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Abstract—A novel stochastic wideband dynamic spatio-
temporal indoor channel model which incorporates both the
spatial and temporal domain properties as well as the dynamic
evolution of paths when the mobile moves is proposed based on
the concept of a Markov process. The derived model is based on
dynamic measurement data collected at a carrier frequency of
5.2 GHz in typical indoor environments. Multipath components
are estimated using the super-resolution frequency domain space-
alternating generalized expectation maximization algorithm prior
to identification of path “birth” and “death” using a new data
analysis method. Analysis shows that multiple births and deaths
are possible at any instant of time. Furthermore, correlation
exists between the number of births and deaths. Thus, an M -step
4-state Markov channel model (MCM) is proposed in order to
account for these two effects. The spatio-temporal variations of
paths within their lifespans are taken into consideration by the
spatio-temporal vector which was found to be well modeled by
a Gaussian probability density function while the power var-
iation can be modeled by a simple low-pass filter. In addition,
the methodology used to extract the MCM parameters from
the measurement data is also presented. Due to the distinction
in the birth–death statistics, the model is generalized through
segmentation of the measurement runs and can be completely
parameterized by several sets of Markov parameters associated
with the type of environment and scenario under consideration.
The implementation of the model is also detailed and, finally, the
model is evaluated by comparing key statistics of the simulation
results with the measurement results.

Index Terms—Indoor radio communication, Markov processes,
multipath channel, radio propagation.

I. INTRODUCTION

CHANNEL modeling is an important research topic in
wireless communications. A realistic radio channel model

that provides detailed knowledge of the radiowave propagation
mechanisms is essential for the successful deployment of future
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wireless systems. The propagation channel parameters are time
varying due to the motion of the mobile terminal (MT) and
changes in the surrounding objects, which can then be modeled
by a stochastic process. The motion of the MT introduces
both small- and large-scale variations in the received signal.
The work reported here focuses on the large-scale variation
induced by the motion of the MT such as fluctuations of the
number of active paths, transitions where paths appear and
disappear, variations in the propagation delays and powers, and
the changes of the direction of arrivals as the MT moves along
its trajectory.

In recent years, many extensive studies have been carried out
in order to gain a more profound knowledge of propagation
channels. Numerous channel models have been reported in
the literature [1], [2]. A major shortcoming of the currently
available models is that they do not consider the dynamic be-
havior of the channels, i.e., the appearance and disappearance
of paths due to movement of the MT. This is mainly due
to the lack of dynamic measurement campaigns to support
realistic modeling of a dynamic channel. To the best of the
authors’ knowledge, only two models have appeared in pub-
lished literature which model the dynamic properties of the
indoor propagation channel. The first model is a stochastic
spatial channel model for indoor propagation environments
proposed by Zwick et al. [3], [4]. This model is based on
the idea of physical wave propagation. A deterministic ray-
tracing tool is used to produce the huge data sets required for
statistical evaluation of the parameters of the proposed model
and measurements are used for verification purposes. A key
assumption made in this model is that the appearance and
disappearance of paths to be statistically independent and, thus,
can be modeled by a simple birth–death (B–D) process. Later,
a Markov process is used to model the line-of-sight (LOS)
path separately from all other paths. Note that the above model
differs from the model proposed in this paper in terms of the
modeling concepts, approaches, and assumptions as will be
discussed in detail in the rest of the paper. The second model
is a temporal domain model proposed by Nielsen et al. [5].
However, the lack of dynamic spatial information in Nielsen’s
model does not allow any realistic evaluation of smart antenna
systems that would exploit both temporal and spatial domains
of the channel. As smart antennas have emerged as one of
the most promising candidates to maximize wireless capacity
throughput [6], the underlying models must characterize the
spatio-temporal properties as well as the dynamic evolution of
paths as the MT moves around the environment.

1536-1276/$20.00 © 2005 IEEE
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Modeling the appearance and disappearance of paths is
essential for the next generation of wireless systems (e.g.,
HIPERLAN/2 and IEEE 802.11a for indoor environments),
which are expected to support mobile users at very high
data rates and to provide a more realistic simulation scenario
for performance evaluation. This is essential as the statistical
characteristics of the channel may change significantly with
the displacement of the MT from one location to another.
Furthermore, modeling the dynamic behavior of the channel
is vital for performance evaluation of any channel tracking
algorithms such as beam-forming. Hence, a static channel
model with constant parameter settings within a local region
is insufficient to realistically model a time-variant environment
that is subject to movement of both the MT and surrounding
scatterers. Therefore, a dynamic channel model that is capable
of tracking the dynamic evolution of paths as the MT moves
along its trajectory is necessary.

The objectives of this paper are threefold. Firstly, to study in
more detail the dynamic behavior of indoor propagation chan-
nels in order to improve the understanding of the time-varying
propagation mechanisms and to provide information for dy-
namic spatio-temporal channel modeling purposes. Secondly,
to propose a new stochastic channel model based on the Markov
process that will take into account the time-varying properties
of the channel by incorporating the dynamic evolution of paths
when the MT is in motion. The power and spatio-temporal
variations of paths within their lifespans which were found to
be well modeled by a Gaussian probability density function
(pdf) and a simple low-pass filter (LPF), respectively, are
also investigated. Thirdly, the proposed model is evaluated by
comparing the statistical behavior of the measurement results
with the simulation results.

