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Abstract

In this paper, a novel statistical approach is presented for time-of-arrival (TOA) estimation based on first path (FP)
pulse detection using a sub-Nyquist sampling ultra-wide band (UWB) receiver. The TOA measurement accuracy,
which cannot be improved by averaging of the received signal, can be enhanced by the statistical processing of a
number of TOA measurements. The TOA statistics are modeled and analyzed for a UWB receiver using threshold
crossing detection of a pulse signal with noise. The detection and estimation scheme based on the Generalized
Likelihood Ratio Test (GLRT) detector, which captures the full statistical information of the measurement data, is
shown to achieve accurate TOA estimation and allows for a trade-off between the threshold level, the noise level, the
amplitude and the arrival time of the first path pulse, and the accuracy of the obtained final TOA.
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1 Introduction
The demand for accurate wireless positioning in indoor
environments is vastly increasing for precise localization
and tracking of objects and people, with applications in
a.o. industry, warehouses, shopping malls, and hospitals.
In these environments, traditional positioning solutions
based on satellite signals are unreliable, unavailable, or
do not provide sufficient accuracy. In recent years, much
attention has been given to ultra-wideband (UWB) sig-
nals for indoor positioning. UWB signals, e.g., sub-nano-
second duration pulse signals, enable precise ranging
because they allow for separation of multipath components
and accurate estimation of the time-of-arrival (TOA) of
the first arriving path (FP) signal [1, 2]. With this feature
of UWB signals, centimeter-level ranging accuracy can be
achieved, even in dense multipath environments [2, 3].
In recent decades, researchers have been developing

several approaches to get the TOA of the received FP
pulse. In [3, 4], pulses with sub-nanosecond duration
are transmitted and then measured with a digital sam-
pling scope with full sampling rate as the receiver. Based
on the recovered received signal, time-domain TOA
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estimation algorithms, which are typically maximum like-
lihood (ML)-based approaches [5–7], are applied by iden-
tifying the FP from the sampled signal. Besides, [8–13]
get the received pulses by setting up a frequency domain
measurement system using a vector network analyzer
(VNA) to record the frequency response of the channel.
This measured frequency response can be converted to
the time domain by taking the inversed Fourier trans-
form, or a variety of super-resolution techniques, such as
root multiple signal classification (MUSIC) [14] and total
least square-estimation of signal parameter via rotational
invariance (TLS-ESPRIT) [15], can be applied to increase
time-domain resolution based on frequency response
measurements. On the other side, the wide bandwidth of
UWB signals, usually in the gigahertz (GHz) range, puts
high demands on the sampling circuit to satisfy Nyquist
sampling rates, which are easily several Giga-samples per
second (GS/s). In order to overcome this disadvantage,
researchers resort to sub-Nyquist sampling techniques for
ranging using sub-nanosecond pulse signals. In [16, 17],
compressed sampling techniques are applied to realize
sub-Nyquist sampling at the expense of a more complex
receiver structure. Fontana and Gunderson [18] gives a
novel design to obtain TOA measurements directly with-
out sampling of the received signal, where a receiver
is used based on a daisy-chain structured tunnel diode
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detector to detect successive peaks of the measured chan-
nel impulse response. The benefit of this method is that,
TOA measurements are obtained directly without the use
of high-sampling rate circuits or universal test instru-
ments, which allows the receiver to be highly integrated,
of low complexity and low cost. However, compared with
Nyquist sampling-based and compressive sampling-based
TOA estimation schemes, TOA estimation schemes based
on direct TOA measurements have not been investigated
in-depth in the literature.
In the following, we further investigate the idea of direct

TOA measurements, where the time instant at which
the received signal crosses a preset threshold voltage is
detected using a sub-Nyquist sampling technique. This
threshold voltage is chosen such that the probability of
threshold level crossing is due to noise only and the
probability of false alarm, PFA, is at an acceptable low
level. Therefore, the first threshold-exceeding signal in
each measurement period of the receiver can be consid-
ered caused by the transmitted pulse signal traveling via
the shortest path, and the measured TOA of this sig-
nal is recorded. However, a measurement event might be
wrongly recorded as a TOA when the threshold level was
crossed due to noise before arrival of the pulse, or the
pulse might be miss-detected due to its low power level
compared to the threshold and a late path signal may be
detected. Thus, the threshold value, which should be set
based on both the noise level and the expected pulse level,
determines the probability of correct pulse detection as
well as the sensitivity of the receiver.
The analysis of threshold selection has not been

addressed in detail in early researches. In [1], an approach
is given on the kurtosis of the signal samples for threshold
selection by applying an energy detector to capture both
the statistics of the channel and the SNR of the received
signal. However, this TOA estimation method is based
on full Nyquist sampling of the received signal and TOA
estimation accuracy is at meter level.
Receiver and detection techniques which operate at a

much lower sample rate than Nyquist were proposed
in [2, 19] and [20]. In this detector, the crossing of a
preset threshold level triggers the discharging of an RC
circuit with an accurately known RC-time and therefore
discharge curve. With only a few samples of this curve,
the precise start of the discharging process can be esti-
mated. Triggering of the discharging process can happen
due to a received signal pulse but also (occasionally) due
to noise. However, noise may also cause a deviation of
the trigger moment from the actual arrival instant of
the pulse. Since it is not feasible to apply signal averag-
ing to improve the probability of detection (PD) of this
sub-Nyquist-based receiver structure, we need to resort
to another approaches to maximize PD. In [2] and [3],
TOA estimation performance is statistically analyzed for

the threshold level selected based on the pre-set PFA.
The technique for estimating the TOA proposed in [2] is
based on finding a sliding time-window which contains at
least a certain predetermined minimum number of TOA
events, which depends on channel quality (SNR, SIR) and
the number of measured events. The mean TOA of the
events within the sliding window was selected as the esti-
mated TOA. A disadvantage of this technique is that a
large time window following the arming of the detector
had to be excluded from TOA estimation because of the
high number of level crossings due to noise only in that
range, and therefore making the detector less efficient.
The results in [2] show that a higher estimation accu-
racy can be achieved compared to energy-based detection
schemes; however, since the distribution of the measured
TOA events due to noise and the preset detector threshold
is not exploited, there is room for improvement of both
the TOA estimation accuracy and the receiver’s sensitivity.
In this paper, an improved TOA estimation method is

