1,962 research outputs found

    GreedyDual-Join: Locality-Aware Buffer Management for Approximate Join Processing Over Data Streams

    Full text link
    We investigate adaptive buffer management techniques for approximate evaluation of sliding window joins over multiple data streams. In many applications, data stream processing systems have limited memory or have to deal with very high speed data streams. In both cases, computing the exact results of joins between these streams may not be feasible, mainly because the buffers used to compute the joins contain much smaller number of tuples than the tuples contained in the sliding windows. Therefore, a stream buffer management policy is needed in that case. We show that the buffer replacement policy is an important determinant of the quality of the produced results. To that end, we propose GreedyDual-Join (GDJ) an adaptive and locality-aware buffering technique for managing these buffers. GDJ exploits the temporal correlations (at both long and short time scales), which we found to be prevalent in many real data streams. We note that our algorithm is readily applicable to multiple data streams and multiple joins and requires almost no additional system resources. We report results of an experimental study using both synthetic and real-world data sets. Our results demonstrate the superiority and flexibility of our approach when contrasted to other recently proposed techniques

    An Expressive Language and Efficient Execution System for Software Agents

    Full text link
    Software agents can be used to automate many of the tedious, time-consuming information processing tasks that humans currently have to complete manually. However, to do so, agent plans must be capable of representing the myriad of actions and control flows required to perform those tasks. In addition, since these tasks can require integrating multiple sources of remote information ? typically, a slow, I/O-bound process ? it is desirable to make execution as efficient as possible. To address both of these needs, we present a flexible software agent plan language and a highly parallel execution system that enable the efficient execution of expressive agent plans. The plan language allows complex tasks to be more easily expressed by providing a variety of operators for flexibly processing the data as well as supporting subplans (for modularity) and recursion (for indeterminate looping). The executor is based on a streaming dataflow model of execution to maximize the amount of operator and data parallelism possible at runtime. We have implemented both the language and executor in a system called THESEUS. Our results from testing THESEUS show that streaming dataflow execution can yield significant speedups over both traditional serial (von Neumann) as well as non-streaming dataflow-style execution that existing software and robot agent execution systems currently support. In addition, we show how plans written in the language we present can represent certain types of subtasks that cannot be accomplished using the languages supported by network query engines. Finally, we demonstrate that the increased expressivity of our plan language does not hamper performance; specifically, we show how data can be integrated from multiple remote sources just as efficiently using our architecture as is possible with a state-of-the-art streaming-dataflow network query engine

    Data Provenance and Management in Radio Astronomy: A Stream Computing Approach

    Get PDF
    New approaches for data provenance and data management (DPDM) are required for mega science projects like the Square Kilometer Array, characterized by extremely large data volume and intense data rates, therefore demanding innovative and highly efficient computational paradigms. In this context, we explore a stream-computing approach with the emphasis on the use of accelerators. In particular, we make use of a new generation of high performance stream-based parallelization middleware known as InfoSphere Streams. Its viability for managing and ensuring interoperability and integrity of signal processing data pipelines is demonstrated in radio astronomy. IBM InfoSphere Streams embraces the stream-computing paradigm. It is a shift from conventional data mining techniques (involving analysis of existing data from databases) towards real-time analytic processing. We discuss using InfoSphere Streams for effective DPDM in radio astronomy and propose a way in which InfoSphere Streams can be utilized for large antennae arrays. We present a case-study: the InfoSphere Streams implementation of an autocorrelating spectrometer, and using this example we discuss the advantages of the stream-computing approach and the utilization of hardware accelerators

