22,391 research outputs found

    Distance and the pattern of intra-European trade

    Get PDF
    Given an undirected graph G = (V, E) and subset of terminals T ⊆ V, the element-connectivity κ ′ G (u, v) of two terminals u, v ∈ T is the maximum number of u-v paths that are pairwise disjoint in both edges and non-terminals V \ T (the paths need not be disjoint in terminals). Element-connectivity is more general than edge-connectivity and less general than vertex-connectivity. Hind and Oellermann [21] gave a graph reduction step that preserves the global element-connectivity of the graph. We show that this step also preserves local connectivity, that is, all the pairwise element-connectivities of the terminals. We give two applications of this reduction step to connectivity and network design problems. • Given a graph G and disjoint terminal sets T1, T2,..., Tm, we seek a maximum number of elementdisjoint Steiner forests where each forest connects each Ti. We prove that if each Ti is k element k connected then there exist Ω( log hlog m) element-disjoint Steiner forests, where h = | i Ti|. If G is planar (or more generally, has fixed genus), we show that there exist Ω(k) Steiner forests. Our proofs are constructive, giving poly-time algorithms to find these forests; these are the first non-trivial algorithms for packing element-disjoint Steiner Forests. • We give a very short and intuitive proof of a spider-decomposition theorem of Chuzhoy and Khanna [12] in the context of the single-sink k-vertex-connectivity problem; this yields a simple and alternative analysis of an O(k log n) approximation. Our results highlight the effectiveness of the element-connectivity reduction step; we believe it will find more applications in the future

    On the Fiedler value of large planar graphs

    Get PDF
    The Fiedler value λ2\lambda_2, also known as algebraic connectivity, is the second smallest Laplacian eigenvalue of a graph. We study the maximum Fiedler value among all planar graphs GG with nn vertices, denoted by λ2max\lambda_{2\max}, and we show the bounds 2+Θ(1n2)λ2max2+O(1n)2+\Theta(\frac{1}{n^2}) \leq \lambda_{2\max} \leq 2+O(\frac{1}{n}). We also provide bounds on the maximum Fiedler value for the following classes of planar graphs: Bipartite planar graphs, bipartite planar graphs with minimum vertex degree~3, and outerplanar graphs. Furthermore, we derive almost tight bounds on λ2max\lambda_{2\max} for two more classes of graphs, those of bounded genus and KhK_h-minor-free graphs.Comment: 21 pages, 4 figures, 1 table. Version accepted in Linear Algebra and Its Application

    Approximation Algorithms for Connected Maximum Cut and Related Problems

    Full text link
    An instance of the Connected Maximum Cut problem consists of an undirected graph G = (V, E) and the goal is to find a subset of vertices S \subseteq V that maximizes the number of edges in the cut \delta(S) such that the induced graph G[S] is connected. We present the first non-trivial \Omega(1/log n) approximation algorithm for the connected maximum cut problem in general graphs using novel techniques. We then extend our algorithm to an edge weighted case and obtain a poly-logarithmic approximation algorithm. Interestingly, in stark contrast to the classical max-cut problem, we show that the connected maximum cut problem remains NP-hard even on unweighted, planar graphs. On the positive side, we obtain a polynomial time approximation scheme for the connected maximum cut problem on planar graphs and more generally on graphs with bounded genus.Comment: 17 pages, Conference version to appear in ESA 201

    Upper bounds for domination related parameters in graphs on surfaces

    Get PDF
    AbstractIn this paper we give tight upper bounds on the total domination number, the weakly connected domination number and the connected domination number of a graph in terms of order and Euler characteristic. We also present upper bounds for the restrained bondage number, the total restrained bondage number and the restricted edge connectivity of graphs in terms of the orientable/nonorientable genus and maximum degree

    The extremal genus embedding of graphs

    Full text link
    Let Wn be a wheel graph with n spokes. How does the genus change if adding a degree-3 vertex v, which is not in V (Wn), to the graph Wn? In this paper, through the joint-tree model we obtain that the genus of Wn+v equals 0 if the three neighbors of v are in the same face boundary of P(Wn); otherwise, {\deg}(Wn + v) = 1, where P(Wn) is the unique planar embedding of Wn. In addition, via the independent set, we provide a lower bound on the maximum genus of graphs, which may be better than both the result of D. Li & Y. Liu and the result of Z. Ouyang etc: in Europ. J. Combinatorics. Furthermore, we obtain a relation between the independence number and the maximum genus of graphs, and provide an algorithm to obtain the lower bound on the number of the distinct maximum genus embedding of the complete graph Km, which, in some sense, improves the result of Y. Caro and S. Stahl respectively

    Intrinsic circle domains

    Get PDF
    corecore