related issues of legacy IPv4 networking. To adapt with global competitive environment and avoid all existing issues in legacy networking system, network service providers have to migrate their networks into IPv6 and SDN-enabled networks. But immediate transformations of existing network are not viable due to several factors like higher cost of migration, lack of technical human resources, lack of standards and protocols during transitions, and many more. In this paper, we present the migration analysis for proper decision making of network transition in terms of customer demand, traffic engineering, and organizational strength with operation expenditure for network migration using evolutionary gaming approach. Joint migration to SDN-enabled IPv6 network from game theoretic perspective is modeled and is validated using numerical results obtained from simulations. Our empirical analysis shows the evolutionary process of network migration while different internal and external factors in the organization affect the overall migration. Evolutionary game in migration planning is supportive in decision making for service providers to develop suitable strategy for their network migration. The proposed approach for migration decision making is mostly applicable to fairly sustained service providers who lack economics, regulation/policy, and resources strengths.ERASMUS+, Grant/Award Number: KA107; UGC-NP, Grant/Award Number: FRG-074/75-Engg-01; NTNU-EnPE-MSESSD; US National Science Foundation, Grant/Award Numbers: CNS 1650831, HRD 1828811; NASTDawadi, BR.; Rawat, DB.; Joshi, SR.; Manzoni, P. (2020). Evolutionary gaming approach for decision making of Tier-3 Internet service provider networks migration to SoDIP6 networks. International Journal of Communication Systems. 33(11):1-17. https://doi.org/10.1002/dac.4399S1173311Livadariu, I., Elmokashfi, A., & Dhamdhere, A. (2017). On IPv4 transfer markets: Analyzing reported transfers and inferring transfers in the wild. Computer Communications, 111, 105-119. doi:10.1016/j.comcom.2017.07.012Dawadi, B. R., Rawat, D. B., & Joshi, S. R. (2019). Software Defined IPv6 Network: A New Paradigm for Future Networking. Journal of the Institute of Engineering, 15(2), 1-13. doi:10.3126/jie.v15i2.27636Rizvi, S. N., Raumer, D., Wohlfart, F., & Carle, G. (2015). Towards carrier grade SDNs. Computer Networks, 92, 218-226. doi:10.1016/j.comnet.2015.09.029Sezer, S., Scott-Hayward, S., Chouhan, P., Fraser, B., Lake, D., Finnegan, J., 
 Rao, N. (2013). Are we ready for SDN? Implementation challenges for software-defined networks. IEEE Communications Magazine, 51(7), 36-43. doi:10.1109/mcom.2013.6553676ONF TR‐506.SDN migration considerations and use cases.;2014.https://www.opennetworking.org/wp-content/uploads/2014/10/sb-sdn-migration-use-cases.pdf.Raza, M. H., Sivakumar, S. C., Nafarieh, A., & Robertson, B. (2014). A Comparison of Software Defined Network (SDN) Implementation Strategies. Procedia Computer Science, 32, 1050-1055. doi:10.1016/j.procs.2014.05.532Wu, P., Cui, Y., Wu, J., Liu, J., & Metz, C. (2013). Transition from IPv4 to IPv6: A State-of-the-Art Survey. IEEE Communications Surveys & Tutorials, 15(3), 1407-1424. doi:10.1109/surv.2012.110112.00200Contreras, L. M., Doolan, P., Lþnsethagen, H., & López, D. R. (2015). Operational, organizational and business challenges for network operators in the context of SDN and NFV. Computer Networks, 92, 211-217. doi:10.1016/j.comnet.2015.07.016Sandhya, Sinha, Y., & Haribabu, K. (2017). A survey: Hybrid SDN. Journal of Network and Computer Applications, 100, 35-55. doi:10.1016/j.jnca.2017.10.003ON.LAB.Driving SDN adoption in service provider networks.;2014.http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-Service-Provider-SDN-final.pdf.SANDVINE. Carrier grade NAT: Mitigate IPv4 address exhaustion while maintaining network visibility.https://www.sandvine.com/hubfs/Procera_Live_Site_Files/PDF_Live_Site/Solutions_brief/SB_CGNAT.pdf. Published2018. .F5. Carrier‐grade NAT (CGNAT) for service providers.https://www.f5.com/services/resources/use-cases/carrier-grade-nat-for-service-providers. Accessed September 20 2019.Trinh, T. A., Gyarmati, L., & Sallai, G. (2010). Migrating to IPv6: A game-theoretic perspective. IEEE Local Computer Network Conference. doi:10.1109/lcn.2010.5735739Nikkhah, M. (2016). Maintaining the progress of IPv6 adoption. Computer Networks, 102, 50-69. doi:10.1016/j.comnet.2016.02.027Hu, T., Yi, P., Zhang, J., & Lan, J. (2018). A distributed decision mechanism for controller load balancing based on switch migration in SDN. China Communications, 15(10), 129-142. doi:10.1109/cc.2018.8485475TaoP YingC SunZ TanS WangP SunZ.The controller placement of software‐defined networks based on minimum delay and load balancing. In:2018 IEEE 16th Intl Conf on Dependable Autonomic and Secure Computing 16th Intl Conf on Pervasive Intelligence and Computing 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech).;2018:310‐313.Wang, K.