proposed which takes into account the distribution of the
measured TOA events: the time distribution of the mea-
sured first level-crossing events due to noise only, which
strongly depends on the time-duration since arming the
detector, and the distribution of the first level-crossing
events in case a pulse plus noise was received. The pulse
detection and TOA estimation are based on the GLRT
detector, using the likelihood ratio of the TOA distribu-
tion. By exploiting the full statistical information of the
measurement data, receiver sensitivity and the accuracy of
the estimated TOA can be substantially improved.
This paper is organized as follows. In Section 2, the

signal model and the low-complexity TOA sub-Nyquist
sampling receiver structure are described. In Section 3,
a mathematical model of the first threshold crossing is
derived for this receiver which is subsequently used to
obtain the probability density function (PDF) of the mea-
sured TOA events. The noise variance as well as the
FP pulse amplitude can be estimated based on this PDF
and the recorded statistics of the measured TOA events.
Moreover, the relation among threshold-level, noise vari-
ance, and the FP pulse amplitude is analyzed. In Section 4,
the TOA is estimated using composite hypothesis test-
ing based on the joint PDFs of the TOA measurements.
Simulations show that the GLRT results in a vast improve-
ment of the TOA estimation performance. Conclusions
are drawn in Section 5.

2 Systemmodel
2.1 Signal model
The transmitted signal is composed of a sequence of
pulses, which can be written as a function of time t:

s(t) =
∞∑

k=−∞
w(t − kTf ) , (1)
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where w(t) is the waveform of a single pulse, Tf is the rep-
etition period of the transmitted pulses, and k is the index
of a specific time frame.
Accordingly, the received signal in a static multipath

channel can be represented as:

r(t) =
∞∑

k=−∞

L−1∑

l=0
hlw(t − tl − kTf ) + n(t) , (2)

where hl and tl are the amplitude and delay of the l-th
multipath component, respectively, and L is the number
of multipath components, and n(t) is zero-mean additive
white Gaussian noise with power spectral density (PSD)
σ 2
0 . For the purpose of ranging, the means for multiple

access are not considered in this signal model.

2.2 Receiver model
The analysis in this paper is based on a low-complexity
receiver structure for UWB TOA measurements, which
is a slightly adapted version of the receiver proposed in
[2, 19, 20]. Instead of applying full Nyquist sampling on the
received signal, this receiver detects the signal which first
crosses a pre-set threshold voltage in each measurement
period and records the arrival time of this signal, which is
assumed to be the FP signal, with respect to the start of
the measurement period. For simplicity, the measurement
period is taken equal to the pulse repetition period Tf .
Figure 1 shows the block diagram of the proposed receiver.
After amplification and band-pass filtering (BPF) of the

signal r(t) received by the antenna, the signal v(t) is
compared with a pre-set threshold level VN in a fast com-
parator. The periodic measurement window is started by
the local clock. When v(t) > VN for the first time after
the start of a measurement window, the rising edge of the
comparator output VCMP latches VSP. The latched signal
VSP triggers the TOA measurement process and blocks
the next threshold crossings, e.g., due to multipath sig-
nals, during the remainder of the measurement period.
The time-measurement unit determined the TOA of the
FP with respect to the start of the current measurement
window using the time estimation presented in [19, 20].
We denote the FP’s TOA measurement in the k-th repeti-
tion period as tM[ k] and we collect K TOAmeasurements
in K successive measurement windows.

The input signal v(t) of the comparator in Fig. 1 includes
the BPF filtered noise shown in Fig. 2a, and the fil-
tered multi-path pulse signal. To simplify the analysis, we
assume that the BPF is an ideal filter with a lower cut-
off frequency of fL and an upper cutoff frequency of fH ,
respectively, and the pulses in v(t) to be rectangular with
duration tw. Figure 2b shows the FP pulse with amplitude
A (A > 0 when it is a positive pulse, or A < 0 for a neg-
ative pulse), rising edge at tr , and falling edge at tf , where
tf − tr = tw. In the noise-only case (A = 0), the thresh-
old voltage VTH of the system is equal to the pre-set level
VTH = VN of the comparator, as shown in Fig. 2c. When
the FP pulse is received (A > 0 or A < 0), the input
signal v(t), which includes both pulse and noise, is com-
pared to VTH = VN , as shown in Fig. 2d. However, this
case can also be considered as a special noise-only case
where the threshold VTH is changed to (VN − A) during
the time interval [ tr , tf ] and stays atVN for the rest of time,
as illustrated in Fig. 2e. In this way, pulse detection can
be modeled in a unified way as a first-threshold-crossing
problem of filtered noise only, with

VTH =
{
VN − A, tr ≤ tM[ k]≤ tf
VN , otherwise . (3)

From a large number of measured pulse arrival times,
the probability density function (PDF) of a single pulse
measurement and the joint PDFs of all K collected pulse
measurements under two different conditions: noise-only
case and pulse received case, can be obtained for this first-
threshold-crossing model. These two PDFs can be used in
a composite hypothesis test for estimating the FP’s TOA.
Processing of the TOA measurements tM[ k] |k=1,··· ,K to
estimate its true TOA is the topic of Section 3.

