47 research outputs found

    Digital predistortion of RF amplifiers using baseband injection for mobile broadband communications

    Get PDF
    Radio frequency (RF) power amplifiers (PAs) represent the most challenging design parts of wireless transmitters. In order to be more energy efficient, PAs should operate in nonlinear region where they produce distortion that significantly degrades the quality of signal at transmitter’s output. With the aim of reducing this distortion and improve signal quality, digital predistortion (DPD) techniques are widely used. This work focuses on improving the performances of DPDs in modern, next-generation wireless transmitters. A new adaptive DPD based on an iterative injection approach is developed and experimentally verified using a 4G signal. The signal performances at transmitter output are notably improved, while the proposed DPD does not require large digital signal processing memory resources and computational complexity. Moreover, the injection-based DPD theory is extended to be applicable in concurrent dual-band wireless transmitters. A cross-modulation problem specific to concurrent dual-band transmitters is investigated in detail and novel DPD based on simultaneous injection of intermodulation and cross-modulation distortion products is proposed. In order to mitigate distortion compensation limit phenomena and memory effects in highly nonlinear RF PAs, this DPD is further extended and complete generalised DPD system for concurrent dual-band transmitters is developed. It is clearly proved in experiments that the proposed predistorter remarkably improves the in-band and out-of-band performances of both signals. Furthermore, it does not depend on frequency separation between frequency bands and has significantly lower complexity in comparison with previously reported concurrent dual-band DPDs

    Advanced digital predistortion of power amplifiers for mobile and wireless communications

    Get PDF
    This research work focuses on improving the performances of digital predistorters while maintaining low computational complexity for mobile and wireless communication systems. Initially, the thesis presents the fundamental theory of power amplifiers, overview of existing linearisation and memory-effects compensation techniques and reveals the current issues in the field. Further, the thesis depicts the proposed solutions to the problems, including the developed in-band distortion modelling technique, model extraction methods, memoryless digital predistortion technique based on distortion components iterative injection, baseband equalisation technique for minimising memory effects, Matlab-ADS co-simulation system and adaptation circuit with an offline training scheme. The thesis presents the following contributions of the research work. A generalized in-band distortion modelling technique for predicting the nonlinear behaviour of power amplifiers is developed and verified experimentally. Analytical formulae are derived for calculating predistorter parameters. Two model extraction techniques based on the least-squares regression method and frequency-response analysis are developed and verified experimentally. The area of implementation and the trade-off between the methods are discussed. Adjustable memoryless digital predistortion technique based on the distortion components iterative injection method is proposed in order to overcome the distortion compensation limit peculiar to the conventional injection techniques. A baseband equalisation method is developed in order to provide compensation of memory effects for increasing the linearising performance of the proposed predistorter. A combined Matlab-ADS co-simulation system is designed for providing powerful simulation tools. An adaptation circuit is developed for the proposed predistorter for enabling its adaptation to environmental conditions. The feasibility, performances and computational complexity of the proposed digital predistortion are examined by simulations and experimentally. The proposed method is tuneable for achieving the best ratio of linearisation degree to computational complexity for any particular application

    Advanced digital predistortion of power amplifiers for mobile and wireless communications

