We develop a general theory of jump operators, which is intended to provide
an abstraction of the notion of "limit-computability" on represented spaces.
Jump operators also provide a framework with a strong categorical flavor for
investigating degrees of discontinuity of functions and hierarchies of sets on
represented spaces. We will provide a thorough investigation within this
framework of a hierarchy of Δ20-measurable functions between arbitrary
countably based T0-spaces, which captures the notion of computing with
ordinal mind-change bounds. Our abstract approach not only raises new questions
but also sheds new light on previous results. For example, we introduce a
notion of "higher order" descriptive set theoretical objects, we generalize a
recent characterization of the computability theoretic notion of "lowness" in
terms of adjoint functors, and we show that our framework encompasses ordinal
quantifications of the non-constructiveness of Hilbert's finite basis theorem