22,611 research outputs found

    A Novel Stealthy Target Detection Based on Stratospheric Balloon-borne Positional Instability due to Random Wind

    Get PDF
    A novel detection for stealthy target model F-117A with a higher aspect vision is introduced by using Stratospheric Balloon-borne Bistatic system. The potential problem of proposed scheme is platform instability impacted on the balloon by external wind force. The flight control system is studied in detail under typical random process, which is defined by Dryden turbulence spectrum. To accurately detect the stealthy target model, a real Radar Cross Section (RCS) based on physical optics (PO) formulation is applied. The sensitivity of the proposed scheme has been improved due to increasing PO – scattering field of stealthy model with higher aspect angle comparing to the conventional ground -based system. Simulations demonstrate that the proposed scheme gives much higher location accuracy and reduces location errors

    Dynamic Response of a fast near infra-red Mueller matrix ellipsometer

    Full text link
    The dynamic response of a near infrared Ferroelectric Liquid Crystal based Mueller matrix ellipsometer (NIR FLC-MME) is presented. A time dependent simulation model, using the measured time response of the individual FLCs, is used to describe the measured temporal response. Furthermore, the impulse response of the detector and the pre-amplifier is characterized and included in the simulation model. The measured time-dependent intensity response of the MME is reproduced in simulations, and it is concluded that the switching time of the FLCs is the limiting factor for the Mueller matrix measurement time of the FLC-based MME. Based on measurements and simulations our FLC based NIR-MME system is estimated to operate at the maximum speed of approximately 16 ms per Mueller matrix measurement. The FLC-MME may be operated several times faster, since the switching time of the crystals depends on the individual crystal being switched, and to what state it is switched. As a demonstration, the measured temporal response of the Mueller matrix and the retardance of a thick liquid crystal variable retarder upon changing state is demonstrated.Comment: to be published in Journal of Modern Optics 20 pages, 6 figure

    Three-dimensional scanning of specular and diffuse metallic surfaces using an infrared technique

    Get PDF
    For the past two decades, the need for three-dimensional (3-D) scanning of industrial objects has increased significantly and many experimental techniques and commercial solutions have been proposed. However, difficulties remain for the acquisition of optically non-cooperative surfaces, such as transparent or specular surfaces. To address highly reflective metallic surfaces, we propose the extension of a technique that was originally dedicated to glass objects. In contrast to conventional active triangulation techniques that measure the reflection of visible radiation, we measure the thermal emission of a surface, which is locally heated by a laser source. Considering the thermophysical properties of metals, we present a simulation model of heat exchanges that are induced by the process, helping to demonstrate its feasibility on specular metallic surfaces and predicting the settings of the system. With our experimental device, we have validated the theoretical modeling and computed some 3-D point clouds from specular surfaces of various geometries. Furthermore, a comparison of our results with those of a conventional system on specular and diffuse parts will highlight that the accuracy of the measurement no longer depends on the roughness of the surface

    Achromatizing a liquid-crystal spectropolarimeter: Retardance vs Stokes-based calibration of HiVIS

    Full text link
    Astronomical spectropolarimeters can be subject to many sources of systematic error which limit the precision and accuracy of the instrument. We present a calibration method for observing high-resolution polarized spectra using chromatic liquid-crystal variable retarders (LCVRs). These LCVRs allow for polarimetric modulation of the incident light without any moving optics at frequencies >10Hz. We demonstrate a calibration method using pure Stokes input states that enables an achromatization of the system. This Stokes-based deprojection method reproduces input polarization even though highly chromatic instrument effects exist. This process is first demonstrated in a laboratory spectropolarimeter where we characterize the LCVRs and show example deprojections. The process is then implemented the a newly upgraded HiVIS spectropolarimeter on the 3.67m AEOS telescope. The HiVIS spectropolarimeter has also been expanded to include broad-band full-Stokes spectropolarimetry using achromatic wave-plates in addition to the tunable full-Stokes polarimetric mode using LCVRs. These two new polarimetric modes in combination with a new polarimetric calibration unit provide a much more sensitive polarimetric package with greatly reduced systematic error.Comment: Accepted in PAS

    A 3D scanner for transparent glass

    Get PDF
    Many practical tasks in industry, such as automatic inspection or robot vision, often require the scanning of three-dimensional shapes by use of non-contact techniques. However, few methods have been proposed to measure three-dimensional shapes of transparent objects because of the difficulty of dealing with transparency and specularity of the surface. This paper presents a 3D scanner for transparent glass objects based on Scanning From Heating (SFH), a new method that makes use of local surface heating and thermal imaging
    • …
    corecore