-Y., Kao, S.-J., & Kao, M.-T. (2018). An efficient load adjustment for balancing multiple controllers in reliable SDN systems. 2018 IEEE International Conference on Applied System Invention (ICASI). doi:10.1109/icasi.2018.8394323Xu, H., Li, X.-Y., Huang, L., Deng, H., Huang, H., & Wang, H. (2017). Incremental Deployment and Throughput Maximization Routing for a Hybrid SDN. IEEE/ACM Transactions on Networking, 25(3), 1861-1875. doi:10.1109/tnet.2017.2657643Khorramizadeh, M., & Ahmadi, V. (2018). Capacity and load-aware software-defined network controller placement in heterogeneous environments. Computer Communications, 129, 226-247. doi:10.1016/j.comcom.2018.07.037LanW LiF LiuX QiuY.A dynamic load balancing mechanism for distributed controllers in software‐defined networking. In:2018 10th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA).;2018:259‐262.TR‐506 O.SDN Migration considerations and use cases.;2014.Kobayashi, M., Seetharaman, S., Parulkar, G., Appenzeller, G., Little, J., van Reijendam, J., 
 McKeown, N. (2014). Maturing of OpenFlow and Software-defined Networking through deployments. Computer Networks, 61, 151-175. doi:10.1016/j.bjp.2013.10.011BabikerH NikolovaI ChittimaneniKK.Deploying IPv6 in the Google Enterprise Network. Lessons learned. In:Proceedings of the 25th International Conference on Large Installation System Administration.;2011:10.APNIC. IPv6 capability measurement.https://stats.labs.apnic.net/ipv6. Accessed February 15 2020.Google Incl. IPv6 user access status.https://www.google.com/intl/en/ipv6/statistics.html. Accessed February 16 2020.Abdullah, S. A. (2019). SEUI-64, bits an IPv6 addressing strategy to mitigate reconnaissance attacks. Engineering Science and Technology, an International Journal, 22(2), 667-672. doi:10.1016/j.jestch.2018.11.012KreutzD RamosF VerissimoP RothenbergCE AzodolmolkyS UhligS.Software‐defined networking: A comprehensive survey.arXiv Prepr arXiv14060440.2014.DawadiBR RawatDB JoshiSR KeitschMM.Recommendations for energy efficient SoDIP6 network deployment at the early stage rural ICT expansion of Nepal. In: 2019International Conference on Computing Networking and Communications ICNC 2019.;2019.https://doi.org/10.1109/ICCNC.2019.8685567WintherM.Tier 1 isps: what they are and why they are important. IDC White Pap2006:1‐13.DawadiBR RawatDB JoshiSR.Evolutionary dynamics of service provider legacy network migration to software defined IPv6 network. In:International Conference on Computing and Information Technology;2019:245‐257.BriainDÓ DenieffeD KavanaghY OkelloD.A proposed architecture for distributed Internet eXchange Points in developing countries. In:2018 IST‐Africa Week Conference (IST‐Africa).;2018:Page‐‐1.ChatzisN SmaragdakisG FeldmannA.On the importance of Internet eXchange Points for today's Internet ecosystem.arXiv Prepr arXiv13075264.2013.RyanPS GersonJ.A primer on Internet exchange points for policymakers and non‐engineers.Available SSRN 2128103.2012.BogineniK.Introducing ONOS: A SDN network operating system for service providers.White Pap.2014.Karakus, M., & Durresi, A. (2018). Economic Viability of Software Defined Networking (SDN). Computer Networks, 135, 81-95. doi:10.1016/j.comnet.2018.02.015Shakkottai, S., & Srikant, R. (2006). Economics of Network Pricing With Multiple ISPs. IEEE/ACM Transactions on Networking, 14(6), 1233-1245. doi:10.1109/tnet.2006.886393Weiss, M. B., & Shin, S. (2002). Internet Interconnection Economic Model and its Analysis: Peering and Settlement. Communication Systems, 215-231. doi:10.1007/978-0-387-35600-6_10De Souza, E. P., Ferreira, E. M., & Neves, A. G. M. (2018). Fixation probabilities for the Moran process in evolutionary games with two strategies: graph shapes and large population asymptotics. Journal of Mathematical Biology, 78(4), 1033-1065. doi:10.1007/s00285-018-1300-4Klimek, P., Thurner, S., & Hanel, R. (2010). Evolutionary dynamics from a variational principle. Physical Review E, 82(1). doi:10.1103/physreve.82.01190

