2,338 research outputs found

    A new stochastic spatio-temporal propagation model (SSTPM) for mobile communications with antenna arrays

    Get PDF

    A novel wideband dynamic directional indoor channel model based on a Markov process

    Get PDF
    This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available

    Radio channel characterisation and system-level modelling for ultra wideband body-centric wireless communications

    Get PDF
    PhDThe next generation of wireless communication is evolving towards user-centric networks, where constant and reliable connectivity and services are essential. Bodycentric wireless network (BCWN) is the most exciting and emerging 4G technology for short (1-5 m) and very short (below 1 m) range communication systems. It has got numerous applications including healthcare, entertainment, surveillance, emergency, sports and military. The major difference between the BCWN and conventional wireless systems is the radio channel over which the communication takes place. The human body is a hostile medium from the radio propagation perspective and it is therefore important to understand and characterise the effect of the human body on the antenna elements, the radio propagation channel parameters and hence the system performance. In addition, fading is another concern that affects the reliability and quality of the wireless link, which needs to be taken into account for a low cost and reliable wireless communication system for body-centric networks. The complex nature of the BCWN requires operating wireless devices to provide low power requirements, less complexity, low cost and compactness in size. Apart from these characteristics, scalable data rates and robust performance in most fading conditions and jamming environment, even at low signal to noise ratio (SNR) is needed. Ultra-wideband (UWB) technology is one of the most promising candidate for BCWN as it tends to fulfill most of these requirements. The thesis focuses on the characterisation of ultra wideband body-centric radio propagation channel using single and multiple antenna techniques. Apart from channel characterisation, system level modelling of potential UWB radio transceivers for body-centric wireless network is also proposed. Channel models with respect to large scale and delay analysis are derived from measured parameters. Results and analyses highlight the consequences of static and dynamic environments in addition to the antenna positions on the performance of body-centric wireless communication channels. Extensive measurement i campaigns are performed to analyse the significance of antenna diversity to combat the channel fading in body-centric wireless networks. Various diversity combining techniques are considered in this process. Measurement data are also used to predict the performance of potential UWB systems in the body-centric wireless networks. The study supports the significance of single and multiple antenna channel characterisation and modelling in producing suitable wireless systems for ultra low power body-centric wireless networks.University of Engineering and Technology Lahore Pakista

    Extending TDL based non-WSSUS vehicle-to-everything channel model

    Get PDF
    In den vergangenen Jahrzehnten haben drahtlose Kommunikationssysteme eine rasante Entwicklung durchgemacht und es wurden viele Untersuchungen durchgeführt, seit Maxwell die Existenz von elektromagnetischer Wellen vorausgesagt hat. In den letzten Jahren hat die Forschung im Bereich der vehicle to X (V2X)-Kommunikation stetig zugenommen. V2X beschreibt die Fähigkeit, Daten zwischen einem Fahrzeug oder vehicle (V) und “allem” zu übertragen. In Zukunft könnten Fahrzeuge mit ihrer Umgebung kommunizieren, um Verkehrsunfälle zu vermeiden und Staus zu verringern. Dazu werden sie ihr Geschwindigkeits- und Positionsdaten über Ad-hoc-Fahrzeugnetze senden und empfangen können. Um die Verkehrssicherheit zu erhöhen, ist eine zuverlässige Kommunikationsverbindung notwendig. Die größte Herausforderung bei der Fahrzeugkommunikation besteht darin, dass sich die Eigenschaften des Physical Layers aufgrund der inhärenten Mobilität innerhalb des Kanals, der hohen Fahrzeuggeschwindigkeiten, der unterschiedlichen Antennenpositionen und der vielen Handover aufgrund kleinerer Zellen schnell ändern. Dies bringt eine Reihe von Herausforderungen in Bezug auf die Kanalcharakterisierung mit sich. Es handelt sich um einen Kanal mit starker Zeitvarianz und es treten viele Übergänge auf. Somit handelt es sich um einen nicht-stationärer (non-stationary) Kanal. Das Hauptziel dieser Untersuchung ist es, eine Methode zu finden, mit der der Kanal einer komplexen Umgebung in einer einfachen Form mit weniger strengen Beziehungen zur Geometrie dargestellt werden kann. Dabei werden die statistischen Eigenschaften ähnlich der Messdaten beibehalten. In dieser Arbeit werden nichtstationäre tapped delay line (TDL)-Modelle verwendet, um vehicle to infrastructure (V2I)-Kanäle zu beschreiben. Es wird eine neue Strategie zur Extraktion von TDL-Kanalmodellparametern aus Messdaten vorgeschlagen. Dieser Ansatz basiert auf einer bestehenden Methode zur Ableitung von Parametern für ein TDLModell. Es wird gezeigt, dass mit einer anderen Methode zur Auswahl der Taps die Anzahl der Abgriffe, die zur Rekonstruktion der root mean square delay spread (RMS-DS) eines Kanals erforderlich sind, erheblich reduziert werden kann. Ein neuer Ansatz zur überprüfen der Korrektheit der Ableitung der Kanalmodellparameter wird aufgezeigt. Die Durchführbarkeit der Methode wird anhand von Channel Sounding Messungen bestätigt. In dieser Dissertation wird ein Generator zur Erzeugung von Kanalimpulsantworten entwickelt und das nichtstationäre Verhalten der Kanäle durch die Verwendung eines ON/OFF-Prozesses beschrieben. Es werden Markov-Ketten unterschiedlicher Ordnung modelliert, um das nicht-stationäre Verhalten besser zu erfassen. Die Untersuchung zeigt, dass Markov-Ketten erster Ordnung mit zwei Zuständen vorzuziehen sind, um das häufige ON/OFF-Verhalten von Mehrwegpfaden darzustellen, und dass die Markov-Modelle zweiter und dritter Ordnung keine großen Auswirkungen haben. Eine Methode zur Erweiterung eines single input single output (SISO)-TDL-Modells auf multiple input multiple output (MIMO) unter der non-wide sense stationary uncorrelated scattering (non-WSSUS)-Annahme wird eingeführt, um TDL-Kanalmodelle für V2I MIMO-Systeme zu entwickeln. Die Analyse bewertet die SISO- mit der MIMO-Konfiguration in Bezug auf die Kanalkapazität. Es werden verschiedene MIMO-Konfigurationen untersucht, und es wird gezeigt, dass die Position der Antennen eine wichtige Rolle spielt. Die Verwendung von nur vier Antennen am transmitter (Tx) und receiver (Rx), die in unterschiedliche Richtungen abstrahlen, führt zu einem qualitativen Sprung in der Leistungsfähigkeit des Systems.In the past decades, wireless communication systems have undergone rapid development, and many investigations have been done since Maxwell predicted the existence of electromagnetic waves. In recent years, vehicle to X (V2X) communication research has been growing steadily. V2X describes the ability to transmit data between a vehicle (V) and “everything”. In the future, vehicles might be able to communicate with their environment to prevent traffic accidents and reduce congestion by allowing vehicles to transmit and receive data through a vehicular ad hoc network at their speed and position. In order to achieve the ultimate goal of enhancing transportation safety, it is crucial to establish reliable communication links. The main challenge of vehicular communications introduces new properties because the physical layer properties are rapidly changing due to inherent mobility within the channel, high vehicle speeds, varying antenna positions, and many handovers due to smaller cells. This brings up a number of challenges in terms of channel characterization because it is a strong time-variant channel and many transitions occur; therefore, it is a non-stationary channel. In this thesis, non-stationary tapped delay line (TDL) models are used to describe the vehicle to infrastructure (V2I) channels. This thesis proposes a new strategy to extract TDL channel model parameters from measurement data. The proposed approach is based on an existing method to derive parameters for a TDL model. It will be shown that with a different method of choosing taps, the number of taps necessary to regenerate the root mean square delay spread (RMS-DS) of a channel can be significantly reduced. An approach is proposed to verify the correctness of the channel model parameters derivation. The feasibility of the method will be confirmed using channel-sounding measurements. This dissertation devises a generator to produce channel impulse responses (CIRs) and describes the non-stationary behavior of the channels via employing an ON/OFF process. Different order Markov chains are modeled with the aim of better capturing the non-stationary behavior. The investigation shows that first-order two-state Markov chains are preferable to represent multipath’s frequent ON/OFF behavior, and the second- and third-order Markov models do not make enormous effects. A method for extending a single input single output (SISO)-TDL model to multiple input multiple output (MIMO) under non-wide sense stationary uncorrelated scattering (non-WSSUS) assumption is introduced to develop TDL channel models for the V2I MIMO systems. The analysis evaluates SISO- with MIMO configuration in terms of channel capacity. Different MIMO configurations are explored, and it will be illustrated that the position of antennas plays an important role. Using only four antennas at the transmitter (Tx) and receiver (Rx) that radiate towards different directions will make a qualitative leap in the performance of the system