    Spontananfragen auf Datenströmen

    Get PDF
    Many modern applications require processing large amounts of data in a real-time fashion. As a result, distributed stream processing engines (SPEs) have gained significant attention as an important new class of big data processing systems. The central design principle of these SPEs is to handle queries that potentially run forever on data streams with a query-at-a-time model, i.e., each query is optimized and executed separately. However, in many real applications, not only long-running queries but also many short-running queries are processed on data streams. In these applications, multiple stream queries are created and deleted concurrently, in an ad-hoc manner. The best practice to handle ad-hoc stream queries is to fork input stream and add additional resources for each query. However, this approach leads to redundant computation and data copy. This thesis lays the foundation for efficient ad-hoc stream query processing. To bridge the gap between stream data processing and ad-hoc query processing, we follow a top-down approach. First, we propose a benchmarking framework to analyze state-of-the-art SPEs. We provide a definition of latency and throughput for stateful operators. Moreover, we carefully separate the system under test and the driver, to correctly represent the open-world model of typical stream processing deployments. This separation enables us to measure the system performance under realistic conditions. Our solution is the first benchmarking framework to define and test the sustainable performance of SPEs. Throughout our analysis, we realize that the state-of-the-art SPEs are unable to execute stream queries in an ad-hoc manner. Second, we propose the first ad-hoc stream query processing engine for distributed data processing environments. We develop our solution based on three main requirements: (1) Integration: Ad-hoc query processing should be a composable layer that can extend stream operators, such as join, aggregation, and window operators; (2) Consistency: Ad-hoc query creation and deletion must be performed consistently and ensure exactly-once semantics and correctness; (3) Performance: In contrast to modern SPEs, ad-hoc SPEs should not only maximize data throughput but also query throughout via incremental computation and resource sharing. Third, we propose an ad-hoc stream join processing framework that integrates dynamic query processing and query re-optimization techniques with ad-hoc stream query processing. Our solution comprises an optimization layer and a stream data processing layer. The optimization layer periodically re-optimizes the query execution plan, performing join reordering and vertical and horizontal scaling at runtime without stopping the execution. The data processing layer enables incremental and consistent query processing, supporting all the actions triggered by the optimizer. The result of the second and the third contributions forms a complete ad-hoc SPE. We utilize the first contribution not only for benchmarking modern SPEs but also for evaluating the ad-hoc SPE.Eine Vielzahl moderner Anwendungen setzten die Echtzeitverarbeitung großer Datenmengen voraus. Aus diesem Grund haben neuerdings verteilte Systeme zur Verarbeitung von Datenströmen (sog. Datenstrom-Verarbeitungssysteme, abgek. "DSV") eine wichtige Bedeutung als neue Kategorie von Massendaten-Verarbeitungssystemen erlangt. Das zentrale Entwurfsprinzip dieser DSVs ist es, Anfragen, die potenziell unendlich lange auf einem Datenstrom laufen, jeweils Eine nach der Anderen zu verarbeiten (Englisch: "query-at-a-time model"). Das bedeutet, dass jede Anfrage eigenständig vom System optimiert und ausgeführt wird. Allerdings stellen vielen reale Anwendungen nicht nur lang laufende Anfragen auf Datenströmen, sondern auch kurz laufende Spontananfragen. Solche Anwendungen können mehrere Anfragen spontan und zeitgleich erstellen und entfernen. Das bewährte Verfahren, um Spontananfragen zu bearbeiten, zweigt den eingehenden Datenstrom ab und belegt zusätzliche Ressourcen für jede neue Anfrage. Allerdings ist dieses Verfahren ineffizient, weil Spontananfragen damit redundante Berechnungen und Daten-Kopieroperationen verursachen. In dieser Arbeit legen wir das Fundament für die effiziente Verarbeitung von Spontananfragen auf Datenströmen. Wir schließen in den folgenden drei Schritten die Lücke zwischen verteilter Datenstromanfrage-Verarbeitung und Spontananfrage-Verarbeitung. Erstens stellen wir ein Benchmark-Framework zur Analyse von modernen DSVs vor. In diesem Framework stellen wir eine neue Definition für die Latenz und den Durchsatz von zustandsbehafteten Operatoren vor. Zudem unterscheiden wir genau zwischen dem zu testenden System und dem Treibersystem, um das offene-Welt Modell, welches den typischen Anwendungsszenarien in der Datenstromverabeitung entspricht, korrekt zu repräsentieren. Diese strikte Unterscheidung ermöglicht es, die Systemleistung unter realen Bedingungen zu messen. Unsere Lösung ist damit das erste Benchmark-Framework, welches die dauerhaft durchhaltbare Systemleistung von DSVs definiert und testet. Durch eine systematische Analyse aktueller DSVs stellen wir fest, dass aktuelle DSVs außerstande sind, Spontananfragen effizient zu verarbeiten. Zweitens stellen wir das erste verteilte DSV zur Spontananfrageverarbeitung vor. Wir entwickeln unser Lösungskonzept basierend auf drei Hauptanforderungen: (1) Integration: Spontananfrageverarbeitung soll ein modularer Baustein sein, mit dem Datenstrom-Operatoren wie z.B. Join, Aggregation, und Zeitfenster-Operatoren erweitert werden können; (2) Konsistenz: die Erstellung und Entfernung von Spontananfragen müssen konsistent ausgeführt werden, die Semantik für einmalige Nachrichtenzustellung erhalten, sowie die Korrektheit des Anfrage-Ergebnisses sicherstellen; (3) Leistung: Im Gegensatz zu modernen DSVs sollen DSVs zur Spontananfrageverarbeitung nicht nur den Datendurchsatz, sondern auch den Anfragedurchsatz maximieren. Dies ermöglichen wir durch inkrementelle Kompilation und der Ressourcenteilung zwischen Anfragen. Drittens stellen wir ein Programmiergerüst zur Verbeitung von Spontananfragen auf Datenströmen vor. Dieses integriert die dynamische Anfrageverarbeitung und die Nachoptimierung von Anfragen mit der Spontananfrageverarbeitung auf Datenströmen. Unser Lösungsansatz besteht aus einer Schicht zur Anfrageoptimierung und einer Schicht zur Anfrageverarbeitung. Die Optimierungsschicht optimiert periodisch den Anfrageverarbeitungsplan nach, wobei sie zur Laufzeit Joins neu anordnet und vertikal sowie horizontal skaliert, ohne die Verarbeitung anzuhalten. Die Verarbeitungsschicht ermöglicht eine inkrementelle und konsistente Anfrageverarbeitung und unterstützt alle zuvor beschriebenen Eingriffe der Optimierungsschicht in die Anfrageverarbeitung. Zusammengefasst ergeben unsere zweiten und dritten Lösungskonzepte eine vollständige DSV zur Spontananfrageverarbeitung. Wir verwenden hierzu unseren ersten Beitrag nicht nur zur Bewertung moderner DSVs, sondern auch zur Evaluation unseres DSVs zur Spontananfrageverarbeitung