3 TOA estimation
3.1 First-threshold-crossing problem
Consider the noise-only case, where, after bandpass fil-
tering as shown in Fig. 1, the voltage v(t) has a PSD of
Pvv(f ) = σ 2

0 for fL < |f | < fH and Pvv(f ) = 0 out-
side this pass-band. Now, we find the probability of v(t) <

VTH in the time interval (0, t), when v(t) first crosses the
level VTH in the time interval (t, t + dt). This problem is
called the first-crossing problem [21, 22]. The PDF of the

Fig. 1 Block diagram of the proposed receiver
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Fig. 2 Equivalence of the signal level-crossing model: a the input signal only containing band-pass (BP) noise, b the input signal only containing an
FP pulse, c a threshold crossing due to BP noise only with VN = VTH , d A threshold crossing when the input is the summation of BP noise and an FP
pulse with VN = VTH , e is the equivalent model of (d), where the input signal contains only BP noise while VTH changes to VN − A during an FP pulse
arrival

first-crossing by v(t) at time t, pc(VTH , t), is an exponential
distribution given by

pc(VTH , t) = μ[VTH , t|(0, t)] e−μ[VTH ,t|(0,t)]t (t > 0) ,
(4)

where μ[VTH , t|(0, t)] is the probability of an upward
crossing in (t, t + dt) with no prior upward crossing in
(0, t), [22].
Specifically, considering the statistically rare crossings

of a high-level VTH , [21, 23, 24] suggest the following
approximation to (4):

pc(VTH , t) � N+
THe

−N+
THt (t > 0) , (5)

whereN+
TH is the expected number of upward crossings of

v(t) = VTH per unit of time.
In the noise-only case, v(t) can be approximated as

white noise when the filter bandwidth B = fH − fL is rel-
atively large compared to its center frequency fc = fH+fL

2 ,
as shown in Fig. 3a. In this case, v(t) and v̇(t) = dv(t)

dt can
be considered as statistically independent, thus N+

TH can
be obtained from

N+
TH =

∫ ∞

0
v̇p(v, v̇; t)dv̇

∣∣∣∣
v(t)=VTH

, (6)

where p(v, v̇; t) is the joint PDF for the Gaussian-
distributed variables v(t) and v̇(t). Since the crossing dura-
tion for a particular positive derivative v̇ can be denoted as
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Fig. 3 Bandpass noise waveforms: a a waveform of BP noise with
relatively large B/fc which corresponds to the case of (17), b a
waveform of BP noise with relatively small B/fc which matches the
case of (18)

�tv̇ = �v/v̇, p(v,v̇;t)�v�v̇
�tv̇

∣∣∣
v(t)=VTH

= v̇p(v, v̇; t)�v̇
∣∣
v(t)=VTH

indicates the expected number of positive passages of v(t)
per unit time through the interval [VTH ,VTH + �v] for a
given value of v̇, where �v → 0 and �v̇ → 0.
When B is small compared to fc, v(t) has the typical

characteristics of a band-pass signal of which the enve-
lope changes are proportional to B−1, as shown in Fig. 3b.
Accordingly, v(t) can be expressed as a random envelop
modulating a sinewave carrier signal with frequency fc and
a random phase angle θ(t), given by

v(t) = c(t) cos
(
2π fct + θ(t)

)
, (7)

where c(t) is the Rayleigh distributed envelope and θ(t)
the uniformly distributed phase of v(t).

From Fig. 3b and (7) we find that the threshold up-
crossings of v(t) come in clusters and they can only occur
after c(t) has an up-crossing event. Therefore, the first
upward threshold-crossing of v(t) occurs after the first
up-crossing of c(t). The actual signal crossing will have a
uniformly distributed time delay in the range of

[
0, 1/fc

]

with respect to the envelope up-crossing. In this case,
the PDF of the first-threshold-crossing probability of the
envelop c(t) can be considered as the first-threshold-
crossing probability of the band-pass noise v(t), where the
actual detection moment shows an extra delay of on aver-
age

[
0, 1/2fc

]
. As a result, the rate of upward crossings

N+
TH in this case is

N+
TH =

∫ ∞

0
ċp(c, ċ; t)dċ

∣∣∣∣
c(t)=VTH

, (8)

where c(t) and ċ(t) are independent, ċ(t) has a Gaussian
distribution and p(c, ċ; t) is the joint PDF for c(t) and ċ(t).
In order to obtain all the parameters in the joint PDF

of p(v, v̇; t) and p(c, ċ; t), we need to calculate the variance
of v(t), v̇(t), c(t), and ċ(t), respectively. According to the
Wiener-Khinchine relations,

Rvv(τ ) =
∫ ∞

−∞
Pvv(f )ej2π f τdf ,

Rv̇v̇(τ ) =
∫ ∞

−∞
Pv̇v̇(f )ej2π f τdf ,

(9)

where Rvv and Rv̇v̇ are the autocorrelation functions of the
random processes v(t) and v̇(t), respectively. Pvv(f ) and
Pv̇v̇(f ) are the PSD of v(t) and v̇(t), respectively, and they
have the relation Pv̇v̇(f ) = (2π f )2Pvv(f ). Therefore, we
obtain the relation that

Rvv(τ )′′ =
∫ ∞

−∞
(
j2π f

)2 Pvv(f )ej2π f τdf

= −Rv̇v̇(τ ) ,
(10)

where ′′ indicates the second derivative operator.
Letψ0 = Rvv(τ )|τ=0 andψ1 = Rċċ(τ )|τ=0, which are the

variances of v(t) and ċ(t), respectively. Then, from (10), we
have ψ ′′

0 = −Rv̇v̇(τ )|τ=0, and from (7), we can get ψ0 =
Rcc(τ )|τ=0. Moreover, we determine ψ1 by expanding the
derivative of (7) as

v̇(t) =ċ(t) cos
(
2π fct + θ(t)

) −
c(t)

(
2π fc + θ̇ (t)

) [
sin

(
2π fct + θ(t)

)]
,

(11)

where (11) is a linear combination of two independent
random processes, and its variance is the sum of the two
variances and reduces to

−ψ ′′
0 = ψ1 + (2π fc)2ψ0 . (12)
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In the receiver of Fig. 1, the input signal as well as the
noise is filtered by an ideal band-pass filter. For band-limit
noise,

ψ0
�= σ 2

B = 2
∫ fH

fL
Pvv(f )df = 2σ 2

o (fH − fL) . (13)

ψ ′′
0 = 2

∫ fH

fL
(j2π f )2Pvv(f )df = −8

3
π2σ 2

0
(
f 3H − f 3L

)
.

