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Abstract. This paper describes a CAD system for the detection of colorectal
polyps in CT. It is based on stochastic shape and appearance modeling of struc-
tures of the colon and rectum, in contrast to the data-driven approaches more
commonly found in the literature it derives predictive stochastic models for the
features used for classification. The method makes extensive use of medical do-
main knowledge in the design of the models and in the setting of their parameters.
The proposed approach was successfully tested on challenging datasets acquired
under a protocol with little colonic preparation; such protocol reduces patient
discomfort and potentially improves compliance.

1 Introduction

Early detection of polyps has been associated with reduction in the incidence of col-
orectal cancer [1], the fourth leading cause of cancer death worldwide [2], and optical
colonoscopy has been shown to be an effective tool for polyp detection [3]. However,
optical colonoscopy is an invasive procedure, and discomfort to the patient, in particular
due to pre-examination colonic cleansing, has a negative impact on compliance [4].

The less invasive alternative of virtual colonoscopy has been shown to produce re-
sults at least as good as those of optical colonoscopy [5], even under protocols more
amenable to the patient. However, this creates problems for radiologists, because such
protocols leave the colon partially filled with fluid or stool.

The past decade has seen steady progress in the use of CAD algorithms for CT,
such as the work of Yoshida et al [6], and Vos et al [7], which pioneered the use of
curvature as a distinguishing feature segregating polyps from other colorectal structures.
More recently, modeling through spherical harmonics [8], surface-normal overlap [9]
and other curvature-based methods have been developed [10]. Finally, there has been
a recent change in focus from CT exams in which the patient undergoes full colonic
cleansing to less rigorous protocols [11]. The work described in this paper is in line
with that important clinical trend.

2 Modeling of Colonic Structures

This section describes the extension of the Bayesian approach of [12] from the analysis
of pulmonary to colonic structures. Let {Mi, i = 1, ...,N} be a set of models. Each Mi
has parameters mi in the domain Mi. Given a choice of Mi, D is assumed to be a set
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D = {D j, j = 1, ...,M} of independent datum D j associated with voxel x. Using Bayes’
law and marginalizing over the model parameters, we have

P(Mi|D, x) = M! × P(Mi|x)
p(D|x)

M∏
j=1

∫
Mi

p(D j|mi,Mi, x)p(mi|Mi, x) dmi. (1)

Following the majority of the works mentioned in section 1, we adopt the use of curva-
ture as the feature for discriminating between polyps and the other colorectal structures,
i.e.,D j = κ(x j) for x j ∈ B(x), where B(x) is a neighborhood of x. Once p(D j|mi,Mi, x)
and p(mi|Mi, x) are available, Laplace’s method [13] is used to compute the integral in
(1), and label voxels in the image according to the value of P(Mi|D, x).

2.1 Modeling the Likelihood Term

Colorectal structures relevant to the task of detecting polyps include sessile and pedun-
culated polyps, haustral folds, and the haustra or colon wall, each corresponding to a
particular Mi in (1). Our approach to modeling p(D j|mi,Mi, x) for these structures is
to first model their shape and/or appearance through simple analytical models, and then
use an appropriate sampling procedure to sample from the analytical models and map
the sampled points on the model to curvature values using either classical differential
geometry or the geometry of Gaussian random fields [14].

2.2 Modeling the Prior

In this work, the modeling of the prior p(mi|Mi, x) in (1) relies heavily on the use of
domain knowledge of the anatomy and pathology of colon. However, currently available
clinical data is not enough to fully describe the probability density p(mi|Mi, x). One
valuable technique to set up least-informative priors given the available constraints is
the maximum entropy principle [15], which prescribes for p(mi|Mi, x) the probability
density that maximizes S = −

∫
p(x) log p(x) dx given integral constraints in the form

E[ fk(x)] = ck, where E is the expectation functional. Clinical knowledge is incorporated
in the functions fk and the parameters ck, mathematically encoding information such as
expected values for polyp diameter [16] and width of colonic folds [17].