The paper is organized as follows: Section II describes the
measurement setup and environments. Section III presents the
data analysis and processing techniques to extract multipath
component (MPC) parameters and to identify path “births”
and “deaths.” In Section IV, a novel wideband dynamic direc-
tional indoor channel model is proposed based on the Markov
process. Section V presents the results from an extensive analy-
sis of the measurement data. Section VI describes the power
and spatio-temporal variations of paths within their lifespans.
Section VII summarizes the implementation procedure of the
channel model. In Section VIII, the performance of the pro-
posed channel model is evaluated by comparing the statistical
behavior of the measurement results with the simulations re-
sults. Finally, in Section IX, appropriate conclusions are drawn.

II. MEASUREMENT SETUP AND ENVIRONMENTS

A. Measurement Setup

The single-input–multiple-output (SIMO) measurements
were conducted using a Medav RUSK BRI channel sounder op-
erating at 5.2 GHz with an effective dynamic range of 40 dB [7].
A periodic multitone signal with a bandwidth of 120 MHz and
repetition period of 0.8 µs was employed. The frequency do-
main channel response was calculated online and stored on the
sounder’s hard disk for post-processing. The mobile transmitter
(TX) used an omnidirectional antenna transmitting at an input

power of +26 dBm with a stationary receiver (RX) comprising
a uniform linear array (ULA). The ULA had eight active dipole-
like elements spaced by half a wavelength and two dummy
elements at both ends to balance the mutual coupling effect.
The effective azimuth visible range of the ULA was 120◦.

The dynamic measurements were conducted by slowly push-
ing the TX towards the RX using a trolley and wireless teleme-
try equipment specially developed for this dynamic channel
sounding exercise. The trolley had two odometers on the left
and right wheels that enable precise logging of the distance
moved. The sounder was configured to record 20 SIMO snap-
shots consecutively for every 80 mm moved, where a SIMO
snapshot consists of eight complex channel response measure-
ments in the frequency domain across the eight-element ULA.
For a multitone signal period of 0.8 µs, the time for recording
a full SIMO snapshot was 12.8 µs [7]. Therefore, the total
recording time of one fast Doppler block (FDB) was 256 µs,
which was well within the coherence time of the channel and
also the 2-ms medium access control (MAC) frame of the
HIPERLAN/2 standard. A FDB in this measurement consists
of a block of 20 consecutive SIMO snapshots. Since the trolley
was pushed at approximately 1 m s−1, the distance moved when
one SIMO snapshot was being recorded was 2.22 × 10−4λ
(0.02% of λ). Therefore, the uncertainty introduced by the
trolley movement in one SIMO snapshot was negligible.

B. Measurement Environments

The dynamic measurements were conducted in a modern
office environment. The office environment was highly clut-
tered, where standard office furniture, wooden shelves (height
1.83 m), and metal cabinets (height 1.3/1.85 m) were present.
The tables were partitioned with soft boards (height 1.3/1.5 m).
The floor was carpeted and the walls were made of bricks and
concrete. A number of different measurements were taken in
this environment as well as other typical indoor scenarios such
as different types of corridors and a large open space. Full
details of all of the conducted measurement scenarios are given
in [8]. For brevity, this paper only describes the measurements,
shown in Fig. 1, used in the data analysis presented in the fol-
lowing sections. However, other measurements confirm results
reported in this paper. The mobile TX was pushed along the
dotted path (about 16 m) and RX was fixed at a position labeled
as “RX.” The height of the mobile TX was fixed at 1.8 m,
while the height of the stationary RX was fixed at 2.1 m. The
arrow indicates the orientation of the ULA broadside direction.
In order to obtain the 360◦ full spatial view of the radio channel,
three different RX orientations (0◦, 120◦, and 240◦) were used
during the measurements (see Fig. 1). The measurements at
this location were conducted during out of office hours with
minimal human perturbation. However, most measurements in
all other scenarios were conducted during normal office hours
with no restrictions imposed on the channel as people were free
to move.

III. DYNAMIC DATA ANALYSIS AND PROCESSING

In order to aid the development of the channel model, the
required channel parameters were extracted and analyzed from
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Fig. 1. Sketched plans of the office environment.

the data collected from the measurement campaign described
above. In general, the data analysis procedure can be classified
into two stages: multipath channel parameter estimation and
identification of path “birth” and “death.”

