101,114 research outputs found

    Implementation and performance of a new multiple objective dynamic routing method for multiexchange networks, Journal of Telecommunications and Information Technology, 2003, nr 3

    Get PDF
    The paper describes new developments of a multiple objective dynamic routing method (MODR) for circuit-switched networks previously presented, based on the periodic calculation of alternative paths for every node pair by a specialised bi-objective shortest path algorithm (MMRA). A model is presented that enables the numerical calculation of two global network performance parameters, when using MMRA. This model puts in evidence an instability problem in the synchronous path computation model which may lead to solutions with poor global network performance, measured in terms of network mean blocking probability and maximum node-to-node blocking probability. The essential requirements of a heuristic procedure enabling to overcome this problem and select “good” routing solutions in every path updating period, are also discussed

    Achieving Crossed Strong Barrier Coverage in Wireless Sensor Network

    Get PDF
    Barrier coverage has been widely used to detect intrusions in wireless sensor networks (WSNs). It can fulfill the monitoring task while extending the lifetime of the network. Though barrier coverage in WSNs has been intensively studied in recent years, previous research failed to consider the problem of intrusion in transversal directions. If an intruder knows the deployment configuration of sensor nodes, then there is a high probability that it may traverse the whole target region from particular directions, without being detected. In this paper, we introduce the concept of crossed barrier coverage that can overcome this defect. We prove that the problem of finding the maximum number of crossed barriers is NP-hard and integer linear programming (ILP) is used to formulate the optimization problem. The branch-and-bound algorithm is adopted to determine the maximum number of crossed barriers. In addition, we also propose a multi-round shortest path algorithm (MSPA) to solve the optimization problem, which works heuristically to guarantee efficiency while maintaining near-optimal solutions. Several conventional algorithms for finding the maximum number of disjoint strong barriers are also modified to solve the crossed barrier problem and for the purpose of comparison. Extensive simulation studies demonstrate the effectiveness of MSPA

    A tutorial on recursive models for analyzing and predicting path choice behavior

    Full text link
    The problem at the heart of this tutorial consists in modeling the path choice behavior of network users. This problem has been extensively studied in transportation science, where it is known as the route choice problem. In this literature, individuals' choice of paths are typically predicted using discrete choice models. This article is a tutorial on a specific category of discrete choice models called recursive, and it makes three main contributions: First, for the purpose of assisting future research on route choice, we provide a comprehensive background on the problem, linking it to different fields including inverse optimization and inverse reinforcement learning. Second, we formally introduce the problem and the recursive modeling idea along with an overview of existing models, their properties and applications. Third, we extensively analyze illustrative examples from different angles so that a novice reader can gain intuition on the problem and the advantages provided by recursive models in comparison to path-based ones

    Fully dynamic all-pairs shortest paths with worst-case update-time revisited

    Full text link
    We revisit the classic problem of dynamically maintaining shortest paths between all pairs of nodes of a directed weighted graph. The allowed updates are insertions and deletions of nodes and their incident edges. We give worst-case guarantees on the time needed to process a single update (in contrast to related results, the update time is not amortized over a sequence of updates). Our main result is a simple randomized algorithm that for any parameter c>1c>1 has a worst-case update time of O(cn2+2/3log4/3n)O(cn^{2+2/3} \log^{4/3}{n}) and answers distance queries correctly with probability 11/nc1-1/n^c, against an adaptive online adversary if the graph contains no negative cycle. The best deterministic algorithm is by Thorup [STOC 2005] with a worst-case update time of O~(n2+3/4)\tilde O(n^{2+3/4}) and assumes non-negative weights. This is the first improvement for this problem for more than a decade. Conceptually, our algorithm shows that randomization along with a more direct approach can provide better bounds.Comment: To be presented at the Symposium on Discrete Algorithms (SODA) 201

    Towards Scalable Network Delay Minimization

    Full text link
    Reduction of end-to-end network delays is an optimization task with applications in multiple domains. Low delays enable improved information flow in social networks, quick spread of ideas in collaboration networks, low travel times for vehicles on road networks and increased rate of packets in the case of communication networks. Delay reduction can be achieved by both improving the propagation capabilities of individual nodes and adding additional edges in the network. One of the main challenges in such design problems is that the effects of local changes are not independent, and as a consequence, there is a combinatorial search-space of possible improvements. Thus, minimizing the cumulative propagation delay requires novel scalable and data-driven approaches. In this paper, we consider the problem of network delay minimization via node upgrades. Although the problem is NP-hard, we show that probabilistic approximation for a restricted version can be obtained. We design scalable and high-quality techniques for the general setting based on sampling and targeted to different models of delay distribution. Our methods scale almost linearly with the graph size and consistently outperform competitors in quality
    corecore