6 research outputs found

    Multi-Sensor System for Land and Forest Fire Detection Application in Peatland Area

    Get PDF
    Forest fire has a dangerous impact on environments and humans because of haze and carbon emitted from it. A common technology to detect fire hotspots is to use satellite images and then process them to determine the number of hotspots and their location. However, satellite systems cannot penetrate in bad weather or cloudy condition. This research proposes a ground sensor system, which uses several sensors related to the indicators of fire, especially fire in peatland area with unique characteristics. Common parameters of fire, such as temperature, smoke, haze, and carbon dioxide, are applied in this system. Indicators are measured using special sensors. Results of every sensor are analyzed by implementing intelligent computer programming, and an algorithm to determine fire hotspots and locations is applied. The fire hotspot location and intensity determined by integrated multiple sensors are more accurate than those determined by a single sensor. Data collected from every sensor are kept in a database, and a graph is generated for reporting and recording. In case of sensor readings with parameters, potential of fire and hotspots detected can be forwarded to the representative department for corresponding actions

    Maximum Constrained Directivity of Oversteered End-Fire Sensor Arrays

    Get PDF
    For linear arrays with fixed steering and an inter-element spacing smaller than one half of the wavelength, end-fire steering of a data-independent beamformer offers better directivity than broadside steering. The introduction of a lower bound on the white noise gain ensures the necessary robustness against random array errors and sensor mismatches. However, the optimum broadside performance can be obtained using a simple processing architecture, whereas the optimum end-fire performance requires a more complicated system (because complex weight coefficients are needed). In this paper, we reconsider the oversteering technique as a possible way to simplify the processing architecture of equally spaced end-fire arrays. We propose a method for computing the amount of oversteering and the related real-valued weight vector that allows the constrained directivity to be maximized for a given inter-element spacing. Moreover, we verify that the maximized oversteering performance is very close to the optimum end-fire performance. We conclude that optimized oversteering is a viable method for designing end-fire arrays that have better constrained directivity than broadside arrays but with a similar implementation complexity. A numerical simulation is used to perform a statistical analysis, which confirms that the maximized oversteering performance is robust against sensor mismatches
    corecore