A. Multipath Channel Parameter Estimation

The super-resolution frequency domain space-alternating
generalized expectation maximization (FD-SAGE) algorithm
is used to detect and estimate the required multipath channel
parameters such as the number of MPCs, their complex path
gains, time of arrivals (TOAs), and angle of arrivals (AOAs) [9].
Since the total time to record 20 SIMO snapshots (or one FDB)
is well within the coherence time of the channel, averaging
can be carried out across a FDB (i.e., averaging a block of 20
SIMO snapshots) in order to enhance the signal-to-noise ratio
before using the FD-SAGE algorithm to estimate the required
parameters. As the trolley was in motion when the channel was
being captured, paths can appear and remain for a certain time
before finally disappearing. Hence, this contributes to a set of
channel parameters that varies as a function of FDB. Strictly
speaking, the channel parameters vary as a function of MT
displacement. Since the FDB index, n corresponds to the MT
displacement whereby one FDB is equivalent to 80 mm, for
simplicity, the authors refer the dynamic statistics described
herein as a function of FDB index. The total number of FDBs,
N varies according to the total distance traveled by the trolley.
Thus, N is a dimensionless positive integer with typical values
in the 500–850 range (as a direct consequence of the dynamic
measurement settings [8]) depending on the environment under
consideration.

Fig. 2. (a) The concept of active path and active region. (b) The concept of
uncertainty region.

B. Identification of Path “Birth” and “Death”

Two important parameters that form the basis of the dynamic
channel modeling are the number of path “births” and “deaths”
at any time instant, throughout the whole measurement run.
By knowing these two parameters, the lifespan of each of the
propagation paths can be derived. The total number of active
paths, LT, in each particular FDB can be classified into new
and inherited paths. New paths or births are defined as paths
that first appear in that particular FDB, while inherited paths
are defined as paths that existed in the previous FDB. Inherited
paths can be further divided into two subcategories, i.e., alive
and dead paths; alive paths are paths whose lifespan continues
into the following FDB, while dead paths are paths that end
their lifespans in that particular FDB.

In order to identify the number of births, LB, and deaths,
LD, in each FDB, we propose a novel data analysis method
where we introduce the terms active path (AP), active region
(AR), and uncertainty region (UR). The area of the AR is
determined by the intrinsic temporal and angular resolution of
the measurement system, namely the Rayleigh resolution [10].
Here, the temporal and spatial coverage area of the AR is set
to be τA ± δτ and uA ± δu, respectively, where τA and uA

(the spatial domain here is expressed in u-space, defined as
u = sinφ) form the centroid of the AR, while δτ and δu are
chosen to be 9 ns and 0.25, respectively (see the Appendix for
justification). Fig. 2(a) illustrates the concept of AP and AR.

Due to the limited resolution of the measurement system and
finite point-source modeling errors in the FD-SAGE algorithm
[9] when used in a distributed-source environment (i.e., in
the presence of clusters of closely spaced multipaths), the
estimated spatial–temporal parameters corresponding to a par-
ticular cluster of rays will correspond to the nominal parameter
values within the cluster. Note that this observation is valid
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when the spatial–temporal extent of the cluster is smaller than
the spatial–temporal Rayleigh resolution of the measurement
system. Since the superposition of the paths within the cluster
exhibits a fast-fading phenomena (in terms of resultant complex
path gain of the cluster), the estimated parameter values will
exhibit a finite fluctuation from one FDB to the next. The
fluctuation here refers to a small deviation of the estimated
parameter value from the previous one (within a very small MT
displacement), as well as a sudden appearance or disappearance
of a particular multipath that should have been detected with an
ideal measurement system of infinite resolution. The temporary
disappearance of these paths may be due to the fact that they
are in a deep fade position, i.e., a null in the resultant complex
path gain of the cluster. Thus, if paths appear, disappear, and
reappear within a finite local region, they can still be assumed to
be within their lifespans. As the angular resolution, δu, is 0.25,
Jakes fading model cannot be applied to determine the distance
between fades. Viewing the data reveals that fades can be of the
order of 2λ; hence, we can conclude that only paths in which
their TOAs and AOAs do not vary more than ±9 ns and ±0.25
in the temporal and spatial u-space domains, respectively, up
to three successive wavelengths are considered to be within
their lifespans. Therefore, the UR is set equal to 3λ in order to
account for the effect of fast-fading effects due to irresolvable
closely spaced paths within a cluster, and finite fluctuations of
the estimated parameter values within a local region of 3λ. Any
paths that appear beyond the UR are considered to be the birth
of some new paths. Fig. 2(b) illustrates the concept of the UR
in identifying the “birth” and “death” of a path.

IV. DYNAMIC CHANNEL MODELING APPROACH

A new wideband stochastic indoor propagation channel
model that incorporates both the spatial and temporal domains
as well as the dynamic evolution of paths is proposed. Analy-
sis of the measurement data showed that MPCs tend to form
clusters in the spatio-temporal domains. Furthermore, corre-
lation was also observed in these two domains [11]. As a result,
a wideband channel model that incorporates both the clustering
and correlation effects was proposed in [12]. However, this
model does not incorporate the dynamic evolution of paths
but assumes that the channel is quasi-static. In this paper, we
extend the clustering spatio-temporal channel model described
above to include the dynamic properties of the channel so that
the model will have the capability to track the paths when the
MT moves.