    Get PDF
    This research work focuses on improving the performances of digital predistorters while maintaining low computational complexity for mobile and wireless communication systems. Initially, the thesis presents the fundamental theory of power amplifiers, overview of existing linearisation and memory-effects compensation techniques and reveals the current issues in the field. Further, the thesis depicts the proposed solutions to the problems, including the developed in-band distortion modelling technique, model extraction methods, memoryless digital predistortion technique based on distortion components iterative injection, baseband equalisation technique for minimising memory effects, Matlab-ADS co-simulation system and adaptation circuit with an offline training scheme. The thesis presents the following contributions of the research work. A generalized in-band distortion modelling technique for predicting the nonlinear behaviour of power amplifiers is developed and verified experimentally. Analytical formulae are derived for calculating predistorter parameters. Two model extraction techniques based on the least-squares regression method and frequency-response analysis are developed and verified experimentally. The area of implementation and the trade-off between the methods are discussed. Adjustable memoryless digital predistortion technique based on the distortion components iterative injection method is proposed in order to overcome the distortion compensation limit peculiar to the conventional injection techniques. A baseband equalisation method is developed in order to provide compensation of memory effects for increasing the linearising performance of the proposed predistorter. A combined Matlab-ADS co-simulation system is designed for providing powerful simulation tools. An adaptation circuit is developed for the proposed predistorter for enabling its adaptation to environmental conditions. The feasibility, performances and computational complexity of the proposed digital predistortion are examined by simulations and experimentally. The proposed method is tuneable for achieving the best ratio of linearisation degree to computational complexity for any particular application.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Energy-Efficient Distributed Estimation by Utilizing a Nonlinear Amplifier

    Get PDF
    abstract: Distributed estimation uses many inexpensive sensors to compose an accurate estimate of a given parameter. It is frequently implemented using wireless sensor networks. There have been several studies on optimizing power allocation in wireless sensor networks used for distributed estimation, the vast majority of which assume linear radio-frequency amplifiers. Linear amplifiers are inherently inefficient, so in this dissertation nonlinear amplifiers are examined to gain efficiency while operating distributed sensor networks. This research presents a method to boost efficiency by operating the amplifiers in the nonlinear region of operation. Operating amplifiers nonlinearly presents new challenges. First, nonlinear amplifier characteristics change across manufacturing process variation, temperature, operating voltage, and aging. Secondly, the equations conventionally used for estimators and performance expectations in linear amplify-and-forward systems fail. To compensate for the first challenge, predistortion is utilized not to linearize amplifiers but rather to force them to fit a common nonlinear limiting amplifier model close to the inherent amplifier performance. This minimizes the power impact and the training requirements for predistortion. Second, new estimators are required that account for transmitter nonlinearity. This research derives analytically and confirms via simulation new estimators and performance expectation equations for use in nonlinear distributed estimation. An additional complication when operating nonlinear amplifiers in a wireless environment is the influence of varied and potentially unknown channel gains. The impact of these varied gains and both measurement and channel noise sources on estimation performance are analyzed in this paper. Techniques for minimizing the estimate variance are developed. It is shown that optimizing transmitter power allocation to minimize estimate variance for the most-compressed parameter measurement is equivalent to the problem for linear sensors. Finally, a method for operating distributed estimation in a multipath environment is presented that is capable of developing robust estimates for a wide range of Rician K-factors. This dissertation demonstrates that implementing distributed estimation using nonlinear sensors can boost system efficiency and is compatible with existing techniques from the literature for boosting efficiency at the system level via sensor power allocation. Nonlinear transmitters work best when channel gains are known and channel noise and receiver noise levels are low.Dissertation/ThesisPh.D. Electrical Engineering 201

