37 research outputs found

    Numerical Study on Indoor Wideband Channel Characteristics with Different Internal Wall

    Get PDF
    Effects of material and configuration of the internal wall on the performance of wideband channel are investigated by using the Finite Difference Time-Domain (FDTD) method. The indoor wideband channel characteristics, such as the path-loss, Root-Mean-Square (RMS) delay spread and number of the multipath components (MPCs), are presented. The simulated results demonstrate that the path-loss and MPCs are affected by the permittivity, dielectric loss tangent and thickness of the internal wall, while the RMS delay spread is almost not relevant with the dielectric permittivity. Furthermore, the comparison of simulated result with the measured one in a simple scenario has validated the simulation study

    Closed-form Description of Microwave Signal Attenuation in Cellular Systems

    Get PDF
    The reliable and accurate description of signal attenuation characteristics is important in the simulation and performance analysis of wireless communications systems. Recent works have provided analytical expres- sions for the path loss statistics in cellular systems consid- ering distance-dependent losses and shadowing. In this paper, we extend this analysis by including small-scale fading. A closed-form expression that gives the path loss density in a cellular network is given. The impact of chan- nel parameters and cell size on signal attenuation is fur- ther investigated. Simulation results and comparisons with measured data in the literature verify the accuracy of the solution. The derived formulation is a useful tool for the modeling and analysis of cellular communications systems

    An Empirical Ultra Wideband Channel Model for Indoor Laboratory Environments

    Get PDF
    Channel measurement and modeling is an important issue when designing ultra wideband (UWB) communication systems. In this paper, the results of some UWB time-domain propagation measurements performed in modern laboratory (Lab) environments are presented. The Labs are equipped with many electronic and measurement devices which make them different from other indoor locations like office and residential environments. The measurements have been performed for both line of sight (LOS) and non-LOS (NLOS) scenarios. The measurement results are used to investigate large-scale channel characteristics and temporal dispersion parameters. The clustering Saleh- Valenzuela (S-V) channel impulse response (CIR) parameters are investigated based on the measurement data. The small-scale amplitude fading statistics are also studied in the environment. Then, an empirical model is presented for UWB signal transmission in the Lab environment based on the obtained results

    Channel Sounding for the Masses: Low Complexity GNU 802.11b Channel Impulse Response Estimation

    Full text link
    New techniques in cross-layer wireless networks are building demand for ubiquitous channel sounding, that is, the capability to measure channel impulse response (CIR) with any standard wireless network and node. Towards that goal, we present a software-defined IEEE 802.11b receiver and CIR estimation system with little additional computational complexity compared to 802.11b reception alone. The system implementation, using the universal software radio peripheral (USRP) and GNU Radio, is described and compared to previous work. By overcoming computational limitations and performing direct-sequence spread-spectrum (DS-SS) matched filtering on the USRP, we enable high-quality yet inexpensive CIR estimation. We validate the channel sounder and present a drive test campaign which measures hundreds of channels between WiFi access points and an in-vehicle receiver in urban and suburban areas

    Measurement and Modeling of Wireless Off-Body Propagation Characteristics under Hospital Environment at 6-8.5 GHz

    Full text link
    © 2013 IEEE. A measurement-based novel statistical path-loss model with a height-dependent factor and a body obstruction (BO) attenuation factor for off-body channel under a hospital environment at 6-8.5 GHz is proposed. The height-dependent factor is introduced to emulate different access point (AP) arrangement scenarios, and the BO factor is employed to describe the effect caused by different body-worn positions. The height-dependent path-loss exponent is validated to fluctuate from 2 to 4 with AP height increasing by employing both computer simulation and classical two-ray model theory. As further validated, the proposed model can provide more flexibility and higher accuracy compared with its existing counterparts. The presented channel model is expected to provide wireless link budget estimation and to further develop the physical layer algorithms for body-centric communication systems under hospital environments

    Reverberation and Absorption in an Aircraft Cabin with the Impact of Passengers

    Get PDF
    corecore