101 research outputs found

    Mean Square Capacity of Power Constrained Fading Channels with Causal Encoders and Decoders

    Full text link
    This paper is concerned with the mean square stabilization problem of discrete-time LTI systems over a power constrained fading channel. Different from existing research works, the channel considered in this paper suffers from both fading and additive noises. We allow any form of causal channel encoders/decoders, unlike linear encoders/decoders commonly studied in the literature. Sufficient conditions and necessary conditions for the mean square stabilizability are given in terms of channel parameters such as transmission power and fading and additive noise statistics in relation to the unstable eigenvalues of the open-loop system matrix. The corresponding mean square capacity of the power constrained fading channel under causal encoders/decoders is given. It is proved that this mean square capacity is smaller than the corresponding Shannon channel capacity. In the end, numerical examples are presented, which demonstrate that the causal encoders/decoders render less restrictive stabilizability conditions than those under linear encoders/decoders studied in the existing works.Comment: Accepted by the 54th IEEE Conference on Decision and Contro

    Lecture Notes on Network Information Theory

    Full text link
    These lecture notes have been converted to a book titled Network Information Theory published recently by Cambridge University Press. This book provides a significantly expanded exposition of the material in the lecture notes as well as problems and bibliographic notes at the end of each chapter. The authors are currently preparing a set of slides based on the book that will be posted in the second half of 2012. More information about the book can be found at http://www.cambridge.org/9781107008731/. The previous (and obsolete) version of the lecture notes can be found at http://arxiv.org/abs/1001.3404v4/

    Estimation and detection techniques for doubly-selective channels in wireless communications

    Get PDF
    A fundamental problem in communications is the estimation of the channel. The signal transmitted through a communications channel undergoes distortions so that it is often received in an unrecognizable form at the receiver. The receiver must expend significant signal processing effort in order to be able to decode the transmit signal from this received signal. This signal processing requires knowledge of how the channel distorts the transmit signal, i.e. channel knowledge. To maintain a reliable link, the channel must be estimated and tracked by the receiver. The estimation of the channel at the receiver often proceeds by transmission of a signal called the 'pilot' which is known a priori to the receiver. The receiver forms its estimate of the transmitted signal based on how this known signal is distorted by the channel, i.e. it estimates the channel from the received signal and the pilot. This design of the pilot is a function of the modulation, the type of training and the channel. [Continues.

    Cooperative Relaying with State Available Non-Causally at the Relay

    Full text link
    We consider a three-terminal state-dependent relay channel with the channel state noncausally available at only the relay. Such a model may be useful for designing cooperative wireless networks with some terminals equipped with cognition capabilities, i.e., the relay in our setup. In the discrete memoryless (DM) case, we establish lower and upper bounds on channel capacity. The lower bound is obtained by a coding scheme at the relay that uses a combination of codeword splitting, Gel'fand-Pinsker binning, and decode-and-forward relaying. The upper bound improves upon that obtained by assuming that the channel state is available at the source, the relay, and the destination. For the Gaussian case, we also derive lower and upper bounds on the capacity. The lower bound is obtained by a coding scheme at the relay that uses a combination of codeword splitting, generalized dirty paper coding, and decode-and-forward relaying; the upper bound is also better than that obtained by assuming that the channel state is available at the source, the relay, and the destination. In the case of degraded Gaussian channels, the lower bound meets with the upper bound for some special cases, and, so, the capacity is obtained for these cases. Furthermore, in the Gaussian case, we also extend the results to the case in which the relay operates in a half-duplex mode.Comment: 62 pages. To appear in IEEE Transactions on Information Theor

    Feedback Communication Systems with Limitations on Incremental Redundancy

    Full text link
    This paper explores feedback systems using incremental redundancy (IR) with noiseless transmitter confirmation (NTC). For IR-NTC systems based on {\em finite-length} codes (with blocklength NN) and decoding attempts only at {\em certain specified decoding times}, this paper presents the asymptotic expansion achieved by random coding, provides rate-compatible sphere-packing (RCSP) performance approximations, and presents simulation results of tail-biting convolutional codes. The information-theoretic analysis shows that values of NN relatively close to the expected latency yield the same random-coding achievability expansion as with N=∞N = \infty. However, the penalty introduced in the expansion by limiting decoding times is linear in the interval between decoding times. For binary symmetric channels, the RCSP approximation provides an efficiently-computed approximation of performance that shows excellent agreement with a family of rate-compatible, tail-biting convolutional codes in the short-latency regime. For the additive white Gaussian noise channel, bounded-distance decoding simplifies the computation of the marginal RCSP approximation and produces similar results as analysis based on maximum-likelihood decoding for latencies greater than 200. The efficiency of the marginal RCSP approximation facilitates optimization of the lengths of incremental transmissions when the number of incremental transmissions is constrained to be small or the length of the incremental transmissions is constrained to be uniform after the first transmission. Finally, an RCSP-based decoding error trajectory is introduced that provides target error rates for the design of rate-compatible code families for use in feedback communication systems.Comment: 23 pages, 15 figure

    Analog joint source-channel coding over MIMO channels

    Get PDF
    [Abstract]: Analog joint source-channel coding (JSCC) is a communication strategy that does not follow the separation principle of conventional digital systems but has been shown to approach the optimal distortion-cost tradeoff over additive white Gaussian noise channels. In this work, we investigate the feasibility of analog JSCC over multiple-input multiple-output (MIMO) fading channels. Since, due to complexity constraints, directly recovering the analog source information from the MIMO channel output is not possible, we propose the utilization of low-complexity two-stage receivers that separately perform detection and analog JSCC maximum likelihood decoding. We study analog JSCC MIMO receivers that utilize either linear minimum mean square error or decision feedback MIMO detection. Computer experiments show the ability of the proposed analog JSCC receivers to approach the optimal distortion-cost tradeoff both in the low and high channel signal-to-noise ratio regimes. Performance is analyzed over both synthetically computer-generated Rayleigh fading channels and real indoor wireless measured channels.This work has been funded by Xunta de Galicia, MINECO of Spain, and FEDER funds of the EU under grants 2012/287, TEC2010-19545-C04-01, and CSD2008-00010; and by NSF award CIF-0915800.Xunta de Galicia; CN 2012/287United States. National Science Foundation; CIF-091580
    • 

    corecore