3,213 research outputs found

    Algorithmic Applications of Baur-Strassen's Theorem: Shortest Cycles, Diameter and Matchings

    Full text link
    Consider a directed or an undirected graph with integral edge weights from the set [-W, W], that does not contain negative weight cycles. In this paper, we introduce a general framework for solving problems on such graphs using matrix multiplication. The framework is based on the usage of Baur-Strassen's theorem and of Strojohann's determinant algorithm. It allows us to give new and simple solutions to the following problems: * Finding Shortest Cycles -- We give a simple \tilde{O}(Wn^{\omega}) time algorithm for finding shortest cycles in undirected and directed graphs. For directed graphs (and undirected graphs with non-negative weights) this matches the time bounds obtained in 2011 by Roditty and Vassilevska-Williams. On the other hand, no algorithm working in \tilde{O}(Wn^{\omega}) time was previously known for undirected graphs with negative weights. Furthermore our algorithm for a given directed or undirected graph detects whether it contains a negative weight cycle within the same running time. * Computing Diameter and Radius -- We give a simple \tilde{O}(Wn^{\omega}) time algorithm for computing a diameter and radius of an undirected or directed graphs. To the best of our knowledge no algorithm with this running time was known for undirected graphs with negative weights. * Finding Minimum Weight Perfect Matchings -- We present an \tilde{O}(Wn^{\omega}) time algorithm for finding minimum weight perfect matchings in undirected graphs. This resolves an open problem posted by Sankowski in 2006, who presented such an algorithm but only in the case of bipartite graphs. In order to solve minimum weight perfect matching problem we develop a novel combinatorial interpretation of the dual solution which sheds new light on this problem. Such a combinatorial interpretation was not know previously, and is of independent interest.Comment: To appear in FOCS 201

    On the Hardness of Partially Dynamic Graph Problems and Connections to Diameter

    Get PDF
    Conditional lower bounds for dynamic graph problems has received a great deal of attention in recent years. While many results are now known for the fully-dynamic case and such bounds often imply worst-case bounds for the partially dynamic setting, it seems much more difficult to prove amortized bounds for incremental and decremental algorithms. In this paper we consider partially dynamic versions of three classic problems in graph theory. Based on popular conjectures we show that: -- No algorithm with amortized update time O(n1−ε)O(n^{1-\varepsilon}) exists for incremental or decremental maximum cardinality bipartite matching. This significantly improves on the O(m1/2−ε)O(m^{1/2-\varepsilon}) bound for sparse graphs of Henzinger et al. [STOC'15] and O(n1/3−ε)O(n^{1/3-\varepsilon}) bound of Kopelowitz, Pettie and Porat. Our linear bound also appears more natural. In addition, the result we present separates the node-addition model from the edge insertion model, as an algorithm with total update time O(mn)O(m\sqrt{n}) exists for the former by Bosek et al. [FOCS'14]. -- No algorithm with amortized update time O(m1−ε)O(m^{1-\varepsilon}) exists for incremental or decremental maximum flow in directed and weighted sparse graphs. No such lower bound was known for partially dynamic maximum flow previously. Furthermore no algorithm with amortized update time O(n1−ε)O(n^{1-\varepsilon}) exists for directed and unweighted graphs or undirected and weighted graphs. -- No algorithm with amortized update time O(n1/2−ε)O(n^{1/2 - \varepsilon}) exists for incremental or decremental (4/3−ε′)(4/3-\varepsilon')-approximating the diameter of an unweighted graph. We also show a slightly stronger bound if node additions are allowed. [...]Comment: To appear at ICALP'16. Abstract truncated to fit arXiv limit

    NC Algorithms for Computing a Perfect Matching and a Maximum Flow in One-Crossing-Minor-Free Graphs

    Full text link
    In 1988, Vazirani gave an NC algorithm for computing the number of perfect matchings in K3,3K_{3,3}-minor-free graphs by building on Kasteleyn's scheme for planar graphs, and stated that this "opens up the possibility of obtaining an NC algorithm for finding a perfect matching in K3,3K_{3,3}-free graphs." In this paper, we finally settle this 30-year-old open problem. Building on recent NC algorithms for planar and bounded-genus perfect matching by Anari and Vazirani and later by Sankowski, we obtain NC algorithms for perfect matching in any minor-closed graph family that forbids a one-crossing graph. This family includes several well-studied graph families including the K3,3K_{3,3}-minor-free graphs and K5K_5-minor-free graphs. Graphs in these families not only have unbounded genus, but can have genus as high as O(n)O(n). Our method applies as well to several other problems related to perfect matching. In particular, we obtain NC algorithms for the following problems in any family of graphs (or networks) with a one-crossing forbidden minor: ∙\bullet Determining whether a given graph has a perfect matching and if so, finding one. ∙\bullet Finding a minimum weight perfect matching in the graph, assuming that the edge weights are polynomially bounded. ∙\bullet Finding a maximum stst-flow in the network, with arbitrary capacities. The main new idea enabling our results is the definition and use of matching-mimicking networks, small replacement networks that behave the same, with respect to matching problems involving a fixed set of terminals, as the larger network they replace.Comment: 21 pages, 6 figure

    Marathon: An open source software library for the analysis of Markov-Chain Monte Carlo algorithms

    Full text link
    In this paper, we consider the Markov-Chain Monte Carlo (MCMC) approach for random sampling of combinatorial objects. The running time of such an algorithm depends on the total mixing time of the underlying Markov chain and is unknown in general. For some Markov chains, upper bounds on this total mixing time exist but are too large to be applicable in practice. We try to answer the question, whether the total mixing time is close to its upper bounds, or if there is a significant gap between them. In doing so, we present the software library marathon which is designed to support the analysis of MCMC based sampling algorithms. The main application of this library is to compute properties of so-called state graphs which represent the structure of Markov chains. We use marathon to investigate the quality of several bounding methods on four well-known Markov chains for sampling perfect matchings and bipartite graph realizations. In a set of experiments, we compute the total mixing time and several of its bounds for a large number of input instances. We find that the upper bound gained by the famous canonical path method is several magnitudes larger than the total mixing time and deteriorates with growing input size. In contrast, the spectral bound is found to be a precise approximation of the total mixing time
    • …
    corecore