(14)

Let λ0 = 1
π

√
−ψ ′′

0
ψ0

=
√

4
3
f 3H−f 3L
fH−fL , then we have

ψ1 = λ20π
2ψ0 . (15)

Following the above derivation, p(v, v̇; t) in (6) and
p(c, ċ; t) in (8) can be deduced as

p(v, v̇; t) = (−ψ0ψ ′′
0 )−1/2

2π
e
− v2

2ψ0
+ v̇2

2ψ ′′
0 ,

p(c, ċ; t) = cψ−1
0 ψ

−1/2
1√

2π
e−

c2
2ψ0

− ċ2
2ψ1 .

(16)

Let φ(x) = 1√
2π e

(
− x2

2

)

, then we find for the up-crossing
rate N+

TH for large B/fc

N+
TH =

∫ ∞

0
v̇p(v, v̇; t)dv̇

∣∣∣∣
v(t)=VTH

= (−ψ0ψ
′′
0)

−1/2φ
(

v√
ψ0

)∫ ∞

0
v̇φ

(
v̇

√−ψ ′′
0

)
dv̇

∣∣∣∣∣
v(t)=VTH

= 1
2
λ0e

− V2
TH
2σ2B .

(17)

In the case of smaller B/fc, we find for the up-crossing
rate N+

TH

N+
TH =

∫ ∞

0
ċp(c, ċ; t)dċ

∣∣∣∣
c(t)=VTH

= √
2πcψ−1

0 ψ
−1/2
1 φ

(
c√
ψ0

)∫ ∞

0
ċφ

(
ċ√
ψ1

)
dċ

∣∣∣∣
c(t)=VTH

=
√

π

6
VTH
σB

(fH − fL)e
− V2

TH
2σ2B .

(18)

Especially when
B
fc

= 1
√

π
6

(
VTH
σB

)2 − 1
12

. (19)

(17) and (18) are equal. We can use (19) as the division of
relatively “narrow-band” case and “wide-band” case.

Now (5), (17), and (18) reveal that N+
TH and the PDF of

the first-crossing time pc(VTH , t) can be computed from
the pre-set parameters VTH , fH , fL, and the PSD of the
noise σ 2

0 . Moreover, the PDF of a single TOA measure-
ment and the joint PDF of a number of TOA measure-
ments can be obtained based on pc(VTH , t), which will be
further discussed in Sections 3.2 and 3.3. However, when
σ0 is unknown, it can be estimated from the empirical PDF
of the first-crossing time which can be obtained from a set
of TOA measurements, as will be shown in Sections 3.2
and 3.3.

3.2 PDF of a single TOAmeasurement
Consider the PDF of the k-th pulse arrival time mea-
surement, recorded as tM[ k]. In the noise-only case, as
indicated in (5), this PDF is

p (tM[ k] ;μ1) = μ1e−μ1tM[k] tM[ k]> 0 , (20)

where μ1 = N+
TH is a constant which can be calculated

from (17) or (18) when σ0 is known, or it can be estimated
by (24) when σ0 is unknown.
In case a pulse is received, the PDF of tM[ k] becomes

p(tM[ k];tr ,μ1,μ2)=
⎧
⎨

⎩

pe(tM[ k] ;μ1) 0< tM[ k]< tr
pd(tM[ k] ;tr ,μ1,μ2) tr ≤ tM[ k]≤ tf ,
pm(tM[ k] ;tr ,μ1,μ2) tM[ k]> tf

(21)

where

pe(tM[ k] ;μ1) = μ1e−μ1tM[k] ,

pd(tM[ k] ; tr ,μ1,μ2) = μ2e−(μ1−μ2)tr e−μ2tM[k] ,

pm(tM[ k] ; tr ,μ1,μ2) = μ1e(μ1−μ2)(tf −tr)e−μ1tM[k] .

and μ2 is the coefficient of the PDF for the pulse duration
where VTH = (VN − A) as shown in Fig. 2e. The value
of μ2 can be calculated from (17) or (18) when it satisfies
the “rare crossing” criterion proposed in [24] (VTH > 2σB
for a wide-band process); otherwise, it can be estimated by
(24). When μ2 = μ1, (21) becomes (20); thus, the PDF of
tM[ k] can be unified as (21), of which (20) is a special case.
Figure 4 shows an example of the PDF of a single FP pulse
arrival time measurement in the case of (20) and (21),
respectively, which were fitted to the histogram of TOA
measurements. Figure 4a is obtained under the condition
of fL = 3.1 GHz, fH = 6.1 GHz, VN/σB = 1.7, where the
horizontal axes indicates the measured TOA, and Fig.4b
is obtained when the FP arrives at tr = 2 ns with a first-
peak-to-noise-ratio (FPNR) of FPNR = 0.5 dB based on
the noise floor in Fig. 4a, where FPNR = 10 log

(
A2/σ 2

B
)
.

Moreover, we can see from (21) that, it is a segmented
PDF. Based on this PDF, we define the probability of
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Fig. 4 PDF of the threshold-crossing moment for a the noise-only
case, b the case with a single received FP pulse at tr = 2 ns and
FPNR = 0.5 dB. The bandpass noise signal is white within
fL = 3.1 GHz and fH = 6.1 GHz and VN/σB = 1.7

early false alarm (PEFA), probability of detection (PD), and
probability of missed detection (PMD) as

PEFA
�= {probability of a TOA measurement which
occurs in the time interval before the FP
pulse arrives},

PD
�= {probability of a TOA measurement which
occurs in the time interval of the FP pulse},

PMD
�= {probability of a TOA measurement which
occurs in the time interval after the FP
pulse}.

