64,007 research outputs found

    Mean Estimation from Adaptive One-bit Measurements

    Full text link
    We consider the problem of estimating the mean of a normal distribution under the following constraint: the estimator can access only a single bit from each sample from this distribution. We study the squared error risk in this estimation as a function of the number of samples and one-bit measurements nn. We consider an adaptive estimation setting where the single-bit sent at step nn is a function of both the new sample and the previous n1n-1 acquired bits. For this setting, we show that no estimator can attain asymptotic mean squared error smaller than π/(2n)+O(n2)\pi/(2n)+O(n^{-2}) times the variance. In other words, one-bit restriction increases the number of samples required for a prescribed accuracy of estimation by a factor of at least π/2\pi/2 compared to the unrestricted case. In addition, we provide an explicit estimator that attains this asymptotic error, showing that, rather surprisingly, only π/2\pi/2 times more samples are required in order to attain estimation performance equivalent to the unrestricted case

    Signal Recovery From 1-Bit Quantized Noisy Samples via Adaptive Thresholding

    Full text link
    In this paper, we consider the problem of signal recovery from 1-bit noisy measurements. We present an efficient method to obtain an estimation of the signal of interest when the measurements are corrupted by white or colored noise. To the best of our knowledge, the proposed framework is the pioneer effort in the area of 1-bit sampling and signal recovery in providing a unified framework to deal with the presence of noise with an arbitrary covariance matrix including that of the colored noise. The proposed method is based on a constrained quadratic program (CQP) formulation utilizing an adaptive quantization thresholding approach, that further enables us to accurately recover the signal of interest from its 1-bit noisy measurements. In addition, due to the adaptive nature of the proposed method, it can recover both fixed and time-varying parameters from their quantized 1-bit samples.Comment: This is a pre-print version of the original conference paper that has been accepted at the 2018 IEEE Asilomar Conference on Signals, Systems, and Computer

    Adaptive Quantizers for Estimation

    Full text link
    In this paper, adaptive estimation based on noisy quantized observations is studied. A low complexity adaptive algorithm using a quantizer with adjustable input gain and offset is presented. Three possible scalar models for the parameter to be estimated are considered: constant, Wiener process and Wiener process with deterministic drift. After showing that the algorithm is asymptotically unbiased for estimating a constant, it is shown, in the three cases, that the asymptotic mean squared error depends on the Fisher information for the quantized measurements. It is also shown that the loss of performance due to quantization depends approximately on the ratio of the Fisher information for quantized and continuous measurements. At the end of the paper the theoretical results are validated through simulation under two different classes of noise, generalized Gaussian noise and Student's-t noise

    Does nonlinear metrology offer improved resolution? Answers from quantum information theory

    Full text link
    A number of authors have suggested that nonlinear interactions can enhance resolution of phase shifts beyond the usual Heisenberg scaling of 1/n, where n is a measure of resources such as the number of subsystems of the probe state or the mean photon number of the probe state. These suggestions are based on calculations of `local precision' for particular nonlinear schemes. However, we show that there is no simple connection between the local precision and the average estimation error for these schemes, leading to a scaling puzzle. This puzzle is partially resolved by a careful analysis of iterative implementations of the suggested nonlinear schemes. However, it is shown that the suggested nonlinear schemes are still limited to an exponential scaling in \sqrt{n}. (This scaling may be compared to the exponential scaling in n which is achievable if multiple passes are allowed, even for linear schemes.) The question of whether nonlinear schemes may have a scaling advantage in the presence of loss is left open. Our results are based on a new bound for average estimation error that depends on (i) an entropic measure of the degree to which the probe state can encode a reference phase value, called the G-asymmetry, and (ii) any prior information about the phase shift. This bound is asymptotically stronger than bounds based on the variance of the phase shift generator. The G-asymmetry is also shown to directly bound the average information gained per estimate. Our results hold for any prior distribution of the shift parameter, and generalise to estimates of any shift generated by an operator with discrete eigenvalues.Comment: 8 page

    One-bit compressive sensing with norm estimation

    Full text link
    Consider the recovery of an unknown signal x{x} from quantized linear measurements. In the one-bit compressive sensing setting, one typically assumes that x{x} is sparse, and that the measurements are of the form sign(ai,x){±1}\operatorname{sign}(\langle {a}_i, {x} \rangle) \in \{\pm1\}. Since such measurements give no information on the norm of x{x}, recovery methods from such measurements typically assume that x2=1\| {x} \|_2=1. We show that if one allows more generally for quantized affine measurements of the form sign(ai,x+bi)\operatorname{sign}(\langle {a}_i, {x} \rangle + b_i), and if the vectors ai{a}_i are random, an appropriate choice of the affine shifts bib_i allows norm recovery to be easily incorporated into existing methods for one-bit compressive sensing. Additionally, we show that for arbitrary fixed x{x} in the annulus rx2Rr \leq \| {x} \|_2 \leq R, one may estimate the norm x2\| {x} \|_2 up to additive error δ\delta from mR4r2δ2m \gtrsim R^4 r^{-2} \delta^{-2} such binary measurements through a single evaluation of the inverse Gaussian error function. Finally, all of our recovery guarantees can be made universal over sparse vectors, in the sense that with high probability, one set of measurements and thresholds can successfully estimate all sparse vectors x{x} within a Euclidean ball of known radius.Comment: 20 pages, 2 figure

    Adaptive Measurements in the Optical Quantum Information Laboratory

    Get PDF
    Adaptive techniques make practical many quantum measurements that would otherwise be beyond current laboratory capabilities. For example: they allow discrimination of nonorthogonal states with a probability of error equal to the Helstrom bound; they allow measurement of the phase of a quantum oscillator with accuracy approaching (or in some cases attaining) the Heisenberg limit; and they allow estimation of phase in interferometry with a variance scaling at the Heisenberg limit, using only single qubit measurement and control. Each of these examples has close links with quantum information, in particular experimental optical quantum information: the first is a basic quantum communication protocol; the second has potential application in linear optical quantum computing; the third uses an adaptive protocol inspired by the quantum phase estimation algorithm. We discuss each of these examples, and their implementation in the laboratory, but concentrate upon the last, which was published most recently [Higgins {\em et al.}, Nature vol. 450, p. 393, 2007].Comment: 12 pages, invited paper to be published in IEEE Journal of Selected Topics in Quantum Electronics: Quantum Communications and Information Scienc
    corecore