    Multiple Continuous Query Processing with Relative Window Predicates Juggler

    Get PDF
    Efficient querying over streaming data is a critical technology which requires the ability to handle numerous and possibly similar queries in real time dynamic environments such as the stock market and medical devices. Existing DBMS technology is not well suited for this domain since it was developed for static historical data. Queries over streams often contain relative window predicates such as in the query: ``Heart rate decreased to fifty-two beats per second within four seconds after the patient\u27s temperature started rising. Relative window predicates are a specific type of join between streams that is based on the tuple\u27s timestamp. In our operator, called Juggler, predicates are classified into three types: attribute, join, and window. Attribute predicates are stream values compared to a constant. Join predicates are stream values compared to another stream\u27s values. Window predicates are join predicates where the streams\u27 timestamp values are compared. Juggler\u27s composite operator incorporates the processing of similar though not identical, query functionalities as one complex computation process. This execution strategy handles multi-way joins for multiple selection and join predicates. It adaptively orders the execution of predicates by their selectivity to efficiently process multiple continuous queries based on stream characteristics. In Juggler, all similar predicates are grouped into lists. These indices are represented by a collection of bits. Every tuple contains the bit structure representation of the predicate lists which encodes tuple predicate evaluation history. Every query also contains a similar bit structure to encode the predicate\u27s relationship to the registered queries. The tuple\u27s and query\u27s bit structures are compared to assess if the tuple has satisfied a query. Juggler is designed and implemented in Java. Experiments were conducted to verify correctness and to assess the performance of Juggler\u27s three features. Its adaptivity of reordering the evaluation of predicate types performed as well as the most selective predicate ordering. Its ability to exploit similar predicates in multiple queries showed reduction in number of comparisons. Its effectiveness when multiple queries are combined in a single Juggler operator indicated potential performance improvements after optimization of Juggler\u27s data structures