The dynamic directional channel model can be characterized
by the distance-variant directional channel impulse response

h(n; τ, φ) =
LT(n)∑
l=1

αl(n) · δ [τ − τl(n), φ− φl(n)] (1)

for n = 1, . . . , N , where δ(·) is the Dirac delta function, LT(n)
is the total number of active paths in the nth FDB, while αl(n),
τl(n), and φl(n) are the complex path gain, TOA, and AOA of
the lth path in the nth FDB, respectively. It has been reported in
[12] that LT can be well modeled by an exponential pdf while

{τl}l∈LT(n) and {φl}l∈LT(n) are modeled by a two-dimensional
joint pdf given by

f(τl, φl) = f(φl|τl) · f(τl) (2)

where f(φl|τl) is the Gaussian conditional AOA pdf in which
the standard deviation varies as a function of TOA, which can
be approximated by a Weibull distribution. Note that (2) is
applicable under the LOS scenario because under the obstructed
LOS (OLOS) and non-LOS (NLOS) scenarios, a simplification
can be made to (2) with f(τl, φl) = f(φl) · f(τl) where f(φl)
and f(τl) are the marginal AOA and TOA pdf, respectively.
In [12], it was reported that f(τl) can be modeled by an
exponential pdf and f(φl) was approximately uniform over
[0◦, 360◦]. While {αl}l∈LT(n) is assumed to be an independent
complex Gaussian process.

A. AnM -Step, 4-State Markov Channel Model

Initially, both Markov and non-Markov models were used to
investigate the dynamic behavior of the channel. Analysis re-
sults show that the non-Markov model is inferior to the Markov
model. This implies that the channel incorporates memory.
Hence, a Markov model will be adapted to model the dynamic
properties of the channel. Here, a 4-state Markov channel model
(MCM) is proposed in order to model the dynamic evolution of
paths when the MT in motion, where each state is defined as
follows:

• S0—no “birth” or “death” (B0D0);
• S1—one “death” only (B0D1);
• S2—one “birth” only (B1D0);
• S3—one “birth” and one “death” (B1D1).
Note that four states are required in order to account for the

correlation that exists between LB and LD. The validity of this
observation is confirmed by results obtained from the measure-
ment data from all of the investigated environments, which will
be presented in the following section. Fig. 3 illustrates the state
transition diagram of the 4-state MCM.

The probabilistic switching process between states in the
channel model is controlled by the state transition probability
matrix P given by

P = {pij} =



p00 p01 p02 p03

p10 p11 p12 p13

p20 p21 p22 p23

p30 p31 p32 p33


 (3)

where i and j denote the state index, while pij is the state
probability that a process currently in state i will occupy state j
after its next transition. Note that pij must satisfy the following
requirement:

0 ≤ pij ≤ 1, 1 ≤ i, j ≤ K − 1 (4)

K−1∑
j=0

pij = 1, i = 0, 1, . . . ,K − 1 (5)

where K is the number of states, i.e., K = 4 in our case. P
describes how paths appear and disappear when the MT moves.
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Fig. 3. State transition diagram of the 4-state Markov channel model.

The total distance traveled by the MT can be divided into
N FDBs. Analysis of the measurement data shows that, at any
instant, as the MT moves from one FDB to another, i.e., from
the nth to (n+ 1)th FDB, multiple births and deaths can occur
within one FDB. This implies that the standard 4-state MCM
described above is insufficient as it will only allow a single
event per transition. In order to account for the multiple events
case, a multiple step (M -step) MCM is proposed. Hence, by ap-
plying the M -step 4-state MCM, both the correlation between
LB and LD as well as the multiple births and deaths will be
taken into consideration. The number of steps M is determined
by the maximum number of births, LB,Max, and maximum
number of deaths, LD,Max, for a particular measurement file.

B. Markov Channel Model Parameter Estimation

Each measurement route might exhibit several propagation
modes (both LOS and NLOS) when the MT moves along
the trajectory even though these routes are from the same
environment. Thus, due to the distinction in the B–D statistics
and the spatio-temporal dispersion and correlation properties
for LOS and NLOS scenarios, the model is generalized and
parameterized by classification of measurement runs into sec-
tions with a similar propagation mechanism [13]. In order to
estimate the parameters of the MCM, i.e., elements of P from
the measurement data, the following procedure is applied to
each classified measurement section.

1) Determine the value of M according to LB,Max and
LD,Max.

2) Extract the B–D probability matrix A, which is an (M +
1) × (M + 1) square matrix. Elements of A represent the
probability of p and q number of birth and death paths,
respectively, of a particular measurement section. Note
that the matrix dimension of A is purely dependent on
the value of M . An example of A for M = 4 is given by

A = {apq} =

LB=0,1,...,4︷ ︸︸ ︷

a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44





LD

= 0, 1, . . . , 4 (6)

where the number of columns and rows represents the
number of births and deaths that can occur within one
FDB.

3) Set up the [(M + 1)2 + 4] nonlinear equations in or-
der to estimate all elements of P. (M + 1)2 equations
relate apq to products of pij . For example, a00 = pM

00 ;
a01 = pM−1

00 p01 + (M − 1)pM−2
00 p01p10; etc. The four

additional equations are due to the Markovian property
in which the entries in P must satisfy the requirement
imposed by (5). For a 4-state MCM, P consists of 16 vari-
ables that need to be estimated. For cases when M ≥ 3,
this becomes an overdetermined system where the num-
ber of equations is more than the number of variables to
be estimated. After forming the required equations, all
variables are estimated using a nonlinear least squares
optimization method [14]. Here, the subspace trust region
method based on the interior-reflective Newton algorithm
as described in [15] is deployed.