    Mixed-Signal Multimode Radio Software/Hardware Development Platform

    Get PDF
    Radio frequency power amplifiers (PAs) are the most challenging part of the design of radio systems since they dictate the overall system's performance in terms of power efficiency and distortion generation. The performance is further challenged by modern modulation schemes which are characterized by highly varying signal envelopes. In order to meet the spectrum mask requirements, PAs are usually operated at high power back-off to ensure linearity, at the cost of efficiency. To tackle this issue, many efficiency enhancement techniques have been presented in the literature. In fact, these techniques do increase the PA power efficiency at back-off, however, efficiency enhancement techniques do not ensure the linearity of the PA. Furthermore, these techniques may lead to additional distortion. On the other hand, several linearization techniques have been developed to mitigate the PA nonlinearity problem and allow the PA to operate at less back-off. Digital Pre-Distortion (DPD) technique is gaining more attention, as compared to other linearization techniques, thanks to its simple concept and advancements in digital signal processors (DSP) and signal converters. DPD technique consists of introducing a nonlinear function before the PA so that the overall cascaded system behaves linearly. It was clear from the literature that this technique showed good performance. Yet, it has primarily been validated using commercial test equipment, which has good capabilities, and far from the real world environment in which this technique would be implemented. Indeed, DPDs would need to be implemented in signal processors characterised by limited resources and computational accuracy. This thesis presents an implementation of several DPD models, namely look-up table (LUT), memoryless polynomial and memory polynomial (MP), on a field programmable gate array (FPGA). A novel model reformulation made this implementation possible in fixed-point arithmetic. Measurements were collected to validate the DPD models' implementation and an improvement of the signal quality was recorded in terms of error vector magnitude (EVM) and adjacent channel leakage ratio (ACLR). As many wireless access technologies must continue to coexist, multi-standard radio systems are required to reduce the cost while maintaining the interoperability. This thesis presents a development platform for multimode radio which comprises mixed-signal modules. The platform provides the capacity for hardware and software development. In fact, the FPGA under investigation allowed for the implementation of a baseband transceiver and DPD schemes. In addition, a software tool was developed as a dashboard to control and monitor the system. The radio system in the platform was optimized through the equalization of the feedback receiver frequency response performed through a simultaneous measurement of the amplitude ripple of the transmitter and receiver. Furthermore, a phase-coherent frequency synthesizer was designed to bring more flexibility by allowing the transmitter's carrier frequency to be different from the receiver's frequency

    Novel Predistortion System for 4G/5G Small-Cell and Wideband Transmitters

    Get PDF
    To meet the growing demand for mobile data, various technologies are being introduced to wireless networks to increase system capacity. On one hand, large number of small-cell base stations are adopted to serve the reduced cell size; on the other hand, millimeter wave (mm-wave) systems with large antenna arrays that transmit ultra-wideband signals are expected in fifth generation (5G) networks. Power amplifiers (PAs), responsible for boosting the radio frequency (RF) signal power, are the most critical components in base station transmitters, and dominate the overall efficiency and linearity of the system. The design challenges to balance the contradictory requirements of efficiency and linearity of the PAs are usually addressed by linearization techniques, particularly the digital predistortion (DPD) system. However, existing DPD solutions face increasing difficulties keeping up with new developments in base station technologies. When considering sub-6 GHz small-cell base station transmitters, analog and RF predistortion techniques have recently received renewed attention due to their inherent low power nature. Their achievable linearization capacity is significantly limited, however, largely by their implementation complexity in realizing the needed predistortion models in analog circuitry. On the other hand, despite significant developments in DPD models for wideband signals, the implementations of such DPD models in practical hardware have received relatively little attention. Yet the conventional implementation of a DPD engine is limited by the maximum clock frequency of the digital circuitry employed and cannot be scaled to satisfy the growing bandwidth of transmitted signals for 5G networks. Furthermore, both analog and digital solutions require a transmitter-observation-receiver (TOR) to capture the PA outputs, necessitates the use of analog-to-digital converters (ADCs) whose complexity and power consumption increase with signal bandwidth. Such trend is not scalable for future base stations, and new innovations in feedback and training methods are required. This thesis presents a number of contributions to address the above identified challenges. To reduce the power overhead of the linearization system, a digitally-assisted analog-RF predistortion (DA-ARFPD) system that uses a novel predistortion model is introduced. The proposed finite-impulse-response assisted envelope memory polynomial (FIR-EMP) model allows for a reduction of hardware implementation complexity while maintaining good linearization capacity and low power overhead. A two-step small-signal-assisted parameter identification (SSAPI) algorithm is devised to estimate the parameters of the two main blocks of the FIR-EMP model, such that the training can be completed efficiently. A DA-ARFPD test bench has been built, which incorporates major RF components, to assess the validity of the proposed FIR-EMP scheme and the SSAPI algorithm. Measurement results show that the proposed FIR-EMP model with SSAPI algorithm can successfully linearize multiple PAs driven with various wideband and carrier-aggregated signals of up to 80~MHz modulation bandwidths for sub-6 GHz systems. Next, a hardware-efficient real-time DPD system with scalable linearization bandwidth for ultra-wideband 5G mm-wave transmitters is proposed. It uses a novel parallel-processing DPD engine architecture to process multiple samples per clock cycle, overcomes the linearization bandwidth limit imposed by the maximum clock rate of digital circuits used in conventional DPD implementation. Potentially unlimited linearization bandwidth could be achieved by using the proposed system with current digital circuit technologies. The linearization performance and bandwidth scalability of the proposed system is demonstrated experimentally using a silicon-based Doherty (DPA) with 400 MHz wideband signal operating at 28 GHz, and over-the-air measurements using a 64-element beamforming array with 800 MHz wideband signal, also at 28 GHz. The proposed DPD system achieves over 2.4 GHz linearization bandwidth using only a 300 MHz core clock for the digital circuits. Finally, to reduce the power consumption and cost of the TOR, a new approach to train the predistorter using under-sampled feedback signal is presented. Using aliased samples of the PA's output captured at either baseband or intermedia frequency (IF), the proposed algorithm is able to compute the coefficients of the predistortion engine to linearize the PA using a direct learning architecture. Experimentally, both the baseband and IF schemes achieve linearization performance comparable to a full-rate system. Implemented together with a parallel-processing based DPD engine on a field-programmable gate array (FPGA) based system-on-chip (SOC), the proposed feedback and training solution achieves over 2.4~GHz linearization bandwidth using an ADC operating at a clock rate of 200 MHz. Its performance is demonstrated experimentally by linearizing a silicon DPA with 200 MHz and 400 MHz signals in conductive measurements, and a 64-element beamforming array with 400 MHz and 800 MHz signals in over-the-air testing

