307 research outputs found

    A fully automatic CAD-CTC system based on curvature analysis for standard and low-dose CT data

    Get PDF
    Computed tomography colonography (CTC) is a rapidly evolving noninvasive medical investigation that is viewed by radiologists as a potential screening technique for the detection of colorectal polyps. Due to the technical advances in CT system design, the volume of data required to be processed by radiologists has increased significantly, and as a consequence the manual analysis of this information has become an increasingly time consuming process whose results can be affected by inter- and intrauser variability. The aim of this paper is to detail the implementation of a fully integrated CAD-CTC system that is able to robustly identify the clinically significant polyps in the CT data. The CAD-CTC system described in this paper is a multistage implementation whose main system components are: 1) automatic colon segmentation; 2) candidate surface extraction; 3) feature extraction; and 4) classification. Our CAD-CTC system performs at 100% sensitivity for polyps larger than 10 mm, 92% sensitivity for polyps in the range 5 to 10 mm, and 57.14% sensitivity for polyps smaller than 5 mm with an average of 3.38 false positives per dataset. The developed system has been evaluated on synthetic and real patient CT data acquired with standard and low-dose radiation levels

    Determining candidate polyp morphology from CT colonography using a level-set method

    Get PDF
    In this paper we propose a level-set segmentation for polyp candidates in Computer Tomography Colongraphy (CTC). Correct classification of the candidate polyps into polyp and non-polyp is, in most cases, evaluated using shape features. Therefore, accurate recovery of the polyp candidate surface is important for correct classification. The method presented in this paper, evolves a curvature and gradient dependent boundary to recover the surface of the polyp candidate in a level-set framework. The curvature term is computed using a combination of the Mean curvature and the Gaussian curvature. The results of the algorithm were run through a classifier for two complete data-sets and returned 100% sensitivity for polyps greater than 5mm

    Detection of Polyps via Shape and Appearance Modeling

    Get PDF
    Presented at the MICCAI 2008 Workshop on Computational and Visualization Challenges in the New Era of Virtual Colonoscopy, September 6, 2008, New York, USA.This paper describes a CAD system for the detection of colorectal polyps in CT. It is based on stochastic shape and appearance modeling of structures of the colon and rectum, in contrast to the data-driven approaches more commonly found in the literature it derives predictive stochastic models for the features used for classification. The method makes extensive use of medical domain knowledge in the design of the models and in the setting of their parameters. The proposed approach was successfully tested on challenging datasets acquired under a protocol with little colonic preparation; such protocol reduces patient discomfort and potentially improves compliance

    A Robust and Fast System for CTC Computer-Aided Detection of Colorectal Lesions

    Get PDF
    We present a complete, end-to-end computer-aided detection (CAD) system for identifying lesions in the colon, imaged with computed tomography (CT). This system includes facilities for colon segmentation, candidate generation, feature analysis, and classification. The algorithms have been designed to offer robust performance to variation in image data and patient preparation. By utilizing efficient 2D and 3D processing, software optimizations, multi-threading, feature selection, and an optimized cascade classifier, the CAD system quickly determines a set of detection marks. The colon CAD system has been validated on the largest set of data to date, and demonstrates excellent performance, in terms of its high sensitivity, low false positive rate, and computational efficiency
    corecore