4) The interior-reflective Newton algorithm used in this
paper solves the system by assuming that the solution
has a small or zero residual. If the residual is relatively
large, this method will be slow or may start to diverge.
Furthermore, due to the large number of variables to be
estimated, we propose to run the optimization problem
several times (say 100) with different sets of randomly
chosen initial conditions in order to find a better minimum
and to increase the likelihood that the estimated parame-
ters converge to the desired global minimum. Hence, the
parameter set that minimizes the sum-of-squared-errors
(i.e., with the lowest function value) will be chosen as
the state transition probabilities of the particular mea-
surement file. By employing the “evolutionary approach”
whereby a problem with a smaller number of independent
variables is solved first can also improve the chances
of finding the global minimum. In this approach, so-
lutions from lower order problems are used as starting
points for higher order problems by using an appropriate
mapping [14].

Analysis results reported in [13] show that the MCM can
be generalized by several sets of transition probability ma-
trices, i.e., PLOS as PNLOS for LOS and NLOS scenarios,
respectively. This enables the B–D statistics to be generated
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TABLE I
AVERAGE VALUES OF THE PLOS AND PNLOS IN THE OFFICE ENVIRONMENT

according to the classified sections. Table I lists the average
values of the PLOS and PNLOS for the office environment.
Average values for all other investigated environments such as
a large open space and corridors are reported in [13]. These pa-
rameters obtained are useful for Monte Carlo simulations of the
channel model.

V. MEASUREMENT RESULTS

In this section, we present some measurement results in order
to validate the modeling concept described above. Due to the
similarity in the statistical behavior of all of the investigated
environments, unless otherwise stated, all measurement results
presented here correspond to the office environment described
in Section II. Fig. 4 shows the distance-variant power-delay
density spectrum (DV-PDDS) and the distance-variant power-
azimuth density spectrum (DV-PADS) for a sample measure-
ment file with the measurement configuration as described in
Section II. The DV-PDDS shows that the TOA of the strongest
LOS component increases as the trolley moves along its trajec-
tory, corresponding to the trolley moving away from the RX.
Also observable in the graph are the higher order reflections.
The major first-order reflection is due to the reflection off the
wall with the entrance door. This accounts for the decrease
in TOA as the trolley moves farther away from the RX. On
the other hand, the major second-order reflection is due to
the signal being first reflected by the wall behind the RX
(first order), and then reflected again by the wall with the
entrance door (second order) before arriving at the RX. The
DV-PADS further substantiates the following observations. As
can be clearly seen, the LOS component changes its AOA
from +60◦ to 0◦ as the trolley moves away from the RX,
while both the first- and second-order reflections have AOAs at
approximately 0◦. These graphs also reveal that with passing
time, paths appear and disappear. Therefore, LT varies with
the distance moved by the trolley as illustrated in Fig. 5(a).
In general, larger values of LB and LD were obtained for
the OLOS and NLOS scenarios when compared to the LOS
scenario. This is mainly due to a larger LT for OLOS and
NLOS scenarios. The presence of a LOS path causes the
channel sounder to miss paths with relatively low powers as
the dynamic range of the channel sounder is finite. As diffuse
reflections dominate in the OLOS and NLOS scenarios, strong
paths detected by the channel sounder have approximately the
same power. Therefore, paths with relatively low power can still

Fig. 4. (a) Distance-variant power–delay density spectrum (DV-PDDS) and
(b) distance-variant power–azimuth density spectrum (DV-PADS) in the office
environment.

be detected by the channel sounder provided they fall within
the dynamic range.

Here, we are interested in the variation of LB and LD as
the trolley moves. Analysis of the measurement data indicated
that a correlation exists between LB and LD. Fig. 6 shows the
dynamic evolution of LB and LD as the trolley moves along
its trajectory for the same measurement file used in Fig. 4.
It is obvious that the variation pattern of LB and LD is very
similar. The B–D correlation coefficient, ρBD, between LB
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Fig. 5. Dynamic evolution of the total number of active paths LT obtained
from the (a) real-time office environment and (b) simulations results.

and LD is calculated for each measurement file and is defined
as follows:

ρBD =

∣∣∣∣∣∣∣∣∣∣

N∑
n=1

(
LB(n) − L̄B

) (
LD(n) − L̄D

)
√

N∑
n=1

(
LB(n) − L̄B

)2
N∑

n=1

(
LD(n) − L̄D

)2

∣∣∣∣∣∣∣∣∣∣
,

ρBD ∈ [0, 1] (7)

where LB(n) and LD(n) are the number of births and deaths
of paths in the nth FDB, respectively, while L̄B and L̄D are
the mean number of births and deaths, respectively. On the
average, ρBD > 0.75 was obtained for all investigated envi-
ronments, which clearly shows that a high correlation exists
between LB and LD. Thus, in order to generate a more re-
alistic simulation model, the correlation must be taken into
consideration. Fig. 7 shows an example of a joint pdf of LB

and LD, f(LB, LD), for a post-processed measurement data
in an office environment where high probability was observed
particularly for low values of LB and LD. The correlation

that exists between LB and LD might be due to the highly
cluttered environment, where many reflections are subject to the
blocking and unblocking of paths as the trolley moves along its
trajectory.