    A fast engineering approach to high efficiency power amplifier linearization for avionics applications

    Get PDF
    This PhD thesis provides a fast engineering approach to the design of digital predistortion (DPD) linearizers from several perspectives: i) enhancing the off-line training performance of open-loop DPD, ii) providing robustness and reducing the computational complexity of the parameters identification subsystem and, iii) importing machine learning techniques to favor the automatic tuning of power amplifiers (PAs) and DPD linearizers with several free-parameters to maximize power efficiency while meeting the linearity specifications. One of the essential parts of unmanned aerial vehicles (UAV) is the avionics, being the radio control one of the earliest avionics present in the UAV. Unlike the control signal, for transferring user data (such as images, video, etc.) real-time from the drone to the ground station, large transmission rates are required. The PA is a key element in the transmitter chain to guarantee the data transmission (video, photo, etc.) over a long range from the ground station. The more linear output power, the better the coverage or alternatively, with the same coverage, better SNR allows the use of high-order modulation schemes and thus higher transmission rates are achieved. In the context of UAV wireless communications, the power consumption, size and weight of the payload is of significant importance. Therefore, the PA design has to take into account the compromise among bandwidth, output power, linearity and power efficiency (very critical in battery-supplied devices). The PA can be designed to maximize its power efficiency or its linearity, but not both. Therefore, a way to deal with this inherent trade-off is to design high efficient amplification topologies and let the PA linearizers take care of the linearity requirements. Among the linearizers, DPD linearization is the preferred solution to both academia and industry, for its high flexibility and linearization performance. In order to save as many computational and power resources as possible, the implementation of an open-loop DPD results a very attractive solution for UAV applications. This thesis contributes to the PA linearization, especially on off-line training for open-loop DPD, by presenting two different methods for reducing the design and operating costs of an open-loop DPD, based on the analysis of the DPD function. The first method focuses on the input domain analysis, proposing mesh-selecting (MeS) methods to accurately select the proper samples for a computationally efficient DPD parameter estimation. Focusing in the MeS method with better performance, the memory I-Q MeS method is combined with feature extraction dimensionality reduction technique to allow a computational complexity reduction in the identification subsystem by a factor of 65, in comparison to using the classical QR-LS solver and consecutive samples selection. In addition, the memory I-Q MeS method has been proved to be of crucial interest when training artificial neural networks (ANN) for DPD purposes, by significantly reducing the ANN training time. The second method involves the use of machine learning techniques in the DPD design procedure to enlarge the capacity of the DPD algorithm when considering a high number of free parameters to tune. On the one hand, the adaLIPO global optimization algorithm is used to find the best parameter configuration of a generalized memory polynomial behavioral model for DPD. On the other hand, a methodology to conduct a global optimization search is proposed to find the optimum values of a set of key circuit and system level parameters, that properly combined with DPD linearization and crest factor reduction techniques, can exploit at best dual-input PAs in terms of maximizing power efficiency along wide bandwidths while being compliant with the linearity specifications. The advantages of these proposed techniques have been validated through experimental tests