Accordingly, we can get the equations for these
probabilities as

PEFA =
∫ tr

0
pe(tM[ k] ;μ1)dtM[ k]= 1 − e−μ1tr ,

PD =
∫ tf

tr
pd(tM[ k] ; tr ,μ1,μ2)dtM[ k]

= e−μ1tr (
1 − e−μ2tw)

,

PMD =
∫ ∞

tf
pm(tM[ k] ; tr ,μ1,μ2)dtM[ k]

= e−μ1tr e−μ2tw ,

(22)

where tw = tf − tr .
Moreover, PEFA and PMD can both be categorized as PFA;

thus, we have PFA = PEFA + PMD.
Based on (22), Fig. 5 gives an overview on how the

variables tr , VN/σB, and FPNR affect PEFA, PD and PMD.
Specifically, Fig. 5 indicates that the interval between the
start of the measurement and the arrival time of the pulse
tr has a significant influence on PEFA, PD, and PMD besides
of the obvious impact of VN/σB and FPNR as discussed
in [1] and [2]. Figure 5a and (22) show that VN/σB and
tr are factors which would influence PEFA. PEFA is the
probability of triggering by noise which increases with tr .
Moreover, μ1 in (22), which depends on VN/σB accord-
ing to (17) and (20), determines PEFA, and a lower VN/σB
results in larger PEFA because at a lowerVN , level-crossing
by noise becomes more likely. Figure 5b indicates that
FPNR, VN/σB, and tr influence PD. For a fixed FPNR, a
lower VN/σB results in a larger negative slope in PD which
increases with tr because of the increased PEFA, and larger
FPNR leads to a higher PD for a fixed VN/σB. This can
be explained as, when VN is lower, the input signal has
a larger probability to cross VN , while when tr is larger,
PEFA increases due to the increased probability of trig-
gering due to noise before the pulse has arrived. For the
same VN/σB, a larger FPNR will increase PD, since for a
larger amplitude of the FP pulse it will be more likely to
be detected. Similarly, Fig. 5c shows the relation between
FPNR, VN/σB, tr , and PMD that FPNR and VN/σB influ-
ence the initial offset of PMD and VN/σB has a major
impact on the slope of PMD.

3.3 Composite hypothesis testing
Since the distribution of the measured level-crossing
times in the noise-only case (FPNR = 0) is different from
that in case a pulse is present (FPNR �= 0), as shown in
Fig. 4, this characteristic can be exploited in detection of
the pulse from the noise floor using composite hypothesis
testing.

3.3.1 The GLRT detector
Let us represent K-independent TOA measurements as
the vector tM, which are sorted in an ascending order:



Xie et al. EURASIP Journal on Advances in Signal Processing  (2017) 2017:68 Page 8 of 12

Fig. 5 Relation between PEFA , PD and PMD as a function of the true FP
arrival time tr , and the parameters VN/σB and FPNR as deduced from
(22)

tM[ 1]≤ · · · tM[ k]≤ · · · ≤ tM[K ] (k = 1, · · · ,K), where p
and q are the number of measurements which are located
in the time interval 0 < tM[ k]< tr and tr ≤ tM[ k]≤
tf , respectively, i.e., p + q ≤ K . Now, we consider the
following two hypotheses

H0 :μ1 = μ2, noise-only case (A = 0) ,
H1 :μ1 �= μ2, pulse received case (A > 0 or A < 0) .

A GLRT detector decidesH1 if

L(tM) = p(tM; t̂r , μ̂1, μ̂2,H1)

p(tM; μ̂1,H0)

= max
tr ,μ1,μ2

p(tM; tr ,μ1,μ2,H1)

p(tM;μ1,H0)
> γ

, (23)

where t̂r is the MLE of the TOA underH1, γ is the thresh-
old of the GLRT detector and p(tM) is the joint PDF of
(21), which is

p(tM;μ1,H0) =
K∏

k=1
pe(tM[ k] ;μ1) ,

p(tM; tr ,μ1,μ2,H1) =
p∏

k=1
pe(tM[ k] ;μ1)·

p+q∏

k=p+1
pd(tM[ k] ; tr ,μ1,μ2)·

K∏

k=p+q+1
pm(tM[ k] ; tr ,μ1,μ2) ,

where ′·′ is the multiplication operator.
Furthermore, when σ 2

0 is unknown, μ̂1 and μ̂2 can be
obtained by fitting PEFA and PD to the empirical statistics
of the TOA measurements as follows

PEFA =
∫ tr

0
pe(tM[ k] ; μ̂1)dtM[ k]= p

K
,

PD =
∫ tf

tr
pd(tM[ k] ; tr , μ̂1, μ̂2)dtM[ k]= q

K
.

(24)

The final estimated TOA t̂r is found by maximizing (23)
over all possible values of tr [25]. The search step of tr
can be chosen according to the resolution of tM[ k]. To be
specific, during every search step of tr , p, and q are first
calculated and then μ̂1 and μ̂2 are obtained from (24).

3.3.2 The optimal GLRT detector
In (23), the threshold of the detector γ is to be determined.
In order to optimize the setting of γ , we use the idea of
the Neyman-Pearson lemma, which is based on a single
observation, for multiple observations. And choose γ by
setting the probability of false alarm PFA equal to α, as

PFA =
∫

{tM :L(tM)>γ }
p(tM; μ̂1,H0)dtM = α . (25)
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Let u(k) = tM[ k]−t̂r , (k = p + 1, · · · , p + q), where
u(k) conforms to a truncated exponential distribution
u(k) ∼ Exp(μ̂1), u(k) ∈ (0, tw). Set the test statistic T �=∑p+q

k=p+1 u(k). The critical region {tM : L(tM) > γ } in (25)
can be deduced to T ≶ γ ′ (see Appendix). Accordingly,
(25) can be re-written as

PFA =
∫

{T≶γ ′}
p(T ; μ̂1,H0)dT = α . (26)

Bain and Weeks [26] indicates that the PDF of
p(T ; μ̂1,H0) is given by

p(T ; μ̂1,H0)

=
(

μ̂1
1−e−μ̂1tw

)q

(q − 1)!
e−μ̂1T

β0∑

β=0
(−1)β

(
q
β

)
(T − βtw)q−1

(β0tw < T < (β0 + 1)tw) ,
(27)

where β and β0 are integers and β0 belongs to the set of
β0 ∈[ 0, 1, · · · , (q − 1)].

