194 research outputs found

    The Atmospheric Infrared Sounder Version 6 Cloud Products

    Get PDF
    The version 6 cloud products of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) instrument suite are described. The cloud top temperature, pressure, and height and effective cloud fraction are now reported at the AIRS field-of-view (FOV) resolution. Significant improvements in cloud height assignment over version 5 are shown with FOV-scale comparisons to cloud vertical structure observed by the CloudSat 94 GHz radar and the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP). Cloud thermodynamic phase (ice, liquid, and unknown phase), ice cloud effective diameter D(sub e), and ice cloud optical thickness () are derived using an optimal estimation methodology for AIRS FOVs, and global distributions for 2007 are presented. The largest values of tau are found in the storm tracks and near convection in the tropics, while D(sub e) is largest on the equatorial side of the midlatitude storm tracks in both hemispheres, and lowest in tropical thin cirrus and the winter polar atmosphere. Over the Maritime Continent the diurnal variability of tau is significantly larger than for the total cloud fraction, ice cloud frequency, and D(sub e), and is anchored to the island archipelago morphology. Important differences are described between northern and southern hemispheric midlatitude cyclones using storm center composites. The infrared-based cloud retrievals of AIRS provide unique, decadal-scale and global observations of clouds over portions of the diurnal and annual cycles, and capture variability within the mesoscale and synoptic scales at all latitudes

    Doctor of Philosophy

    Get PDF
    dissertationA database of cirrus particle size distributions (PSDs), with concomitant meteorological variables, has been constructed using data collected with the Twodimensional Stereo (2D-S) probe. Parametric functions are fit to each measured PSD. Full statistical descriptions are given for unimodal fit parameters. Three statistical tests were developed in order to determine the utility of bimodal fits and the efficacy of unimodal fits, and an investigation into the relationship between the parameterized PSDs and several meteorological variables was made. Next, a parameterization of a "universal" cirrus PSD is given. This parameterization constitutes an improvement on earlier works due both to the size of the dataset and to updated instrumentation. Despite earlier works that predicted a gammadistribution tail to the universal ice PSD, it is shown here that the tail is best described by an inverse gamma distribution. A method for predicting any PSD given the universal shape and two independent remote sensing measurements is demonstrated. The constructed PSD database is then used to address a straightforward question: how similar are the statistics of PSD datasets collected using the recently developed 2D-S probe to cirrus PSD datasets collected using older Particle Measuring Systems (PMS) 2D Cloud (2DC) and 2D Precipitation (2DP) probes? It is seen, given the same cloud field and given the same assumptions concerning ice crystal cross-sectional area, density, and radar cross section, that the parameterized 2D-S and the parameterized 2DC predict similar distributions of inferred shortwave extinction coefficient, ice water content, and 94 GHz radar reflectivity. However, the parameterized 2DC predicts a statistically significant higher number of total ice crystals and a larger ratio of small ice crystals to large ice crystals. Finally, the beginnings of two works in their early stages are presented. First, the probability structure of the parameterized PSDs is considered in light of application to the Bayesian inference of cirrus microphysical properties from remote sensing measurements. Then, the collection of measured PSDs, along with a forward model for radar reflectivity, is used to investigate uncertainty in computations of radar reflectivity from modeled moments of cirrus cloud PSDs

    Microwave (SSM/I) Estimates of the Precipitation Rate to Improve Numerical Atmospheric Model Forecasts

    Get PDF
    Delay in the spin-up of precipitation early in numerical atmospheric forecasts is a deficiency correctable by diabatic initialization combined with diabatic forcing. For either to be effective requires some knowledge of the magnitude and vertical placement of the latent heating fields. Until recently the best source of cloud and rain water data was the remotely sensed vertical integrated precipitation rate or liquid water content. Vertical placement of the condensation remains unknown. Some information about the vertical distribution of the heating rates and precipitating liquid water and ice can be obtained from retrieval techniques that use a physical model of precipitating clouds to refine and improve the interpretation of the remotely sensed data. A description of this procedure and an examination of its 3-D liquid water products, along with improved modeling methods that enhance or speed-up storm development is discussed

    Microwave remote sensing algorithms for cirrus clouds and precipitation

    Get PDF
    Sponsored by NASA NAG-5-1592S

    CIRA annual report 2007-2008

    Get PDF

    Challenges to Satellite Sensors of Ocean Winds: Addressing Precipitation Effects

    Get PDF
    Measurements of global ocean surface winds made by orbiting satellite radars have provided valuable information to the oceanographic and meteorological communities since the launch of the Seasat in 1978, by the National Aeronautics and Space Administration (NASA). When Quick Scatterometer (QuikSCAT) was launched in 1999, it ushered in a new era of dual-polarized, pencil-beam, higher-resolution scatterometers for measuring the global ocean surface winds from space. A constant limitation on the full utilization of scatterometer-derived winds is the presence of isolated rain events, which affect about 7% of the observations. The vector wind sensors, the Ku-band scatterometers [NASA\u27s SeaWinds on the QuikSCAT and Midori-II platforms and Indian Space Research Organisation\u27s (ISRO\u27s) Ocean Satellite (Oceansat)-2], and the current C-band scatterometer [Advanced Wind Scatterometer (ASCAT), on the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT)\u27s Meteorological Operation (MetOp) platform] all experience rain interference, but with different characteristics. Over this past decade, broad-based research studies have sought to better understand the physics of the rain interference problem, to search for methods to bypass the problem (using rain detection, flagging, and avoidance of affected areas), and to develop techniques to improve the quality of the derived wind vectors that are adversely affected by rain. This paper reviews the state of the art in rain flagging and rain correction and describes many of these approaches, methodologies, and summarizes the results

    Wavelet scale analysis of mesoscale convective systems for detecting deep convection from infrared imagery

