262 research outputs found

    Ruin Theory for Dynamic Spectrum Allocation in LTE-U Networks

    Full text link
    LTE in the unlicensed band (LTE-U) is a promising solution to overcome the scarcity of the wireless spectrum. However, to reap the benefits of LTE-U, it is essential to maintain its effective coexistence with WiFi systems. Such a coexistence, hence, constitutes a major challenge for LTE-U deployment. In this paper, the problem of unlicensed spectrum sharing among WiFi and LTE-U system is studied. In particular, a fair time sharing model based on \emph{ruin theory} is proposed to share redundant spectral resources from the unlicensed band with LTE-U without jeopardizing the performance of the WiFi system. Fairness among both WiFi and LTE-U is maintained by applying the concept of the probability of ruin. In particular, the probability of ruin is used to perform efficient duty-cycle allocation in LTE-U, so as to provide fairness to the WiFi system and maintain certain WiFi performance. Simulation results show that the proposed ruin-based algorithm provides better fairness to the WiFi system as compared to equal duty-cycle sharing among WiFi and LTE-U.Comment: Accepted in IEEE Communications Letters (09-Dec 2018

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    FAIR SHARING of CHANNEL RESOURCES in the COEXISTENCE of HETEROGENEOUS WIRELESS NETWORKS

    Get PDF
    Increasing spectrum resources in cellular networks are always needed to carry the exponential data traffic growth in wireless cellular networks. Limited spectrum resources in the licensed band have necessitated Long-Term Evolution (LTE) to explore available unlicensed spectrum where an incumbent WiFi system already exists. With the deployment of Licensed Assisted Access (LAA) that utilizes Listen Before Talk (LBT) for channel access in the unlicensed spectrum along with an incumbent WiFi, the coexistence of LAA and WiFi with acceptable fairness is a major challenge. In this work, we address the issues of licensed assisted access coexisting with incumbent WiFi in an unlicensed spectrum and provide solutions to dynamically tune system parameters of LAA stations to achieve maximum total throughput from the overall system taking into account fair allocation of throughput and airtime across different networks and stations. One major system parameter we study is the contention window size for back-off. Using the method of coupled Markov Chain, we show how an inherent trade-off between throughput and airtime fairness can be managed by adjusting the CW size of LAA. For single-channel, we show how coexistence with WiFi can be managed better with LAA-Cat3 than LAA-Cat4 when total throughput and fairness are to be taken into account. For multi-carrier sensing, we establish better coexistence by optimizing contention window sizes of each LAA station separately using an assignment technique based on a genetic algorithm. We extend our work into dual-carrier aggregation where some stations have the ability to combine two independent channels into a single aggregated channel to achieve higher performance. We show that in such a dual-carrier aggregation scenario, the distribution of stations (partition) over an individual and aggregated channel, and the system parameters (contention window size and load intensity) could be optimized to ensure fair allocation of resources without affecting the secondary channel too much

    Efficient LTE/WiFi coexistence in unlicensed spectrum using virtual network entity

    Get PDF
    Due to the increasing demand for mobile traffic, the unlicensed band operation for LTE is proposed by mobile operators. Although by using this approach higher capacity can be achieved for LTE, performance of other wireless technologies operating in this band such as WiFi can be degraded significantly. In order to enable efficient LTE/WiFi coexistence, we consider a coordinated structure via a virtual network entity. LTE users can transmit in the assigned time-slots, while WiFi users can compete with each other by using -persistent CSMA in their exclusive time-share. In an unsaturated network, at each duty cycle, the TDMA scheduling for LTE users and values for WiFi users are updated to maximize the overall network throughput subject to a constraint on the minimum acceptable throughput for WiFi. The corresponding optimization problem is formulated and an iterative algorithm is developed to find the optimal solution using complementary geometric programming (CGP) and monomial approximations. The simulation results reveal the performance gains of the proposed algorithm in preserving the WiFi throughput requirement

    Efficient LTE/WiFi coexistence in unlicensed spectrum using virtual network entity: Optimization and performance analysis

    Get PDF
    Long term evolution (LTE) operation in the unlicensed spectrum is a promising solution to address the scarcity of licensed spectrum for cellular networks. Although this approach brings higher capacity for LTE networks, the WiFi performance operating in this band can be significantly degraded. To address this issue, we consider a coordinated structure, in which both networks are controlled by a higher-level network entity. In such a model, LTE users can transmit in the assigned time-slots, while WiFi users can compete with each other by using p-persistent CSMA in their exclusive time-share. In an unsaturated network, at each duty cycle, the TDMA scheduling for LTE users and p values for WiFi users should be efficiently updated by the central controller. The corresponding optimization problem is formulated and an iterative algorithm is developed to find the optimal solution using complementary geometric programming (CGP) and monomial approximations. Aiming to address Quality-ofService (QoS) assurance for LTE users, an upper bound for average delay of these users are obtained. This analysis could be a basis for admission control of LTE users in unlicensed bands. The simulation results reveal the performance gains of the proposed algorithm in preserving the WiFi throughput requirement

    Advanced Technologies Enabling Unlicensed Spectrum Utilization in Cellular Networks