3.3.3 Joint PDF approximation approach
Since the calculation of (27) has the potential risk of
overflowing machine precision when q is large, an approx-
imation of (27) can be used as a sub-optimal solution in
practice.
Monte Carlo simulation based on the empirical his-

togram of T shows that p(T ; μ̂1,H0) can be fitted to the
Erlang distributionT ∼ Erlang(Ap,Bt) or the Normal dis-
tribution T ∼ Normal(Mu, Sig), where Ap and Bt are the
shape and the rate of the Erlang distribution, respectively,
and Mu and Sig are the mean and standard deviation of
the Normal distribution, respectively. These parameters
can be calibrated from

Ap =
(
E

(∑p+q
k=p+1 u(k)

))2

var
(∑p+q

k=p+1 u(k)
) =

(∑p+q
k=p+1 E(u(k))

)2

∑p+q
k=p+1 var(u(k))

,

Bt =
E

(∑p+q
k=p+1 u(k)

)

var
(∑p+q

k=p+1 u(k)
) =

∑p+q
k=p+1 E(u(k))

∑p+q
k=p+1 var(u(k))

,

Mu = qE(u(k)) ,

Sig = √
qvar(u(k)) .

(28)

Here, E(u(k)) and var(u(k)) are the mean and the vari-
ance of u(k), respectively, which can be obtained by

E(u(k)) =
∫ tw

0
u(k)f (u(k))du(k) = 1

μ̂1
− twe−μ̂1tw

1 − e−μ̂1tw
,

var(u(k)) = E(u(k)2) − (E(u(k)))2

=
∫ tw

0
u(k)2f (u(k))du(k)−

∫ tw

0
u(k) f (u(k))du(k)

= 1
μ̂2
1

− t2we−μ̂1tw
(
1 − e−μ̂1tw

)2 ,

where f (u(k)) = μ̂1e−μ̂1u(k).
Under these approximations, the goodness of fit of

the Erlang approximation and the Normal approximation
were tested using Monte Carlo integration [27]. Accord-
ing to (26), the pre-set PFA = α leads to a corresponding
threshold γ ′ by means of calculating the inverse cumula-
tive density function (CDF) of T. However, a γ ′ could be
biased due to the approximation of p(T ; μ̂1,H0), which
would lead to a biased PFA accordingly, compared to the
usage of the true p(T ; μ̂1,H0). Since (27) is only obtain-
able when q is small, we take PFA obtained byMonte Carlo
integration as a reference to evaluate these two possible
approximations. Figure 6 shows the results of the bias in
PFA for VN/σB = 2 (low VN/σB case) and VN/σB = 4
(desired VN/σB case), where the bias in PFA under the two
approximations are compared to the PFA obtained from
theMonte Carlo integration. It is seen that, when q is large
enough (q > 10), it is feasible to use either the Normal
or the Erlang distribution to approximate p(T ; μ̂1,H0)
in (27) with less than 1% bias in PFA under the given
conditions.
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and Normal approximation to (27)) applied to (26), when the empirical
histogram obtained fromMonte Caro integration is taken as reference
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4 Simulation results
In the simulations, we use the following parameters: a BPF
with fL = 3.1 GHz and fH = 6.1 GHz, i.e., fc = 4.6 GHz
and B = 3 GHz, the number of measured arrival time
events K = 100, PFA = 0.1, and the resolution of each
recorded TOA measurement is assumed to be 10 ps. The
TOA estimation results are shown in Figs. 7, 8, and 9,
where the horizontal axis indicates the true TOA tr and
the vertical axis gives the mean absolute estimation error.
In [2], the measurement window is devided in a number

of time bins. It is shown that the TOA tr is within the first
time bin of the measurement window which contains at
least KTH out of K measured TOA’s, where 1 ≤ KTH ≤ K .
Specifically, a 160 ns time window at the start of eachmea-
surement window is excluded from the analysis because
of the high probability of triggering due to noise. The
ratioVN/σB ∈[ 3.5, 5.5] is selected according to the chosen
bounds on PEFA and PMD.
The results of Fig.7 show that under the conditions

where VN/σB and FPNR are set relatively high, both
the proposed GLRT detector-based TOA estimation and
the time-window-based TOA estimation from [2], realize
centimeter-level ranging accuracy. The TOA estimation
scheme proposed in this paper shows improved perfor-
mance compared to the scheme used in [2].
Compared to [2], the GLRT-based pulse detection and

TOA estimation scheme works in the whole measure-
ments window, without any unreachable time range as
shown in Fig. 7, for this scheme detects the pulse as well
as estimates its arrival time based on the ratio of the PDFs
of the pulse-present case and noise-only case. Since in [2]
the start of the measurement period is discarded from the
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Fig. 7 TOA estimation error for VN/σB = 4 with FPNR as parameter.
This figure compares the TOA estimation error between the proposed
GLRT detector and the time-window-based detector of [2] with the
true TOA tr ranging from 1 ns to 1 μs, where the time-window-based
detector only works in the tr range from 160 ns to 1 μs
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Fig. 8 TOA estimation error for low VN/σB with FPNR as parameter

measurements, a pulse cannot be detected when it arrives
within this 160 ns window. The improved performance of
the proposed technique is because it is an MLE scheme
based on the PDFs of the measured data, rather than
a time-window-oriented detection scheme, which better
exploits the available information of the measurement
data. But this comes at the expense of a higher compu-
tational cost. Moreover, the proposed scheme could work
under a wider range of VN/σB and FPNR under specific
conditions (e.g., specific range of tr), as shown in Figs. 8
and 9, which is not applicable for the scheme in [2].
Figure 8 shows the performance of the proposed scheme