and the obtained results are analyzed and discussed along this thesis.Aquesta tesi doctoral proporciona unes pautes per al disseny de linealitzadors basats en predistorsió digital (DPD) des de diverses perspectives: i) millorar el rendiment del DPD en llaç obert, ii) proporcionar robustesa i reduir la complexitat computacional del subsistema d'identificació de paràmetres i, iii) incorporació de tècniques d'aprenentatge automàtic per afavorir l'auto-ajustament d'amplificadors de potència (PAs) i linealitzadors DPD amb diversos graus de llibertat per poder maximitzar l’eficiència energètica i al mateix temps acomplir amb les especificacions de linealitat. Una de les parts essencials dels vehicles aeris no tripulats (UAV) _es l’aviònica, sent el radiocontrol un dels primers sistemes presents als UAV. Per transferir dades d'usuari (com ara imatges, vídeo, etc.) en temps real des del dron a l’estació terrestre, es requereixen taxes de transmissió grans. El PA _es un element clau de la cadena del transmissor per poder garantir la transmissió de dades a grans distàncies de l’estació terrestre. A major potència de sortida, més cobertura o, alternativament, amb la mateixa cobertura, millor relació senyal-soroll (SNR) la qual cosa permet l’ús d'esquemes de modulació d'ordres superiors i, per tant, aconseguir velocitats de transmissió més altes. En el context de les comunicacions sense fils en UAVs, el consum de potència, la mida i el pes de la càrrega útil són de vital importància. Per tant, el disseny del PA ha de tenir en compte el compromís entre ample de banda, potència de sortida, linealitat i eficiència energètica (molt crític en dispositius alimentats amb bateries). El PA es pot dissenyar per maximitzar la seva eficiència energètica o la seva linealitat, però no totes dues. Per tant, per afrontar aquest compromís s'utilitzen topologies amplificadores d'alta eficiència i es deixa que el linealitzador s'encarregui de garantir els nivells necessaris de linealitat. Entre els linealitzadors, la linealització DPD és la solució preferida tant per al món acadèmic com per a la indústria, per la seva alta flexibilitat i rendiment. Per tal d'estalviar tant recursos computacionals com consum de potència, la implementació d'un DPD en lla_c obert resulta una solució molt atractiva per a les aplicacions UAV. Aquesta tesi contribueix a la linealització del PA, especialment a l'entrenament fora de línia de linealitzadors DPD en llaç obert, presentant dos mètodes diferents per reduir el cost computacional i augmentar la fiabilitat dels DPDs en llaç obert. El primer mètode se centra en l’anàlisi de l’estadística del senyal d'entrada, proposant mètodes de selecció de malla (MeS) per seleccionar les mostres més significatives per a una estimació computacionalment eficient dels paràmetres del DPD. El mètode proposat IQ MeS amb memòria es pot combinar amb tècniques de reducció del model del DPD i d'aquesta manera poder aconseguir una reducció de la complexitat computacional en el subsistema d’identificació per un factor de 65, en comparació amb l’ús de l'algoritme clàssic QR-LS i selecció de mostres d'entrenament consecutives. El segon mètode consisteix en l’ús de tècniques d'aprenentatge automàtic pel disseny del DPD quan es considera un gran nombre de graus de llibertat (paràmetres) per sintonitzar. D'una banda, l'algorisme d’optimització global adaLIPO s'utilitza per trobar la millor configuració de paràmetres d'un model polinomial amb memòria generalitzat per a DPD. D'altra banda, es proposa una estratègia per l’optimització global d'un conjunt de paràmetres clau per al disseny a nivell de circuit i sistema, que combinats amb linealització DPD i les tècniques de reducció del factor de cresta, poden maximitzar l’eficiència de PAs d'entrada dual de gran ample de banda, alhora que compleixen les especificacions de linealitat. Els avantatges d'aquestes tècniques proposades s'han validat mitjançant proves experimentals i els resultats obtinguts s'analitzen i es discuteixen al llarg d'aquesta tesi