The lifespan of a path, ll, is the distance for which the
path exists from its first appearance until it finally disappears
as the MT moves along its trajectory and can be derived by
knowing when the path was born and died. Hence, ll is a
random variable (RV) that can be described by a pdf. Note that
ll is as a function of the FDB index n, and thus, is dimension-
less. Here, we found that the pdf of the path lifespan, f(ll),
is best described by an exponential distribution as shown in
Fig. 8(a).

As described in Section IV, the value of M is determined
by LB,Max and LD,Max. Another significant observation is that
the values of LB and LD (hence, LB,Max and LD,Max) are
highly dependent on the presence of a LOS path. Under the
LOS condition, M = 3 is sufficient, while for the OLOS and
NLOS cases, at least M = 8 is required in order to ensure
that P converges. These values were verified by simulation
results by increasing M until the value of P did not change
significantly. For example, under the LOS condition, it was
observed that all elements of P estimated at M = 3 and M =
4 (i.e., P3 and P4, respectively) do not vary by more than
15%. Further increase in M would not alter the value of P
significantly. Thus, M = 3 is used as the upper limit of the
step size to generate P for the LOS case. Generally, larger
values of M correspond to environments with a larger number
of paths.

VI. POWER AND SPATIO-TEMPORAL VARIATIONS

WITHIN PATH LIFESPAN

A. Spatio-Temporal Variation Within Path Lifespan

As the MT moves along its trajectory, fluctuations in the
path TOA and AOA occur within the path lifespan, ll. Results
from the data analysis reveal that the spatio-temporal variation
of a particular path can be modeled by a linear polynomial
approximation. Thus, linear least squares regression is used
to find the best line fit through all data points of each path
in the form of y = kx+ b. Fig. 9 shows an example of the
TOA–AOA fluctuations of paths within their lifespans. Note
that paths with a lifespan of less than three FDBs are too short
for analysis. Also in the figure is an illustration of the best
line fit for each of these paths. It indicates that the direction
of change is independent of the location on the spatio-temporal
domain. Thus, the gradient k of each straight line can be
described by an RV. Since vertical lines have an infinite value
of k, the term spatio-temporal vector, ω is introduced and is
defined as the acute angle between the TOA–AOA axes, where
w = tan−1(k). Therefore, ω is also an RV that can be described
by a pdf. Here, we found that f(ω) can be well modeled by a
Gaussian pdf as illustrated by the inner plot in Fig. 9.

B. Power Variation Within Path Lifespan

Power variation of a path occurs due to movement of the MT.
To date, most researchers assume that the power variation of a
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Fig. 6. Dynamic evolution of the number of births LB and deaths LD in the office environment.

Fig. 7. Joint pdf of LB and LD, f(LB, LD), obtained from the real-time office environment.

path within its lifespan can be described by a smooth monotone
transition function [16]–[18]. This transition function was first
proposed in [19], where power was assumed to vary as a sinu-
soidal function in the region where the path appears and dis-
appears. The main reason for making the following assumption
is to exclude the abrupt changes of power variation. However,
this conjecture was made without any physical propagation
reasoning or supported by any measurement results.

In order to model the power variation of a path within
its lifespan, its power spectral density (PSD) is studied to
determine an appropriate filter that is able to reproduce a set
of random signals that exhibit similar spectral characteristics.
Paths with a relatively long lifespan are focused on as they can
be used for spectral estimation. Paths with a long lifespan are
caused by the same superstructure (e.g., furniture, walls, doors,

etc.) forming the path during the whole measurement run.
However, due to the measurement constraints, the data obtained
from the measurements have an uneven distance spacing. A
straightforward approach is to reconstruct evenly spaced
data using interpolation or rebinning before applying the
conventional discrete Fourier transform (DFT) or fast Fourier
transform (FFT) methods. However, both interpolation and
rebinning perform poorly and introduce significant distortion
in the spectral density of the analyzed data. Furthermore, the
DFT and FFT methods perform well only when the data size
is relatively large. In order to mitigate this effect, a method
suitable for unevenly sampled and relatively short signals, the
Lomb-Scargle periodogram (LSP) [20] is deployed. The LSP
is based on a local least squares fit of the data by sinusoids
centered on each data point of the distance-series (equivalently
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Fig. 8. The pdf of the path lifespan f(ll) obtained from the (a) real-time office
environment and (b) simulations results.

time-series) data [21], [22]. Given an unevenly spaced signal,
hn ≡ h(xn), where n = 1, 2, . . . , N , the normalized LSP
PN (ψ) is given as follows [20]:

PN (ψ) =
1

2σ2




[
N∑

n=1
(hn − h̄) cosψ(xn − η)

]2

N∑
n=1

cos2 ψ(xn − η)

+

[
N∑

n=1
(hn − h̄) sinψ(xn − η)

]2

N∑
n=1

sin2 ψ(xn − η)


 (8)

where h̄ and σ2 are the mean and variance of the data,
respectively, while η is defined by

tan(2ψη) =

N∑
n=1

sin 2ψxn

N∑
n=1

cos 2ψxn

. (9)

Due to its local least squares fit nature, the LSP works equally
well for unevenly spaced sampled data. Furthermore, it is also
much less prone to aliasing distortions in small size data sets.