for lower values of VN/σB. For the cases of VN/σB =
2 and 3, it is observed that the TOA estimation error
increases with increasing tr . This is due to the fact that
PEFA increases and and PD decreases with increasing tr as
shown in Fig. 5a, b, respectively. Also, PD decreases faster
for smaller VN/σB.
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Fig. 9 TOA estimation error for low FPNR with VN/σB as parameter
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Figure 9 shows the TOA estimation accuracy when
receiving a weak pulse signal. In case of high VN/σB and
low FPNR where VN/σB = 4 and 5 and FPNR = 0 dB,
the threshold VTH shown in (3) is relatively high com-
pared to σB, resulting in a low probability of detection of
the FP pulse, but instead triggering of the detector hap-
pens mainly due to noise, i.e., resulting in EFAs and MDs.
For low VN/σB and low FPNR, e.g., with VN/σB = 2 and 3
and FPNR = 0 dB, it is possible to still detect the FP pulse,
even when tr is relatively small, because it has a larger
probability to cross the lower VN . However, due to the low
VN/σB, a large fraction of the threshold crossings will be
due to noise and cause EFAs when tr increases; therefore,
the TOA estimation error is higher.
By comparing Figs. 7, 8, and 9, we find the trade-off

between the sensitivity of the receiver and the accuracy of
TOA estimation. When setting VN/σB high, a more accu-
rate estimation can be obtained for high FPNR, as shown
in Fig. 7. However, a high VN/σB also causes the miss-
ing of weak FP signals, as shown in Fig. 9. On the other
hand, a low VN/σB setting will increase the sensitivity of
the receiver but it worsens the estimation accuracy, espe-
cially when tr is large, as shown in Figs. 8 and 9. In general,
the above analysis provides an approach to an optimal
trade-off by selecting relatively low VN/σB according to
the expected range of tr , so as to realize centimeter-level
TOA estimation accuracy.
In Fig. 10, the effect of the number K of TOA measure-

ments on the TOA estimation accuracy is shown while
keeping VN/σB and FPNR constant. It is observed that
the TOA estimation accuracy improves with increasing K.
This is because the unknown parameters μ1 and μ2 in
the GLRT detector are estimated from the empirical his-
togram deduced from the number of TOA measurements
by (24). Therefore, the estimation accuracy ofμ1 andμ2 as
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Fig. 10 TOA estimation error for different numbers of TOA
measurements K

well as tr are improved when the number of the collected
samples is larger.

5 Conclusions
An improved TOA estimation scheme for UWB pulse sig-
nals is proposed for a sub-Nyquist sampling receiver based
on first-threshold-level crossing using statistical analysis
of a number of measured arrival time events. The thresh-
old crossing procedure of the receiver for the noise-only
case and the case when a pulse plus noise is received
has been unified to a common first-crossing problem in
a continuous random process. Based on this mathemati-
cal model, the PDF of the arrival time events was deduced
under two categories of receiver bandwidth. An analysis is
given on how to estimate the PSD of the noise σ 2

0 based
on empirical measurement data and how the parameters
threshold to band-limited noise deviation-ratio VN/σB,
first-peak-to-noise-ratio FPNR, and true TOA tr affect
the probability of early false alarm PEFA, probability of
detection PD, and probability of missed detection PMD.
For estimation of the TOA from a number of measured
arrival time events, a composite hypothesis test and MLE
is applied. Compared to the TOA estimation strategy used
in [2], this pulse detection and TOA estimation approach
make use of the PDF of TOA measurements data instead
of statistical data on probability; therefore, more informa-
tion is obtained and exploited, resulting in amore accurate
TOA estimation within a wider time frame range.

Appendix
Proof of the critical region transformation in NP lemma
strategy
The critical region in (25) is

ln L(tM) = ln
p(tM ; t̂r , μ̂1, μ̂2,H1)

p(tM ; μ̂1,H0)

= q ln
μ̂2
μ̂1

+ (
μ̂1 − μ̂2

)
⎛

⎝
p+q∑

k=p+1
tM[ k]−qt̂r

⎞

⎠

+ (K − p − q)(μ̂1 − μ̂2)tw
�= q ln

μ̂2
μ̂1

+ (
μ̂1 − μ̂2

)
T + (K − p − q)(μ̂1 − μ̂2)tw

> ln γ .
(29)

Let γ ′ �= ln γ−q ln μ̂2
μ̂1

−(K−p−q)(μ̂1−μ̂2)tw
μ̂1−μ̂2

, (29) can be
deduced to

{
T < γ ′, when μ̂1 < μ̂2 (A > 0)
T > γ ′, when μ̂1 > μ̂2 (A < 0) . (30)



Xie et al. EURASIP Journal on Advances in Signal Processing  (2017) 2017:68 Page 12 of 12

Acknowledgements
This research work is founded by the NWO HERE-2 project (No. 11951).

Authors’ contributions
YX made the main contributions to the theorems, implementations, and
drafting this paper. GJ is the advisor who directed this work and contributed
to the theorems and revisions. SS and CT contributed to the GLRT detector
part and revisions. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Faculty of Electrical Engineering, Mathematics and Computer Science, Delft
University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands.
2Faculty of Civil Engineering and Geosciences, Delft University of Technology,
Stevinweg 1, 2628 CN Delft, The Netherlands.

