57,946 research outputs found

    Measurable Spaces and Their Effect Logic

    Full text link

    New Directions in Categorical Logic, for Classical, Probabilistic and Quantum Logic

    Get PDF
    Intuitionistic logic, in which the double negation law not-not-P = P fails, is dominant in categorical logic, notably in topos theory. This paper follows a different direction in which double negation does hold. The algebraic notions of effect algebra/module that emerged in theoretical physics form the cornerstone. It is shown that under mild conditions on a category, its maps of the form X -> 1+1 carry such effect module structure, and can be used as predicates. Predicates are identified in many different situations, and capture for instance ordinary subsets, fuzzy predicates in a probabilistic setting, idempotents in a ring, and effects (positive elements below the unit) in a C*-algebra or Hilbert space. In quantum foundations the duality between states and effects plays an important role. It appears here in the form of an adjunction, where we use maps 1 -> X as states. For such a state s and a predicate p, the validity probability s |= p is defined, as an abstract Born rule. It captures many forms of (Boolean or probabilistic) validity known from the literature. Measurement from quantum mechanics is formalised categorically in terms of `instruments', using L\"uders rule in the quantum case. These instruments are special maps associated with predicates (more generally, with tests), which perform the act of measurement and may have a side-effect that disturbs the system under observation. This abstract description of side-effects is one of the main achievements of the current approach. It is shown that in the special case of C*-algebras, side-effect appear exclusively in the non-commutative case. Also, these instruments are used for test operators in a dynamic logic that can be used for reasoning about quantum programs/protocols. The paper describes four successive assumptions, towards a categorical axiomatisation of quantitative logic for probabilistic and quantum systems

    A Recipe for State-and-Effect Triangles

    Full text link
    In the semantics of programming languages one can view programs as state transformers, or as predicate transformers. Recently the author has introduced state-and-effect triangles which capture this situation categorically, involving an adjunction between state- and predicate-transformers. The current paper exploits a classical result in category theory, part of Jon Beck's monadicity theorem, to systematically construct such a state-and-effect triangle from an adjunction. The power of this construction is illustrated in many examples, covering many monads occurring in program semantics, including (probabilistic) power domains

    Levels of discontinuity, limit-computability, and jump operators

    Full text link
    We develop a general theory of jump operators, which is intended to provide an abstraction of the notion of "limit-computability" on represented spaces. Jump operators also provide a framework with a strong categorical flavor for investigating degrees of discontinuity of functions and hierarchies of sets on represented spaces. We will provide a thorough investigation within this framework of a hierarchy of Ξ”20\Delta^0_2-measurable functions between arbitrary countably based T0T_0-spaces, which captures the notion of computing with ordinal mind-change bounds. Our abstract approach not only raises new questions but also sheds new light on previous results. For example, we introduce a notion of "higher order" descriptive set theoretical objects, we generalize a recent characterization of the computability theoretic notion of "lowness" in terms of adjoint functors, and we show that our framework encompasses ordinal quantifications of the non-constructiveness of Hilbert's finite basis theorem
    • …
    corecore