3 research outputs found

    Maximum bounds for robust stability of linear uncertain descriptor systems with structured perturbations

    No full text
    10.1080/00207720310001614088International Journal of Systems Science347463-467IJSY

    Control colaborativo de dinámicas múltiples

    Get PDF
    Este trabajo introduce un método de control de procesos multivariable para ser aplicado a sistemas donde coexisten varias dinámicas acopladas que deben ser controladas basándose en la medición de las entradas y salidas de cada subsistema, así como la estabilidad global del sistema. Se calculan trayectorias individuales para las consignas de modo de que esas trayectorias ayuden a rechazar en buena parte perturbaciones que afectan el comportamiento deseado. Se presenta una técnica de control recursivo no lineal basado en Lyapunov para encontrar una ley de control que ayude a resolver el problema de seguimiento. El desempeño de seguimiento es evaluado por alguna norma. Esta tesis plantea una solución al problema de las perturbaciones por un método de control que enfoca el esfuerzo en rechazar la perturbación en un solo lazo mientras desintoniza otros lazos. Al proponer movimientos de consigna como estrategia es fundamental garantizar que esas consignas modificadas sean las apropiadas. Su cálculo puede ser muy complejo si el grado de incertidumbre en la perturbación es elevado. Para cumplir con estas garantías se encuentra un conjunto admisible de consignas que rechaza de forma óptima la perturbación y al mismo tiempo no viola las restricciones ni desestabiliza el sistema. Esta tesis se fundamenta en las desigualdades lineales matriciales, LMI, y el trabajo permitió dar respuestas que por otros métodos eran muy difíciles de probar. Las LMI permiten hacer complejos planteamientos multivariable, con algunas modificaciones describen espacios no lineales. Como herramienta de optimización su eficacia es muy buena, ya que trata problemas convexos y no convexos. Se propone una modificación al esquema de control descentralizado de sistemas multivariable con un procedimiento poco invasivo, que sin retirar los controladores PID mejore su desempeño. Al ser esos procesos muy difíciles de controlar se propone un cambio en el paradigma que actualmente se aplica en la teoría de control. El control tradicional de dinámica múltiple controla la integridad de todas las variables de un proceso. Esta conducta rígida obliga a hacer un enorme esfuerzo, que es innecesario si se considera que la dinámica del proceso tolera variaciones en otras variables menos importantes. Este es un hecho que se evidencia en la práctica: Es suficiente controlar la variable que se relaciona directamente con la calidad del producto que se factura. Otro cambio de paradigma en esta propuesta consiste en evitar que una dinámica entre en conflicto con el resto del proceso, ya que esa situación origina inestabilidad en un sistema. Para atender situaciones conflictivas es acertado resolverlas por colaboración de los agentes involucrados. Se propone entonces el control colaborativo de procesos de dinámica múltiple en sistemas que inicialmente operan con unidades de control del tipo PID y atienden de forma aislada las dinámicas más representativas de un proceso. El método propuesto se inspira en una observación que se da en control de procesos complejos de múltiples dinámicas acopladas, donde los operadores logran mejorar el desempeño de un proceso haciendo pequeños retoques manuales en las consignas de los controladores. En esta propuesta un exosistema, llamado control colaborativo, mueve las consignas de forma óptima sin intervención humana, procurando un buen desempeño y logrando una solución con valor agregado. Con esta propuesta se mejora el desempeño y no es necesario remplazar los controladores PID que han demostrado que trabajan aceptablemente bienAbstract : This work introduces a multivariable process control method to be applied to systems where several coupled dynamics coexist that must be controlled based on the measurement of the inputs and outputs of each subsystem as well as the overall stability of the system. Individual trajectories are calculated for the setpoints so that those trajectories will largely reject disturbances that affect the desired behavior. We present a nonlinear recursive control technique based on Lyapunov to find a control law to help solve the tracking problem. Follow-up performance is assessed by some standard. This thesis proposes a solution to the problem of disturbances by a control method that focuses the effort in rejecting the disturbance in a single loop while it detunes other loops. When proposing slogan movements as a strategy, it is essential to ensure that these modified slogans are appropriate. Its calculation can be very complex if the degree of uncertainty in the disturbance is high. To comply with these guarantees is an admissible set of slogans that optimally rejects the disturbance and at the same time does not violate the restrictions or destabilize the system. This thesis is based on linear matrix inequalities, LMI, and the work allowed to give answers that by other methods were very difficult to prove. The LMI allow complex multivariate approaches, with some modifications describing nonlinear spaces. As an optimization tool, its effectiveness is very good, since it treats convex and non-convex problems. It is proposed a modification to the decentralized control scheme of multivariate systems with a non-invasive procedure, which without removing the PID controllers improves its performance. Since these processes are very difficult to control, we propose a change in the paradigm that is currently applied in control theory. Traditional multi-dynamics control controls the integrity of all variables in a process. This rigid behavior requires an enormous effort, which is unnecessary if one considers that the dynamics of the process tolerate variations in other less important variables. This is a fact that is evidenced in practice: It is sufficient to control the variable that is directly related to the quality of the product that is invoiced. Another paradigm shift in this proposal is to avoid that a dynamic is in conflict with the rest of the process, since that situation causes instability in a system. In order to deal with conflicting situations, it is wise to resolve them through the collaboration of the agents involved. We then propose the collaborative control of multiple dynamics processes in systems that initially operate with control units of the PID type and attend in isolation the most representative dynamics of a process. The proposed method is inspired by an observation that occurs in control of complex processes of multiple coupled dynamics, where the operators manage to improve the performance of a process by making small manual adjustments in the controller's instructions. In this proposal an exosystem, called collaborative control, moves the slogans optimally without human intervention, striving for a good performance and achieving a solution with added value. With this proposal performance is improved and it is not necessary to replace the PID controllers that have proven to work acceptably wellDoctorad
    corecore