Received: 15 May 2017 Accepted: 31 August 2017

References
1. I Guvenc, Z Sahinoglu, Threshold selection for UWB TOA estimation

based on kurtosis analysis. IEEE Commun. Lett. 9(12), 1025–1027 (2005)
2. G Bellusci, GJM Janssen, J Yan, CCJM Tiberius, Performance evaluation of a

low-complexity receiver concept for TOA-based ultrawideband ranging.
IEEE Trans. Veh. Technol. 61(9), 3825–3837 (2012). doi:10.1109/TVT.2012.2207749

3. J-Y Lee, RA Scholtz, Ranging in a dense multipath environment using an
UWB radio link. IEEE J. Sel. Areas in Commun. 20(9), 1677–1683 (2002).
doi:10.1109/JSAC.2002.805060

4. C Falsi, D Dardari, L Mucchi, MZ Win, Time of arrival estimation for UWB
localizers in realistic environments. EURASIP J. Advances in Sig. Process.
2006(1), 032082 (2006)

5. V Lottici, A D’Andrea, U Mengali, Channel estimation for ultra-wideband
communications. IEEE J. Sel. Areas in Commun. 20(9), 1638–1645 (2002)

6. H Boujemaa, M Siala, in Communications, 2001. ICC 2001. IEEE International
Conference On. On a maximum likelihood delay acquisition algorithm,
vol. 8 (IEEE, 2001), pp. 2510–2514

7. Z Sahinoglu, S Gezici, I Guvenc, Ultra-wideband positioning systems
theoretical limits, ranging algorithms, and protocols. (Cambridge Univerisity
Press, 2008). www.cambridge.org/9780521873093

8. SJ Howard, K Pahlavan, Measurement and analysis of the indoor radio
channel in the frequency domain. IEEE Trans. Instrum. Meas. 39(5),
751–755 (1990)

9. K Pahlavan, P Krishnamurthy, A Beneat, Wideband radio propagation
modeling for indoor geolocation applications. IEEE Commun. Mag. 36(4),
60–65 (1998)

10. SS Ghassemzadeh, R Jana, CW Rice, W Turin, V Tarokh, Measurement and
modeling of an ultra-wide bandwidth indoor channel. IEEE Trans.
Commun. 52(10), 1786–1796 (2004)

11. C-C Chong, SK Yong, A generic statistical-based UWB channel model for
high-rise apartments. IEEE Trans. Antennas Propag. 53(8), 2389–2399
(2005)

12. Z Tarique, W Malik, D Edwards, Bandwidth requirements for accurate
detection of direct path in multipath environment. Electron. Lett. 42(2),
100–102 (2006)

13. NA Alsindi, B Alavi, K Pahlavan, Measurement and modeling of
ultrawideband TOA-based ranging in indoor multipath environments.
IEEE Trans. Veh. Technol. 58(3), 1046–1058 (2009)

14. X Li, K Pahlavan, Super-resolution TOA estimation with diversity for indoor
geolocation. IEEE Trans. Wirel. Commun. 3(1), 224–234 (2004)

15. H Saarnisaari, in Vehicular Technology Conference, 1997, IEEE 47th.
TLS-ESPRIT in a time delay estimation, vol. 3 (IEEE, 1997), pp. 1619–1623

16. JL Paredes, GR Arce, Z Wang, Ultra-wideband compressed sensing:
channel estimation. IEEE J. Sel. Top. Sig. Process. 1(3), 383–395 (2007).
doi:10.1109/JSTSP.2007.906657

17. V Yajnanarayana, P Handel, Compressive sampling based UWB TOA
estimator. arXiv preprint arXiv:1602.08615 (2016)

18. RJ Fontana, SJ Gunderson, in UltraWideband Systems and Technologies,
2002. Digest of Papers. 2002 IEEE Conference On. Ultra-wideband precision
asset location system (IEEE, 2002), pp. 147–150

19. G Bellusci, GJM Janssen, J Yan, CCJM Tiberius, in 2009 IEEE International
Conference on Ultra-Wideband. A low-complexity UWB receiver concept for
TOAbased indoor ranging, (2009), pp. 618–623. doi:10.1109/ICUWB.2009.5288687

20. G Bellusci, G Janssen, J Yan, C Tiberius, in Proceedings of the 22nd
International Technical Meeting of The Satellite Division of the Institute of
Navigation (ION GNSS 2009). A sub-sampling receiver architecture for
ultra-wideband time of arrival based ranging, (2009), pp. 471–480

21. JR Rice, FP Beer, First-occurrence time of high-level crossings in a
continuous random process. J. Acoust. Soc. Am. 39(2), 323–335 (1966).
ASA. http://asa.scitation.org/doi/abs/10.1121/1.1909893

22. SO Rice,Mathematical Analysis of RandomNoise. ([New York] : American
Telephone and Telegraph Co, New York, 1944)

23. JS Bendat, AG Piersol, Random data: analysis andmeasurement procedures,
Fourth Edition. (John Wiley & Sons, Inc., New Jersey, 2012), pp. 109–171.
doi:10.1002/9781118032428.ch5

24. SH Crandall, KL Chandiramani, RG Cook, Some first-passage problems in
random vibration. J. Appl. Mech. 33, 532 (1966). doi:10.1115/1.3625118

25. SM Kay, Fundamentals of statistical signal processing: detection theory.
Prentice Hall Signal Processing Series. (Prentice-Hall PTR, New Jersey, 1998)

26. LJ Bain, DL Weeks, A note on the truncated exponential distribution. Ann.
Math. Statist. 35(3), 1366–1367 (1964). doi:10.1214/aoms/1177703298

27. PJG Teunissen, DG Simons, CCJM Tiberius, Probability and observation
theory: an introduction. (Delft University of Technology, Delft, 2005)

http://dx.doi.org/10.1109/TVT.2012.2207749
http://dx.doi.org/10.1109/JSAC.2002.805060
www.cambridge.org/9780521873093
http://dx.doi.org/10.1109/JSTSP.2007.906657
http://dx.doi.org/10.1109/ICUWB.2009.5288687
http://asa.scitation.org/doi/abs/10.1121/1.1909893
http://dx.doi.org/10.1002/9781118032428.ch5
http://dx.doi.org/10.1115/1.3625118
http://dx.doi.org/10.1214/aoms/1177703298

	Abstract
	Keywords

	Introduction
	System model
	Signal model
	Receiver model

	TOA estimation
	First-threshold-crossing problem
	PDF of a single TOA measurement
	Composite hypothesis testing
	The GLRT detector
	The optimal GLRT detector
	Joint PDF approximation approach


	Simulation results
	Conclusions
	Appendix
	Proof of the critical region transformation in NP lemma strategy

	Acknowledgements
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