Fig. 10(a) and (b) illustrates the power variation of a path
within its lifespan and its corresponding PSD (in logarithmic
scale), respectively. This active path is chosen randomly from
the same measurement file used to plot previous figures (i.e.,
Figs. 4–9). These figures show that only low-frequency compo-
nents are significant. Several other paths were also investigated
and similar PSDs were observed. This implies that the power
variation of a path within its lifespan can be well modeled by
a simple LPF, which exhibits a similar frequency response.
The results obtained here give an insight to a more realistic
representation of the shape transition function as compared to
the sinusoidal function assumed by previous researchers.

Generally, the power variation of a path within its lifespan
can be caused by several mechanisms. Firstly, due to the
motion of the MT along its trajectory that changes the reflection
coefficients of some media. For example, as the trolley moves
along the trajectory in the office environment, reflections can
be due to the walls, furniture, doors, or even people in the
surroundings. Thus, the building structure can cause a path
to fade within its lifespan. Secondly, due to the finite spatio-
temporal resolution of the measurement system, paths with
closely spaced TOAs and AOAs are unable to be resolved.
This causes multiple paths being detected as “a single path.”
From the physical propagation mechanism point of view, rough
surface scattering can lead to more than one reflected compo-
nents with closely spaced TOAs and AOAs due to different
angles of reflections. Paths reflected from rough surfaces can
combine coherently or incoherently depending on their relative
path length. As a result, a variation in amplitude or power
can occur within the lifespan of a particular path, i.e., the
same propagation path can fade within its lifespan as illustrated
in Fig. 10(a).

VII. IMPLEMENTATION OF THE CHANNEL MODEL

In this section, the implementation of the proposed MCM
is summarized with reference to the flowchart depicted in
Fig. 11. Firstly, the user is required to provide input parameters
such as the type of environment (e.g., office) and scenario
(e.g., LOS or NLOS) to be simulated. Dependent on these, the
appropriate transition probability matrices, PLOS and PNLOS

(see Table I), and the number of steps M will be chosen as
the simulation parameters. Also, the distance traveled (i.e., the
total number of FDB N ) must also be provided as part of the
input parameters. During the initialization stage, both LB(1)
and LD(1) are initialized to zero and the model generates the
total number of active paths in the first FDB, LT(1), according
to the exponential pdf, f(LT), as proposed in [12]. Following
this, the clustering spatio-temporal channel model as proposed
in [12] is adopted in order to generate the new paths’ powers,
|αl|2(n), TOAs, τl(n), and AOAs, φl(n), for l = 1, . . . , LT(n)
and n = 1, . . . , N . In order to incorporate the dynamic evolu-
tion of paths due to motion, i.e., the number of births, LB(n),
the number of deaths, LD(n), and thus, the total number of
active paths, LT(n), in the nth FDB for n = 1, . . . , N , the
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Fig. 9. Example of the spatio-temporal variation of path within its lifespan in the office environment with the resulting Gaussian distributed spatio-temporal
vector, ω.

Fig. 10. (a) Power variation of a randomly selected path within its lifespan
and (b) its corresponding power spectral density from a sample data file
obtained from the office environment.

M -step 4-state MCM is adopted in which LT(n) can be com-
puted as follows:

LT(n) = LT(n− 1) + LB(n) − LD(n) (10)

where LT(n− 1) is the total number of active paths in the
previous FDB. Furthermore, the power and the spatio-temporal
variations of a path within its lifespan are also incorporated as
discussed in Section VI.

VIII. CHANNEL MODEL EVALUATION

The validity of the newly proposed stochastic channel model
can be evaluated by comparing the key statistics of the simula-
tion results with the measurement results. As the model is statis-
tical, there is no one-to-one correspondence between simulation
and measurement. In order to compare the proposed model with
the measurements, an equivalent scenario was encoded into the
model. Values generated through simulations were subjected
to the same statistical analysis as the real measurement data
in order to evaluate the similarity between them. Firstly, a
comparison is made between the values of B–D probability
matrix obtained from the measurement data A with the one
obtained through simulation, A′. Simulation results show that
a reasonable match is obtained between A and A′ in which the
B–D probability matrix error εA (i.e., εA = |A − A′| × 100%)
is less than 3% per element with the sum-of-errors less than
20% for all environments under consideration. Table II displays
the results for three examples of this comparison by considering
the LOS condition where M = 3. Secondly, the comparison
has been performed for the total number of active paths LT

over the whole measurement run as shown in Fig. 5(a) and
(b) for the measurement and simulation results, respectively.
These two figures clearly show that the variation ofLT obtained
through simulation agrees well with the measurement results,
where the simulated LT is shown to be bounded within the
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Fig. 11. Flowchart for the implementation of the proposed wideband dynamic directional Markov channel model.
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TABLE II
COMPARISON BETWEEN THE REAL AND SIMULATED B–D PROBABILITY MATRIX (M = 3)