    Get PDF
    Mesoscale convective systems (MCSs) are frequently associated with rainfall extremes and are expected to further intensify under global warming. However, despite the significant impact of such extreme events, the dominant processes favoring their occurrence are still under debate. Meteosat geostationary satellites provide unique long‐term subhourly records of cloud top temperatures, allowing to track changes in MCS structures that could be linked to rainfall intensification. Focusing on West Africa, we show that Meteosat cloud top temperatures are a useful proxy for rainfall intensities, as derived from snapshots from the Tropical Rainfall Measuring Mission 2A25 product: MCSs larger than 15,000 km2 at a temperature threshold of −40°C are found to produce 91% of all extreme rainfall occurrences in the study region, with 80% of the storms producing extreme rain when their minimum temperature drops below −80°C. Furthermore, we present a new method based on 2‐D continuous wavelet transform to explore the relationship between cloud top temperature and rainfall intensity for subcloud features at different length scales. The method shows great potential for separating convective and stratiform cloud parts when combining information on temperature and scale, improving the common approach of using a temperature threshold only. We find that below −80°C, every fifth pixel is associated with deep convection. This frequency is doubled when looking at subcloud features smaller than 35 km. Scale analysis of subcloud features can thus help to better exploit cloud top temperature data sets, which provide much more spatiotemporal detail of MCS characteristics than available rainfall data sets alone

    Advanced of Mathematics-Statistics Methods to Radar Calibration for Rainfall Estimation; A Review

    Get PDF
    Ground-based radar is known as one of the most important systems for precipitation measurement at high spatial and temporal resolutions. Radar data are recorded in digital manner and readily ingested to any statistical analyses. These measurements are subjected to specific calibration to eliminate systematic errors as well as minimizing the random errors, respectively. Since statistical methods are based on mathematics, they offer more precise results and easy interpretation with lower data detail. Although they have challenge to interpret due to their mathematical structure, but the accuracy of the conclusions and the interpretation of the output are appropriate. This article reviews the advanced methods in using the calibration of ground-based radar for forecasting meteorological events include two aspects: statistical techniques and data mining. Statistical techniques refer to empirical analyses such as regression, while data mining includes the Artificial Neural Network (ANN), data Kriging, Nearest Neighbour (NN), Decision Tree (DT) and fuzzy logic. The results show that Kriging is more applicable for interpolation. Regression methods are simple to use and data mining based on Artificial Intelligence is very precise. Thus, this review explores the characteristics of the statistical parameters in the field of radar applications and shows which parameters give the best results for undefined cases. DOI: 10.17762/ijritcc2321-8169.15012

    North American extreme precipitation events and related large-scale meteorological patterns: a review of statistical methods, dynamics, modeling, and trends

    Get PDF
    This paper surveys the current state of knowledge regarding large-scale meteorological patterns (LSMPs) associated with short-duration (less than 1 week) extreme precipitation events over North America. In contrast to teleconnections, which are typically defined based on the characteristic spatial variations of a meteorological field or on the remote circulation response to a known forcing, LSMPs are defined relative to the occurrence of a specific phenomenon-here, extreme precipitation-and with an emphasis on the synoptic scales that have a primary influence in individual events, have medium-range weather predictability, and are well-resolved in both weather and climate models. For the LSMP relationship with extreme precipitation, we consider the previous literature with respect to definitions and data, dynamical mechanisms, model representation, and climate change trends. There is considerable uncertainty in identifying extremes based on existing observational precipitation data and some limitations in analyzing the associated LSMPs in reanalysis data. Many different definitions of "extreme" are in use, making it difficult to directly compare different studies. Dynamically, several types of meteorological systems-extratropical cyclones, tropical cyclones, mesoscale convective systems, and mesohighs-and several mechanisms-fronts, atmospheric rivers, and orographic ascent-have been shown to be important aspects of extreme precipitation LSMPs. The extreme precipitation is often realized through mesoscale processes organized, enhanced, or triggered by the LSMP. Understanding of model representation, trends, and projections for LSMPs is at an early stage, although some promising analysis techniques have been identified and the LSMP perspective is useful for evaluating the model dynamics associated with extremes.11Ysciescopu

    North American extreme precipitation events and related large-scale meteorological patterns: a review of statistical methods, dynamics, modeling, and trends

    Get PDF
    This paper surveys the current state of knowledge regarding large-scale meteorological patterns (LSMPs) associated with short-duration (less than 1 week) extreme precipitation events over North America. In contrast to teleconnections, which are typically defined based on the characteristic spatial variations of a meteorological field or on the remote circulation response to a known forcing, LSMPs are defined relative to the occurrence of a specific phenomenon-here, extreme precipitation-and with an emphasis on the synoptic scales that have a primary influence in individual events, have medium-range weather predictability, and are well-resolved in both weather and climate models. For the LSMP relationship with extreme precipitation, we consider the previous literature with respect to definitions and data, dynamical mechanisms, model representation, and climate change trends. There is considerable uncertainty in identifying extremes based on existing observational precipitation data and some limitations in analyzing the associated LSMPs in reanalysis data. Many different definitions of "extreme" are in use, making it difficult to directly compare different studies. Dynamically, several types of meteorological systems-extratropical cyclones, tropical cyclones, mesoscale convective systems, and mesohighs-and several mechanisms-fronts, atmospheric rivers, and orographic ascent-have been shown to be important aspects of extreme precipitation LSMPs. The extreme precipitation is often realized through mesoscale processes organized, enhanced, or triggered by the LSMP. Understanding of model representation, trends, and projections for LSMPs is at an early stage, although some promising analysis techniques have been identified and the LSMP perspective is useful for evaluating the model dynamics associated with extremes.11Ysciescopu
    corecore