2.3 Geometric Models

Polyps and folds are modeled exclusively through geometry. The polyp model, M1, is
chosen to be a solid ellipsoid given by

M1 : (ρ, θ, φ) �→ x = ρ
[
a cos θ cos φ c sin θ cos φ c sin φ

]T
, (2)

where ρ ∈ Π = [0, 1], θ ∈ Θ = [0, 2π), and φ ∈ Φ = [−π/2, π/2]. The parameters of the
model are m1 = (a, c), with a ≤ c. Each choice of ρ ∈ Π defines a different surface at
which principal curvatures can be computed, yielding

ρ = (a/c2)
√
κ2/κ

3
1 and sin2 φ = (c2(κ1/κ2) − a2)/(c2 − a2). (3)
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The maximum entropy prior on a non-negative random variable with finite mean is the
exponential distribution. Under the constraint that a ≤ c, we obtain the prior p(m1|M1, x)
given by (with IX(x) = 1 if x ∈ X and 0 otherwise)

p(m1|M1, x) = (8/5)λ5a2ce−λ(a+c)IM1 (m1), (4)

where 2/λ is the expected diameter of a polyp in a given patient cohort.
A distribution over x can be obtained by sampling from M1 according to a Poisson

point process, and through a succession of transformations of random variables, x is
mapped to (ρ, θ, φ) according to (2) and (ρ, θ, φ) is mapped to κ according to (3). Finally,
using a Laplace-type approximation [13] to solve the integral in (1), we have

p(κ|M1, x) ≈
1536λκ2 fκ( fκ(g(κ) + 3))

11 (3κ1 + 5κ2)4 e−g(κ)
I[0,κ2](κ1), (5)

where g(κ) = λ(3κ1 + 5κ2)/[κ2(3κ1 + κ2)] and fκ(u) = g(κ)u + 6.
Due to space limitations we cannot describe the derivation of the haustral fold model

even at the scarce level of detail of (5), but the procedure is similar.

2.4 Appearance and Mixed Models

It is important to observe that the polyp and fold models are invariant to any monoton-
ically increasing image intensity transformation of the CT data. This is due to the fact
that those transformations preserve the geometry of isosurfaces in the volume, affecting
only the isovalue associated with a given isosurface.

In contrast, the proposed haustra and outlier models are appearance-dependent, and
are based on recent results in the theory of Gaussian random fields [14]. The modeling
of the haustra has been introduced elsewhere [18], where it is shown how appearance
and shape can be combined to derive an estimate for the probability distribution of
curvatures on the colon wall. Assuming a simple spherical model of radius R for the
colon wall, the probability distribution of the haustral curvatures is given by

p(κ|M3, x) =
κ2 − κ1

8
√

2πα3
exp
[
− (5κ12 − 6κ2κ1 + 5κ22)R2 + 4(κ1 + κ2)R + 4

32R2α2

]
, (6)

with α = ση/(2σ2C), where ση is the amplitude of the image noise, σ is the scale
parameter of a combined point-spread function and image-smoothing kernels, and C is
the magnitude of the air-tissue gradient at the colon wall.

The outlier model is simply a particular case of the result in [14], which estab-
lishes the probability distribution of the curvature of isosurfaces at arbitrary points in
an isotropically correlated Gaussian random field. The result depends only on the di-
mension n of the Euclidean vector space on which the random field is embedded, and
the second and fourth derivatives of its autocorrelation function R(τ) at τ = 0 ∈ Rn.
In our case, n = 3, and assuming that a good approximation for the image autocorrela-
tion function can be derived from the CT system point-spread function and smoothing
kernel, the resulting probability distribution is (with σ as in (6))

p(κ|M4, x) =
256σ3(κ2 − κ1)

π(4 + 3σ2κ22 − 2σ2κ2κ1 + 3σ2κ21)3
I(−∞,κ2](κ1). (7)
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One issue not considered so far is what effect the immersion in colonic fluid should
have over p(D j|mi,Mi, x). The key observation is that for polyps, folds, or haustra
immersed in fluid, the general shape of the structure is preserved, but the gradient
directions in the image are inverted. As a consequence, curvature values are also in-
verted, since the gradient is normal to the local isosurface, yielding p′(κ|Mi, x) =
p′(κ1, κ2|Mi, x) = p(−κ2,−κ1|Mi, x), where p′ is the probability density of curvatures
given Mi at fluid-immersed voxels x.

3 Bayesian Classifier

Two pieces of information are still missing for the computation of (1). The first is
P(Mi|x), which can be readily obtained from anatomical and epidemiological informa-
tion on a screening patient cohort, in particular polyp prevalence and size distribution
[16, 17]. Once such an estimate is available, P(Mi|x) can be computed as a relative vol-
ume ratio. For example, P(M1|x) is given by the ratio of the expected volume of polyps
per patient and the expected volume of all colonic structures.

