
Worcester Polytechnic Institute
Digital WPI

Doctoral Dissertations (All Dissertations, All Years) Electronic Theses and Dissertations

2013-04-30

Extending Complex Event Processing for
Advanced Applications
Di Wang
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-dissertations

This dissertation is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Doctoral Dissertations (All
Dissertations, All Years) by an authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Wang, D. (2013). Extending Complex Event Processing for Advanced Applications. Retrieved from https://digitalcommons.wpi.edu/etd-
dissertations/235

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations/235?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations/235?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

Extending Complex Event Processing for
Advanced Applications

by

Di Wang

A Dissertation
Submitted to the Faculty

of the
WORCESTER POLYTECHNIC INSTITUTE

in Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy

in
Computer Science

by

April 29, 2013

APPROVED:

Prof. Elke A. Rundensteiner
Advisor

Prof. Daniel J. Dougherty
Committee Member

Prof. Mohamed Y. Eltabakh
Committee Member

Dr. Badrish Chandramouli
Microsoft Research Redmond
External Committee Member

Prof. Craig E. Wills
Head of Department

Abstract

Recently numerous emerging applications, ranging from on-line financial transac-

tions, RFID based supply chain management, traffic monitoring to real-time object mon-

itoring, generate high-volume event streams. To meet the needs of processing event data

streams in real-time, Complex Event Processing technology (CEP) has been developed

with the focus on detecting occurrences of particular composite patterns of events. By an-

alyzing and constructing several real-world CEP applications, we found that CEP needs

to be extended with advanced services beyond detecting pattern queries. We summarize

these emerging needs in three orthogonal directions. First, for applications which require

access to both streaming and stored data, we need to provide a clear semantics and effi-

cient schedulers in the face of concurrent access and failures. Second, when a CEP system

is deployed in a sensitive environment such as health care, we wish to mitigate possible

privacy leaks. Third, when input events do not carry the identification of the object being

monitored, we need to infer the probabilistic identification of events before feed them to

a CEP engine. Therefore this dissertation discusses the construction of a framework for

extending CEP to support these critical services.

First, existing CEP technology is limited in its capability of reacting to opportunities

and risks detected by pattern queries. We propose to tackle this unsolved problem by

embedding active rule support within the CEP engine. The main challenge is to handle

interactions between queries and reactions to queries in the high-volume stream execu-

tion. We hence introduce a novel stream-oriented transactional model along with a fam-

ily of stream transaction scheduling algorithms that ensure the correctness of concurrent

stream execution. And then we demonstrate the proposed technology by applying it to a

real-world healthcare system and evaluate the stream transaction scheduling algorithms

extensively using real-world workload.

Second, we are the first to study the privacy implications of CEP systems. Specifi-

cally we consider how to suppress events on a stream to reduce the disclosure of sensitive

patterns, while ensuring that nonsensitive patterns continue to be reported by the CEP

engine. We formally define the problem of utility-maximizing event suppression for pri-

vacy preservation. We then design a suite of real-time solutions that eliminate private

pattern matches while maximizing the overall utility. Our first solution optimally solves

the problem at the event-type level. The second solution, at event-instance level, further

optimizes the event-type level solution by exploiting runtime event distributions using

advanced pattern match cardinality estimation techniques. Our experimental evaluation

over both real-world and synthetic event streams shows that our algorithms are effective in

maximizing utility yet still efficient enough to offer near real time system responsiveness.