Fig. 12. Example of the simulated spatio-temporal variation of path within its lifespan.

lower and upper limit of LT obtained from the measurements.
The proposed model is further evaluated by looking at the pdf
of the path lifespan f(ll) and the spatio-temporal variation of
a path within its lifespan for both measurement and simula-
tion results. Fig. 8(a) and (b) shows f(ll) obtained from the
measurement and simulation results, respectively, whereboth
were well modeled by an exponential pdf. Finally, Fig. 12
illustrates the simulated spatio-temporal variation of a path
within its lifespan. This graph clearly shows that its variation
pattern is very similar to that of Fig. 9.

IX. CONCLUSION

A novel stochastic wideband dynamic directional indoor
channel model has been proposed based on real-time dynamic

measurement data collected at 5.2 GHz in several typical in-
door environments. The proposed model incorporates both the
spatial and temporal domain properties as well as the dynamic
evolution of paths when the MT is in motion, based on the
concept of a Markov process. The super-resolution FD-SAGE
algorithm was deployed to extract the MPC parameters prior
to identification of path “birth” and “death” using a new data
analysis technique. The resolution achieved by deploying these
data analysis methods is far greater than the resolution limit
of current indoor wireless systems such as HIPERLAN/2 and
IEEE802.11a. While consumer technology specifications are
below that of the sounder, the parameters given will be valid
for the environments described.

A detailed analysis of the measurement data shows that a
correlation exists between the number of births and deaths.
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Furthermore, multiple births and deaths are also plausible at
any time instant. The main contribution of the paper is the
introduction of an M -step 4-state MCM that will take into
account multiple births and deaths as well as the B–D correla-
tion. Such an approach has not previously been considered in
detail as most research have assumed that the channel is
quasistatic and the births and deaths are due to two separate
stochastic processes. By knowing the birth and death of a
path, the path lifespan is derived, which has been shown to
be well modeled by an exponential pdf. The power and spatio-
temporal variations of each path within their lifespans were also
investigated. The spatio-temporal variation can be completely
described by a single parameter called the spatio-temporal vec-
tor, ω, which describes the changes in the temporal and angular
domains of a particular path within its lifespan which was found
to be well modeled by a Gaussian pdf. The PSD obtained using
the LSP shows that the power variation can be modeled by a
simple LPF. In addition, the method used to extract the MCM
parameters from the experimental data was also discussed.
Due to the distinction in the B–D statistics, spatio-temporal
dispersion and correlation properties for different propagation
scenarios, the model is generalized by segmentation of the
measurement runs into sections with the same propagation
mode. Here, it was found that the model is completely pa-
rameterized by several sets of transition probability matrices
associated with the type of environment and scenario under
consideration.

The new model was implemented and evaluated by com-
paring the key statistics of the simulation results with the
measurement results such as the B–D probability matrix, the
evolution of the total number of active paths, distribution of
the path lifespan, and the spatio-temporal variation of a path
within its lifespan. Since the channel model developed in this
work is focused on the indoor WLAN application based around
5 GHz, the proposed model is most suitable for simulating
any HIPERLAN/2 and IEEE802.11a systems that employ smart
antenna architectures particularly for the performance evalu-
ation of tracking algorithms, as well as for the evaluation of
space–time processing applications in the indoor environment.

APPENDIX

The basic functionality and channel modeling concept of the
Medav RUSK BRI channel sounder is described in [7]. Here,
the sounding bandwidth was set to 120 MHz with a multitone
period of 0.8 µs. Since the measured data were stored in the
complex frequency domain, it produces 97 frequency samples
equally spaced at 1.25 MHz. Due to the limited sounding
bandwidth, the energy of the impulse response in a single-
source scenario will be “spread” across the delay domain with
its first null nearest to the main lobe given by ±1/(Nf∆f),
where Nf is the number of frequency samples and ∆f is the
frequency spacing between the samples. This determines the
temporal Rayleigh resolution of the sounder δτRay = 1/(97 ×
1.25 MHz) ≈ 8.25 ns. Similarly, due to the limited spatial
aperture of the eight-element ULA, its power–azimuth density
spectrum for a single source is “spread” across the azimuth,
with its first null nearest to its main lobe given by ±λ/(NSd),

where NS is the number of antenna elements and d is the
element spacing. Note that the null in the spatial domain is
expressed in the u-space, where u = sinφ. The main reason
that u-space is used here is to retain the linearity of spatial
resolution of the ULA across the azimuth, i.e., the spatial
resolution is a linear function of u, and a nonlinear function
of φ. Hence, the spatial Rayleigh resolution of the system (in
u-space) is given by δuRay = 0.25 for an eight-element ULA
with λ/2 element spacing. Based on the intrinsic resolution of
the system, the spatial–temporal coverage area of the AR is set
to be uA ± δu and τA ± δτ , respectively, where τA and uA

represent the centroid of the AR, while δτ and δu are chosen
to be 9 ns and 0.25, respectively.
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