75 research outputs found

    Maximum Matching in Turnstile Streams

    Get PDF
    We consider the unweighted bipartite maximum matching problem in the one-pass turnstile streaming model where the input stream consists of edge insertions and deletions. In the insertion-only model, a one-pass 22-approximation streaming algorithm can be easily obtained with space O(nlogn)O(n \log n), where nn denotes the number of vertices of the input graph. We show that no such result is possible if edge deletions are allowed, even if space O(n3/2δ)O(n^{3/2-\delta}) is granted, for every δ>0\delta > 0. Specifically, for every 0ϵ10 \le \epsilon \le 1, we show that in the one-pass turnstile streaming model, in order to compute a O(nϵ)O(n^{\epsilon})-approximation, space Ω(n3/24ϵ)\Omega(n^{3/2 - 4\epsilon}) is required for constant error randomized algorithms, and, up to logarithmic factors, space O(n22ϵ)O( n^{2-2\epsilon} ) is sufficient. Our lower bound result is proved in the simultaneous message model of communication and may be of independent interest

    On the Power of Advice and Randomization for Online Bipartite Matching

    Get PDF
    While randomized online algorithms have access to a sequence of uniform random bits, deterministic online algorithms with advice have access to a sequence of advice bits, i.e., bits that are set by an all powerful oracle prior to the processing of the request sequence. Advice bits are at least as helpful as random bits, but how helpful are they? In this work, we investigate the power of advice bits and random bits for online maximum bipartite matching (MBM). The well-known Karp-Vazirani-Vazirani algorithm is an optimal randomized (11e)(1-\frac{1}{e})-competitive algorithm for \textsc{MBM} that requires access to Θ(nlogn)\Theta(n \log n) uniform random bits. We show that Ω(log(1ϵ)n)\Omega(\log(\frac{1}{\epsilon}) n) advice bits are necessary and O(1ϵ5n)O(\frac{1}{\epsilon^5} n) sufficient in order to obtain a (1ϵ)(1-\epsilon)-competitive deterministic advice algorithm. Furthermore, for a large natural class of deterministic advice algorithms, we prove that Ω(logloglogn)\Omega(\log \log \log n) advice bits are required in order to improve on the 12\frac{1}{2}-competitiveness of the best deterministic online algorithm, while it is known that O(logn)O(\log n) bits are sufficient. Last, we give a randomized online algorithm that uses cnc n random bits, for integers c1c \ge 1, and a competitive ratio that approaches 11e1-\frac{1}{e} very quickly as cc is increasing. For example if c=10c = 10, then the difference between 11e1-\frac{1}{e} and the achieved competitive ratio is less than 0.00020.0002

    Approximating Semi-Matchings in Streaming and in Two-Party Communication

    Full text link
    We study the communication complexity and streaming complexity of approximating unweighted semi-matchings. A semi-matching in a bipartite graph G = (A, B, E), with n = |A|, is a subset of edges S that matches all A vertices to B vertices with the goal usually being to do this as fairly as possible. While the term 'semi-matching' was coined in 2003 by Harvey et al. [WADS 2003], the problem had already previously been studied in the scheduling literature under different names. We present a deterministic one-pass streaming algorithm that for any 0 <= \epsilon <= 1 uses space O(n^{1+\epsilon}) and computes an O(n^{(1-\epsilon)/2})-approximation to the semi-matching problem. Furthermore, with O(log n) passes it is possible to compute an O(log n)-approximation with space O(n). In the one-way two-party communication setting, we show that for every \epsilon > 0, deterministic communication protocols for computing an O(n^{1/((1+\epsilon)c + 1)})-approximation require a message of size more than cn bits. We present two deterministic protocols communicating n and 2n edges that compute an O(sqrt(n)) and an O(n^{1/3})-approximation respectively. Finally, we improve on results of Harvey et al. [Journal of Algorithms 2006] and prove new links between semi-matchings and matchings. While it was known that an optimal semi-matching contains a maximum matching, we show that there is a hierarchical decomposition of an optimal semi-matching into maximum matchings. A similar result holds for semi-matchings that do not admit length-two degree-minimizing paths.Comment: This is the long version including all proves of the ICALP 2013 pape