    Millimeter wave and UWB propagation for high throughput indoor communications

    Get PDF
    Millimeter-wave systems at 60 GHz and ultra-wideband (UWB) systems in the microwave range of 3-10 GHz have been received with great interest for their high data rate wireless communications. In design, test and optimization of future wireless systems, channel models featuring the relevant characteristics of radiowave propagation are required. Furthermore, detailed understanding of the propagation channel and its interaction with system, creates insights into possible solutions. In this work, both theoretical (ray-tracing) and statistical models of the 60 GHz and UWB channels are studied. Propagation characteristics of the 60 GHz and UWB indoor channels are also compared for providing useful information on design of radio systems. More specifically, based on real-time channel sounder measurements performed in the 60 GHz band, propagation mechanisms including person blocking effect are concluded. Ray-based models in LOS and NLOS indoor corridors are proposed. Multipath power distributions in the 60 GHz band are studied first time. Moreover, propagation interdependencies of path loss, shadowing, number of paths, Rice K-factor and cross polarization discrimination (XPD) with channel delay spread are established. In the UWB propagation channel, frequency- and bandwidth- dependencies are investigated. Multipath and clustering propagation characteristics are analyzed. A new cluster model is proposed and compared with the classical Saleh-Valenzuela model for gaining more understanding of channel general properties. Finally, the performance and capacities of the 60 GHz UWB and MIMO (multiple-in and multiple-out) systems are analyzed for providing reliable parameters for system design and useful information for standardization groups

    3-D Statistical Channel Model for Millimeter-Wave Outdoor Mobile Broadband Communications

    Full text link
    This paper presents an omnidirectional spatial and temporal 3-dimensional statistical channel model for 28 GHz dense urban non-line of sight environments. The channel model is developed from 28 GHz ultrawideband propagation measurements obtained with a 400 megachips per second broadband sliding correlator channel sounder and highly directional, steerable horn antennas in New York City. A 3GPP-like statistical channel model that is easy to implement in software or hardware is developed from measured power delay profiles and a synthesized method for providing absolute propagation delays recovered from 3-D ray-tracing, as well as measured angle of departure and angle of arrival power spectra. The extracted statistics are used to implement a MATLAB-based statistical simulator that generates 3-D millimeter-wave temporal and spatial channel coefficients that reproduce realistic impulse responses of measured urban channels. The methods and model presented here can be used for millimeter-wave system-wide simulations, and air interface design and capacity analyses.Comment: 7 pages, 6 figures, ICC 2015 (London, UK, to appear
    corecore