    A load modulated balanced amplifier for telecom applications

    Get PDF
    This paper presents the design and characterization of a load modulated balanced amplifier for telecom base station applications adopting a novel mode of operation. The theory of operation is described explaining the main differences compared to Doherty amplifiers, in particular the RF bandwidth advantages and, on the other hand, the intrinsic non-linear behaviour. The specific design strategy that adopts prematching for back-off broadband matching is explained in detail. A prototype, based on 25W GaN packaged devices, has been fabricated and measured with single tone CW and modulated signal stimulus. For CW conditions, on the 1.7-2.5GHz band, the peak output power is between 63W and 78W, with power added efficiency higher than 48%, 43% and 39% at saturation, 6 dB and 8 dB output power back-off, respectively. With a modulated signal for Long Term Evolution the amplifier provides an average output power of around 10W, with efficiency higher than 40%, and can be linearized by adopting a low complexity predistorter. If compared to previously published power amplifiers targeting similar power and bandwidth, the measurement shows very good performance, demonstrating the potential of this novel technique in the field of efficiency enhanced transmitters

    Digital electronic predistortion for optical communications

    Get PDF
    The distortion of optical signals has long been an issue limiting the performance of communication systems. With the increase of transmission speeds the effects of distortion are becoming more prominent. Because of this, the use of methods known from digital signal processing (DSP) are being introduced to compensate for them. Applying DSP to improve optical signals has been limited by a discrepancy in digital signal processing speeds and optical transmission speeds. However high speed Field Programmable Gate Arrays (FPGA) which are sufficiently fast have now become available making DSP experiments without costly ASIC implementation possible for optical transmission experiments. This thesis focuses on Look Up Table (LUT) based digital Electronic Predistortion (EPD) for optical transmission. Because it is only one out of many possible implementations of EPD, it has to be placed in context with other EPD techniques and other distortion combating techniques in general, especially since it is possible to combine the different techniques. Building an actual transmitter means that compromises and decisions have to be made in the design and implementation of an EPD based system. These are based on balancing the desire to achieve optimal performance with technological and economic limitations. This is partly done using optical simulations to asses the performance. This thesis describes a novel experimental transmitter that has been built as part of this research applying LUT based EPD to an optical signal. The experimental transmitter consists of a digital design (using a hardware description language) for a pair of FPGAs and an analogue optical/electronic setup including two standard DAC integrated circuits. The DSP in the transmitter compensated for both chromatic dispersion and self phase modulation. We achieved transmission of 10.7 Gb/s non-return-to-zero (NRZ) signals with a +4 dBm launch power over 450 km keeping the required optical-signal-to-noise-ratio (OSNR) for a bit-error-rate of 2x10^{-3} below 11 dB. In doing so we showed experimentally, for the first time, that nonlinear effects can be compensated with this approach and that the combination of FPGA-DAC is a viable approach for an experimental setup
    corecore