The second missing component of (1) is more subtle. The distributions p(κ|Mi, x)
were derived under the assumptions that the voxel x has been sampled from model Mi.
However, the datum D j in p(D j|Mi, x) has been extracted from a voxel x j � x. To
account for this we first, assume that the voxels of model Mi are located in a spherical
region R of radius S , where S can be estimated from p(mi|Mi, x). If x is sampled
from R according to a Poisson point process, and a voxel x j is subsequently sam-
pled among the set of all voxels at a distance d from x, also according to a Poisson
point process, the probability wd,S that x j belongs to R can be computed as wd,S =
(d − 2S )2(d + 4S )/16S 3

IS≥d/2(S ). Based on this simple model, we derive

p(D j|Mi, x) = w‖x j−x‖,S p(κ|Mi, x) + (1 − w‖x j−x‖,S )p(κ|M4, x). (8)

The probability (1) is computed for each voxel on the colon surface and each choice
of model Mi. Voxels for which the log-likelihood ratio log(P(M1|x)/

∑
i�1 P(Mi|x))

is above a certain threshold are labeled as belonging to a polyp, and after running a
connected components algorithm on the labeled data we obtain a set of candidate de-
tections. Such detections are further thresholded on their average log-likelihood, and
sweeping on this last threshold produces an fROC curve.

4 Experimental Results

Several studies have been published to measure efficacy of CT-based colon screening
[19, 20] and CAD performance [11], but the only database publicly available is from
WRAMC (http://imaging.nci.nih.gov1). Enlisted patients received an oral administra-
tion of 90 ml of sodium phosphate and 10 mg of bisacodyl, and followed a clear-liquid
diet of 500 ml of barium for stool tagging and 120 ml of diatrizoate meglumine and di-
atrizoate sodium for fluid tagging. For details see [5]. The complete WRAMC database

1 Courtesy of Dr. Richard Choi, Virtual Colonoscopy Center, Walter Reed Army Medical Center.
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Fig. 1. Examples of correctly detected polyps in air (a) and fluid (b) regions, as shown
in (e) and (f), respectively. The image in (c) shows a protruding tip on a fold incorrectly
marked by the algorithm, as shown in (g). (d) depicts a flat sessile polyp missed by the
algorithm. Figure (h) is the fROC curve for the dataset described in section 4.

consists of thousands of patients, but ground truth is provided only as the distance from
each polyp to the rectum along the colon centerline. Therefore, we enlisted an expert
who translated these coordinates into image locations for a subset of 46 patients. Each
patient was scanned in prone and supine positions, giving 92 scans altogether, contain-
ing 59 polyps, both sessile and pedunculated, with diameter above 6 mm, the minimum
lesion size for which follow-up is recommended under current protocols [20].

The algorithm performance is summarized in figure 1, which depicts detections for
polyps immersed in air and in fluid, a false positive (FP) detection on the tip of a fold,
and an undetected flat sessile polyp. At 10 FP/case, the algorithm reached a sensitivity
of 83% for polyps with diameter equal to or above 6 mm. This result can be compared
with those in [11], obtained with the full WRAMC dataset, and theferore the same
imaging protocol. In Table 1 of that reference an fROC curve for a test set containing
polyps with diameter of at least 6 mm is shown, depicting the sensitivity and FP rate
per patient. If we conservatively assume that the corresponding FP per case in [11] is
half of their FP rate per patient — which implies perfect reconciliation of independent
detections on prone and supine volumes — they have achieved, at their chosen rate of
7.9 FP/patient (or 3.95 FP/case), a sensitivity of 61.3% (table 3). At that same FP rate
we achieve 67.8% sensitivity, or, alternatively, at that same sensitivity we observe only
2.4 FP/case, a clearly superior performance.

5 Conclusions and Future Work

This paper presented an algorithm for detection of polyps depicted in CT images based
on techniques of geometric probability. It follows a Bayesian framework, in which para-
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metric models and statistical priors are derived from medical domain knowledge, rather
than learned from data. It handles multiple protocols for patient preparation, in par-
ticular those that facilitate patient compliance. This is a key issue for the successful
application of virtual colonoscopy in a large-scale screening program.
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