    Get PDF
    As the rapid progress and pleasant experience of Internet-based services, there is an increasing demand for high data rate in wireless communications systems. Unlicensed spectrum utilization in Long Term Evolution (LTE) networks is a promising technique to meet the massive traffic demand. There are two effective methods to use unlicensed bands for delivering LTE traffic. One is offloading LTE traffic toWi-Fi. An alternative method is LTE-unlicensed (LTE-U), which aims to directly use LTE protocols and infrastructures over the unlicensed spectrum. It has also been pointed out that addressing the above two methods simultaneously could further improve the system performance. However, how to avoid severe performance degradation of the Wi-Fi network is a challenging issue of utilizing unlicensed spectrum in LTE networks. Specifically, first, the inter-system spectrum sharing, or, more specifically, the coexistence of LTE andWi-Fi in the same unlicensed spectrum is the major challenge of implementing LTE-U. Second, to use the LTE and Wi-Fi integration approach, mobile operators have to manage two disparate networks in licensed and unlicensed spectrum. Third, optimization for joint data offloading to Wi-Fi and LTE-U in multi- cell scenarios poses more challenges because inter-cell interference must be addressed. This thesis focuses on solving problems related to these challenges. First, the effect of bursty traffic in an LTE and Wi-Fi aggregation (LWA)-enabled network has been investigated. To enhance resource efficiency, the Wi-Fi access point (AP) is designed to operate in both the native mode and the LWA mode simultaneously. Specifically, the LWA-modeWi-Fi AP cooperates with the LTE base station (BS) to transmit bearers to the LWA user, which aggregates packets from both LTE and Wi-Fi. The native-mode Wi-Fi AP transmits Wi-Fi packets to those native Wi-Fi users that are not with LWA capability. This thesis proposes a priority-based Wi-Fi transmission scheme with congestion control and studied the throughput of the native Wi-Fi network, as well as the LWA user delay when the native Wi-Fi user is under heavy traffic conditions. The results provide fundamental insights in the throughput and delay behavior of the considered network. Second, the above work has been extended to larger topologies. A stochastic geometry model has been used to model and analyze the performance of an MPTCP Proxy-based LWA network with intra-tier and cross-tier dependence. Under the considered network model and the activation conditions of LWA-mode Wi-Fi, this thesis has obtained three approximations for the density of active LWA-mode Wi-Fi APs through different approaches. Tractable analysis is provided for the downlink (DL) performance evaluation of large-scale LWA networks. The impact of different parameters on the network performance have been analyzed, validating the significant gain of using LWA in terms of boosted data rate and improved spectrum reuse. Third, this thesis also takes a significant step of analyzing joint multi-cell LTE-U and Wi-Fi network, while taking into account different LTE-U and Wi-Fi inter-working schemes. In particular, two technologies enabling data offloading from LTE to Wi-Fi are considered, including LWA and Wi-Fi offloading in the context of the power gain-based user offloading scheme. The LTE cells in this work are subject to load-coupling due to inter-cell interference. New system frameworks for maximizing the demand scaling factor for all users in both Wi-Fi and multi-cell LTE networks have been proposed. The potential of networks is explored in achieving optimal capacity with arbitrary topologies, accounting for both resource limits and inter-cell interference. Theoretical analyses have been proposed for the proposed optimization problems, resulting in algorithms that achieve global optimality. Numerical results show the algorithms’ effectiveness and benefits of joint use of data offloading and the direct use of LTE over the unlicensed band. All the derived results in this thesis have been validated by Monte Carlo simulations in Matlab, and the conclusions observed from the results can provide guidelines for the future unlicensed spectrum utilization in LTE networks

    Measurement and Optimization of LTE Performance

    Get PDF
    4G Long Term Evolution (LTE) mobile system is the fourth generation communication system adopted worldwide to provide high-speed data connections and high-quality voice calls. Given the recent deployment by mobile service providers, unlike GSM and UMTS, LTE can be still considered to be in its early stages and therefore many topics still raise great interest among the international scientific research community: network performance assessment, network optimization, selective scheduling, interference management and coexistence with other communication systems in the unlicensed band, methods to evaluate human exposure to electromagnetic radiation are, as a matter of fact, still open issues. In this work techniques adopted to increase LTE radio performances are investigated. One of the most wide-spread solutions proposed by the standard is to implement MIMO techniques and within a few years, to overcome the scarcity of spectrum, LTE network operators will offload data traffic by accessing the unlicensed 5 GHz frequency. Our Research deals with an evaluation of 3GPP standard in a real test best scenario to evaluate network behavior and performance

    Coordinated Dynamic Spectrum Management of LTE-U and Wi-Fi Networks

    Full text link
    This paper investigates the co-existence of Wi-Fi and LTE in emerging unlicensed frequency bands which are intended to accommodate multiple radio access technologies. Wi-Fi and LTE are the two most prominent access technologies being deployed today, motivating further study of the inter-system interference arising in such shared spectrum scenarios as well as possible techniques for enabling improved co-existence. An analytical model for evaluating the baseline performance of co-existing Wi-Fi and LTE is developed and used to obtain baseline performance measures. The results show that both Wi-Fi and LTE networks cause significant interference to each other and that the degradation is dependent on a number of factors such as power levels and physical topology. The model-based results are partially validated via experimental evaluations using USRP based SDR platforms on the ORBIT testbed. Further, inter-network coordination with logically centralized radio resource management across Wi-Fi and LTE systems is proposed as a possible solution for improved co-existence. Numerical results are presented showing significant gains in both Wi-Fi and LTE performance with the proposed inter-network coordination approach.Comment: Accepted paper at IEEE DySPAN 201
    • …
    corecore