1,615 research outputs found

    Propagation channel characterisation and modelling for high-speed train communication systems

    Get PDF
    High-mobility scenarios, e.g., High-Speed Train (HST) scenarios, are expected to be typical scenarios for the Fifth Generation (5G) communication systems. With the rapid development of HSTs, an increasing volume of wireless communication data is required to be transferred to train passengers. HST users demand high network capacity and reliable communication services regardless of their locations or speeds, which are beyond the capability of current HST communication systems. The features of HST channels are significantly different from those of low-mobility cellular communication systems. For a proper design and evaluation of future HST wireless communication systems, we need accurate channel models that can mimic the underlying channel characteristics, especially the non-stationarity for different HST scenarios. Inspired by the lack of such accurate HST channel models in the literature, this PhD project is devoted to the modelling and simulation of non-stationary Multiple-Input Multiple-Output (MIMO) channels for HST communication systems. In this thesis, we first give a comprehensive review of the measurement campaigns conducted in different HST scenarios and address the recent advances in HST channel models. We also highlight the key challenges of HST channel measurements and models. Then, we study the characterisation of non-stationary channels and propose a theoretical framework for deriving the statistical properties of these channels. HST wireless communication systems encounter different channel conditions due to the difference of surrounding geographical environments or scenarios. HST channel models in the literature have either considered large-scale parameters only and/or neglected the non-stationarity of HST channels and/or only consider one of the HST scenarios. Therefore, we propose a novel generic non-stationary Geometry-Based Stochastic Model (GBSM) for wideband MIMO HST channels in different HST scenarios, i.e., open space, viaduct, and cutting. The corresponding simulation model is then developed with angular parameters calculated by the Modified Method of Equal Area (MMEA). The system functions and statistical properties of the proposed channel models are thoroughly studied. The proposed generic non-stationary HST channel models are verified by measurements in terms of stationary time for the open space scenario and the Autocorrelation Function (ACF), Level Crossing Rate (LCR), and stationary distance for the viaduct and cutting scenarios. Transmission techniques which are capable of utilising Three-Dimensional (3D) spatial dimensions are significant for the development of future communication systems. Consequently, 3D MIMO channel models are critical for the development and evaluation of these techniques. Therefore, we propose a novel 3D generic non-stationary GBSM for wideband MIMO HST channels in the most common HST scenarios. The corresponding simulation model is then developed with angular parameters calculated by the Method of Equal Volume (MEV). The proposed models considers several timevarying channel parameters, such as the angular parameters, the number of taps, the Ricean K-factor, and the actual distance between the Transmitter (Tx) and Receiver (Rx). Based on the proposed generic models, we investigate the impact of the elevation angle on some of the channel statistical properties. The proposed 3D generic models are verified using relevant measurement data. Most standard channel models in the literature, like Universal Mobile Telecommunications System (UMTS), COST 2100, and IMT-2000 failed to introduce any of the HST scenarios. Even for the standard channel models which introduced a HST scenario, like IMT-Advanced (IMT-A) and WINNER II channel models, they offer stationary intervals that are noticeably longer than those in measured HST channels. This has inspired us to propose a non-stationary IMT-A channel model with time-varying parameters including the number of clusters, powers, delays of the clusters, and angular parameters. Based on the proposed non-stationary IMT-A channel model, important statistical properties, i.e., the time-variant spatial Cross-correlation Function (CCF) and time-variant ACF, are derived and analysed. Simulation results demonstrate that the stationary interval of the developed non-stationary IMT-A channel model can match that of relevant HST measurement data. In summary, the proposed theoretical and simulation models are indispensable for the design, testing, and performance evaluation of 5G high-mobility wireless communication systems in general and HST ones in specific

    Measurements and analysis of large-scale fading characteristics in curved subway tunnels at 920 MHz, 2400 MHz, and 5705 MHz

    Get PDF
    ave propagation characteristics in curved tunnels are of importance for designing reliable communications in subway systems. This paper presents the extensive propagation measurements conducted in two typical types of subway tunnels—traditional arched “Type I” tunnel and modern arched “Type II” tunnel—with300- and 500-m radii of curvature with different configurations—horizontal and vertical polarizations at 920, 2400, and 5705 MHz, respectively. Based on the measurements, statistical metrics of propagation loss and shadow fading (path-loss exponent, shadow fading distribution, autocorrelation, and cross-correlation) in all the measurement cases are extracted. Then, the large-scale fading characteristics in the curved subway tunnels are compared with the cases of road and railway tunnels, the other main rail traffic scenarios, and some “typical” scenarios to give a comprehensive insight into the propagation in various scenarios where the intelligent transportation systems are deployed. Moreover, for each of the large-scale fading parameters, extensive analysis and discussions are made to reflect the physical laws behind the observations. The quantitative results and findings are useful to realize intelligent transportation systems in the subway system

    Channel Measurements and Models for High-Speed Train Communication Systems: A Survey

    Get PDF
    The recent development of high-speed trains (HSTs) as an emerging high mobility transportation system, and the growing demands of broadband services for HST users, introduce new challenges to wireless communication systems for HSTs. Accurate and efficient channel models considering both large-scale and non-stationary small-scale fading characteristics are crucial for the design, performance evaluation, and parameter optimization of HST wireless communication systems. However, the characteristics of the underlying HST channels have not yet been sufficiently investigated. This paper first provides a comprehensive review of the measurement campaigns conducted in different HST scenarios and then addresses the recent advances in HST channel models. Finally, key challenges of HST channel measurements and models are discussed and several research directions in this area are outlined

    A Non-Stationary IMT-Advanced MIMO Channel Model for High-Mobility Wireless Communication Systems

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.With the recent developments of high-mobility wireless communication systems, e.g., high-speed train (HST) and vehicle-to-vehicle (V2V) communication systems, the ability of conventional stationary channel models to mimic the underlying channel characteristics has widely been challenged. Measurements have demonstrated that the current standardized channel models, like IMT-Advanced (IMT-A) and WINNER II channel models, offer stationary intervals that are noticeably longer than those in measured HST channels. In this paper, we propose a non-stationary channel model with time-varying parameters including the number of clusters, the powers and the delays of the clusters, the angles of departure (AoDs), and the angles of arrival (AoAs). Based on the proposed non-stationary IMT-A channel model, important statistical properties, i.e., the local spatial cross-correlation function (CCF) and local temporal autocorrelation function (ACF) are derived and analyzed. Simulation results demonstrate that the statistical properties vary with time due to the non-stationarity of the proposed channel model. An excellent agreement is achieved between the stationary interval of the developed non-stationary IMT-A channel model and that of relevant HST measurement data, demonstrating the utility of the proposed channel model

    A cognitive control approach to interference mitigation in communications-based train control (CBTC) co-existing with passenger information systems (PISs)

    Get PDF
    As a key component of urban rail transit systems, communications-based train control (CBTC) is an automated train control system using train-ground communications to ensure efficient operation of rail vehicles. In addition to CBTC systems, passenger information systems (PISs) are adopted in urban rail transit systems to improve quality of service (QoS) offered to customers. The interference between CBTC systems and PISs is an important factor impacting QoS of both CBTC systems and PISs. With recent advances in cognitive dynamic systems, in this paper, we take a cognitive control approach to interference mitigation considering the co-existence of CBTC systems and PISs. In our cognitive control approach, the notion of information gap is adopted to quantitatively describe effects of interference on CBTC. The wireless channel is modeled as a finite-state Markov chain with multiple state transition probability matrices, which are derived from real field measurements. Simulation results show that the proposed cognitive control approach can significantly improve performance of CBTC train-ground communications under interference from

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics
    corecore