    Quality-Driven Disorder Handling for M-way Sliding Window Stream Joins

    Full text link
    Sliding window join is one of the most important operators for stream applications. To produce high quality join results, a stream processing system must deal with the ubiquitous disorder within input streams which is caused by network delay, asynchronous source clocks, etc. Disorder handling involves an inevitable tradeoff between the latency and the quality of produced join results. To meet different requirements of stream applications, it is desirable to provide a user-configurable result-latency vs. result-quality tradeoff. Existing disorder handling approaches either do not provide such configurability, or support only user-specified latency constraints. In this work, we advocate the idea of quality-driven disorder handling, and propose a buffer-based disorder handling approach for sliding window joins, which minimizes sizes of input-sorting buffers, thus the result latency, while respecting user-specified result-quality requirements. The core of our approach is an analytical model which directly captures the relationship between sizes of input buffers and the produced result quality. Our approach is generic. It supports m-way sliding window joins with arbitrary join conditions. Experiments on real-world and synthetic datasets show that, compared to the state of the art, our approach can reduce the result latency incurred by disorder handling by up to 95% while providing the same level of result quality.Comment: 12 pages, 11 figures, IEEE ICDE 201

    Extending Complex Event Processing for Advanced Applications

    Get PDF
    Recently numerous emerging applications, ranging from on-line financial transactions, RFID based supply chain management, traffic monitoring to real-time object monitoring, generate high-volume event streams. To meet the needs of processing event data streams in real-time, Complex Event Processing technology (CEP) has been developed with the focus on detecting occurrences of particular composite patterns of events. By analyzing and constructing several real-world CEP applications, we found that CEP needs to be extended with advanced services beyond detecting pattern queries. We summarize these emerging needs in three orthogonal directions. First, for applications which require access to both streaming and stored data, we need to provide a clear semantics and efficient schedulers in the face of concurrent access and failures. Second, when a CEP system is deployed in a sensitive environment such as health care, we wish to mitigate possible privacy leaks. Third, when input events do not carry the identification of the object being monitored, we need to infer the probabilistic identification of events before feed them to a CEP engine. Therefore this dissertation discusses the construction of a framework for extending CEP to support these critical services. First, existing CEP technology is limited in its capability of reacting to opportunities and risks detected by pattern queries. We propose to tackle this unsolved problem by embedding active rule support within the CEP engine. The main challenge is to handle interactions between queries and reactions to queries in the high-volume stream execution. We hence introduce a novel stream-oriented transactional model along with a family of stream transaction scheduling algorithms that ensure the correctness of concurrent stream execution. And then we demonstrate the proposed technology by applying it to a real-world healthcare system and evaluate the stream transaction scheduling algorithms extensively using real-world workload. Second, we are the first to study the privacy implications of CEP systems. Specifically we consider how to suppress events on a stream to reduce the disclosure of sensitive patterns, while ensuring that nonsensitive patterns continue to be reported by the CEP engine. We formally define the problem of utility-maximizing event suppression for privacy preservation. We then design a suite of real-time solutions that eliminate private pattern matches while maximizing the overall utility. Our first solution optimally solves the problem at the event-type level. The second solution, at event-instance level, further optimizes the event-type level solution by exploiting runtime event distributions using advanced pattern match cardinality estimation techniques. Our experimental evaluation over both real-world and synthetic event streams shows that our algorithms are effective in maximizing utility yet still efficient enough to offer near real time system responsiveness. Third, we observe that in many real-world object monitoring applications where the CEP technology is adopted, not all sensed events carry the identification of the object whose action they report on, so called €œnon-ID-ed€� events. Such non-ID-ed events prevent us from performing object-based analytics, such as tracking, alerting and pattern matching. We propose a probabilistic inference framework to tackle this problem by inferring the missing object identification associated with an event. Specifically, as a foundation we design a time-varying graphic model to capture correspondences between sensed events and objects. Upon this model, we elaborate how to adapt the state-of-the-art Forward-backward inference algorithm to continuously infer probabilistic identifications for non-ID-ed events. More important, we propose a suite of strategies for optimizing the performance of inference. Our experimental results, using large-volume streams of a real-world health care application, demonstrate the accuracy, efficiency, and scalability of the proposed technology
    corecore