    Sublinear Estimation of Weighted Matchings in Dynamic Data Streams

    Full text link
    This paper presents an algorithm for estimating the weight of a maximum weighted matching by augmenting any estimation routine for the size of an unweighted matching. The algorithm is implementable in any streaming model including dynamic graph streams. We also give the first constant estimation for the maximum matching size in a dynamic graph stream for planar graphs (or any graph with bounded arboricity) using O~(n4/5)\tilde{O}(n^{4/5}) space which also extends to weighted matching. Using previous results by Kapralov, Khanna, and Sudan (2014) we obtain a polylog(n)\mathrm{polylog}(n) approximation for general graphs using polylog(n)\mathrm{polylog}(n) space in random order streams, respectively. In addition, we give a space lower bound of Ω(n1ε)\Omega(n^{1-\varepsilon}) for any randomized algorithm estimating the size of a maximum matching up to a 1+O(ε)1+O(\varepsilon) factor for adversarial streams

    Semi-Streaming Set Cover

    Full text link
    This paper studies the set cover problem under the semi-streaming model. The underlying set system is formalized in terms of a hypergraph G=(V,E)G = (V, E) whose edges arrive one-by-one and the goal is to construct an edge cover FEF \subseteq E with the objective of minimizing the cardinality (or cost in the weighted case) of FF. We consider a parameterized relaxation of this problem, where given some 0ϵ<10 \leq \epsilon < 1, the goal is to construct an edge (1ϵ)(1 - \epsilon)-cover, namely, a subset of edges incident to all but an ϵ\epsilon-fraction of the vertices (or their benefit in the weighted case). The key limitation imposed on the algorithm is that its space is limited to (poly)logarithmically many bits per vertex. Our main result is an asymptotically tight trade-off between ϵ\epsilon and the approximation ratio: We design a semi-streaming algorithm that on input graph GG, constructs a succinct data structure D\mathcal{D} such that for every 0ϵ<10 \leq \epsilon < 1, an edge (1ϵ)(1 - \epsilon)-cover that approximates the optimal edge \mbox{(11-)cover} within a factor of f(ϵ,n)f(\epsilon, n) can be extracted from D\mathcal{D} (efficiently and with no additional space requirements), where f(ϵ,n)={O(1/ϵ),if ϵ>1/nO(n),otherwise. f(\epsilon, n) = \left\{ \begin{array}{ll} O (1 / \epsilon), & \text{if } \epsilon > 1 / \sqrt{n} \\ O (\sqrt{n}), & \text{otherwise} \end{array} \right. \, . In particular for the traditional set cover problem we obtain an O(n)O(\sqrt{n})-approximation. This algorithm is proved to be best possible by establishing a family (parameterized by ϵ\epsilon) of matching lower bounds.Comment: Full version of the extended abstract that will appear in Proceedings of ICALP 2014 track

    Almost Optimal Streaming Algorithms for Coverage Problems

    Full text link
    Maximum coverage and minimum set cover problems --collectively called coverage problems-- have been studied extensively in streaming models. However, previous research not only achieve sub-optimal approximation factors and space complexities, but also study a restricted set arrival model which makes an explicit or implicit assumption on oracle access to the sets, ignoring the complexity of reading and storing the whole set at once. In this paper, we address the above shortcomings, and present algorithms with improved approximation factor and improved space complexity, and prove that our results are almost tight. Moreover, unlike most of previous work, our results hold on a more general edge arrival model. More specifically, we present (almost) optimal approximation algorithms for maximum coverage and minimum set cover problems in the streaming model with an (almost) optimal space complexity of O~(n)\tilde{O}(n), i.e., the space is {\em independent of the size of the sets or the size of the ground set of elements}. These results not only improve over the best known algorithms for the set arrival model, but also are the first such algorithms for the more powerful {\em edge arrival} model. In order to achieve the above results, we introduce a new general sketching technique for coverage functions: This sketching scheme can be applied to convert an α\alpha-approximation algorithm for a coverage problem to a (1-\eps)\alpha-approximation algorithm for the same problem in streaming, or RAM models. We show the significance of our sketching technique by ruling out the possibility of solving coverage problems via accessing (as a black box) a (1 \pm \eps)-approximate oracle (e.g., a sketch function) that estimates the coverage function on any subfamily of the sets
    corecore