    Four years tracking unrevealed topological changes in the african interdomain

    Get PDF
    Despite extensive studies on the Internet topology, little is still known about the AS level topology of the African Internet, especially when it comes to its IXP substrate. The main reason for this is the lack of vantage points that are needed to obtain the proper information. From 2013 to 2016, we enhanced the RIPE Atlas measurement infrastructure in the region to shed light on both IPv4 and IPv6 topologies interconnecting local ISPs. We increased the number of vantage points in Africa by 278.3% and carried out measurements between them at random periods. To infer results that depict the behavior of ISPs in the region, we propose reproducible traceroute data analysis techniques suitable for the treatment of any set of similar measurements. We first reveal a large variety of ISP transit habits and their dependence on socio-economic factors. We then compare QoS within African countries, European countries, and the US to find that West African networks in particular need to promote investments in fiber networks and to implement traffic engineering techniques. Our results indicate the remaining dominance of ISPs based outside Africa for the provision of intra-continental paths, but also shed light on traffic localization efforts. We map, in our traceroute data, 62.2% of the IXPs in Africa and infer their respective peers. Finally, we highlight the launch of new IXPs and quantify their impacts on end-to-end connectivity. The study clearly demonstrates that to better assess interdomain routing in a continent, it is necessary to perform measurements from a diversified range of vantage points.The work done by RodĂ©rick Fanou was funded by IMDEA Networks Institute as part of the project “Mapping and Measuring the African Internet”. Francisco Valera has been partially funded by the European Commission under FP7 project LEONE (FP7-317647).Publicad

    State of Internet Measurement in Africa - A Survey

    Get PDF
    This paper presents the results of a survey aimed at understanding the status of Internet measurement platforms usage, deployment and capabilities in Africa. It presents findings related to prevalence of measurement in the region, the reasons why the different business categories investigated conduct Internet measurement as well as the metrics of interest to these entities. The survey also looked at the popular measurement platforms that the respondents use in their measurement activities as well as the platforms that are hosted by businesses and users in the African region. The survey also recorded responses related to data handling and privacy considerations. A total of 123 responses were received from 34 countries. The survey revealed that Internet measurements are not widely conducted in the region largely due to the inadequacy of deployed measurement platforms, the lack of awareness in the subject, and the lack of relevant skills to carry out the measurement tasks. We outlined some recommendations to remedy these issues

    Transition from IPv4 to IPv6

    Get PDF

    A Brave New World: Studies on the Deployment and Security of the Emerging IPv6 Internet.

    Full text link
    Recent IPv4 address exhaustion events are ushering in a new era of rapid transition to the next generation Internet protocol---IPv6. Via Internet-scale experiments and data analysis, this dissertation characterizes the adoption and security of the emerging IPv6 network. The work includes three studies, each the largest of its kind, examining various facets of the new network protocol's deployment, routing maturity, and security. The first study provides an analysis of ten years of IPv6 deployment data, including quantifying twelve metrics across ten global-scale datasets, and affording a holistic understanding of the state and recent progress of the IPv6 transition. Based on cross-dataset analysis of relative global adoption rates and across features of the protocol, we find evidence of a marked shift in the pace and nature of adoption in recent years and observe that higher-level metrics of adoption lag lower-level metrics. Next, a network telescope study covering the IPv6 address space of the majority of allocated networks provides insight into the early state of IPv6 routing. Our analyses suggest that routing of average IPv6 prefixes is less stable than that of IPv4. This instability is responsible for the majority of the captured misdirected IPv6 traffic. Observed dark (unallocated destination) IPv6 traffic shows substantial differences from the unwanted traffic seen in IPv4---in both character and scale. Finally, a third study examines the state of IPv6 network security policy. We tested a sample of 25 thousand routers and 520 thousand servers against sets of TCP and UDP ports commonly targeted by attackers. We found systemic discrepancies between intended security policy---as codified in IPv4---and deployed IPv6 policy. Such lapses in ensuring that the IPv6 network is properly managed and secured are leaving thousands of important devices more vulnerable to attack than before IPv6 was enabled. Taken together, findings from our three studies suggest that IPv6 has reached a level and pace of adoption, and shows patterns of use, that indicates serious production employment of the protocol on a broad scale. However, weaker IPv6 routing and security are evident, and these are leaving early dual-stack networks less robust than the IPv4 networks they augment.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120689/1/jczyz_1.pd
    • 

    corecore