Third, we observe that in many real-world object monitoring applications where the

CEP technology is adopted, not all sensed events carry the identification of the object

whose action they report on, so called “non-ID-ed” events. Such non-ID-ed events pre-

vent us from performing object-based analytics, such as tracking, alerting and pattern

matching. We propose a probabilistic inference framework to tackle this problem by

inferring the missing object identification associated with an event. Specifically, as a

foundation we design a time-varying graphic model to capture correspondences between

sensed events and objects. Upon this model, we elaborate how to adapt the state-of-the-art

Forward-backward inference algorithm to continuously infer probabilistic identifications

for non-ID-ed events. More important, we propose a suite of strategies for optimizing

the performance of inference. Our experimental results, using large-volume streams of a

real-world health care application, demonstrate the accuracy, efficiency, and scalability of

the proposed technology.

ii

Acknowledgment

I express my sincere thanks to my advisor Prof. Elke Rundensteiner for all the guid-

ance, support and encouragement she has given me over the years. I feel extremely lucky

to have a wonderful advisor who not only teaches me every piece of knowledge but also

the approaches to acquire knowledge by myself. Working with her significantly con-

tributed to my passion for database systems research. Moreover, she always acts like a

close friend to me, willing to listen to me and providing help when I most need it. She

has been a great role model to me.

My thanks goes to the members of my Ph.D committee, Prof. Dan Dougherty, Prof.

Mohamed Eltabakh and Dr. Badrish Chandramouli for the many valuable discussions and

suggestions that helped me understand my research areas better.

I would like to express my gratitude to Dr. Richard Ellison III from Univ. of Mas-

sachusetts Medical School for providing the invaluable resources and continuous support

in the collaborative HyReminder project.

I would like to thank Dr. Yeye He and Prof. Jeff Naughton from Univ. Wisconsin

Madison. In our collaboration on the data privacy related topics, they exposed me to

many interesting aspects of database research and inspired me to do my very best.

Also, I sincerely appreciate the education and encouragement from Prof. Murali Mani

in my Master’s study. I also would like to thank Ming Li, Mo Liu, Han Wang, Lei Cao

and Song Wang, with whom I have interacted during the research on the event stream

processing. My thanks also goes to Abhishek Mukherji, Mingzhu Wei, Di Yang, Rimma

Nehme, Xika Lin and all other previous and current DSRG members for their useful

discussions and feedback.

Finally, I would like to thank my husband Yeye for his never-ending love and support.

He made me the person that I am today. I dedicate this thesis to him.

iii

Contents

1 Introduction 1

1.1 Complex Event Processing . 2

1.2 Motivating Application . 3

1.3 State-of-the-Art . 6

1.4 Research Challenges . 9

1.5 Contributions of the Dissertation . 10

1.6 Road Map . 14

2 Preliminary 15

2.1 Complex Event Model . 16

2.2 Complex Pattern Query Language . 17

3 Active Complex Event Processing and Stream Transaction 20

3.1 Introduction of Active CEP . 21

3.2 Stream Concurrency Problem: Examples 25

3.3 The Active Complex Event Model . 27

3.3.1 Active Rule Specification . 30

3.3.2 Alternate Models . 32

3.4 Stream Transactions . 34

3.4.1 Notion of Correctness . 34

i

3.4.2 Stream Transaction Model . 35

3.4.3 Stream-ACID properties . 36

3.5 Stream Transaction Scheduling . 37

3.5.1 Single-Event-Initiated Scheduler 38

3.5.2 Strict 2PL Scheduler . 39

3.5.3 Low-Water-Mark Scheduler . 40

3.6 Experimental Evaluation for ACEP . 45

3.6.1 Experimental Settings . 45

3.6.2 Experimental Results . 47

3.7 ACEP Infrastructure . 51

3.7.1 Architectural Considerations . 51

3.7.2 The ACEP Execution Plan . 53

3.7.3 Optimization Techniques . 55

3.8 Recovery of Transactional Streams . 57

3.8.1 Basic Stream Data Backup . 58

3.8.2 Recovery for Stream-Transaction 59

3.9 Related Work . 61

4 Privacy-Preserving Complex Event Processing via Event Suppression 63

4.1 Introduction of Privacy-Preserving CEP 64

4.2 The Complication: Private Patterns . 68

4.2.1 Suppressing Private Query Patterns 69

4.3 Problem Statement and Variants . 70

4.3.1 Hard-constraint vs. Soft-constraint 73

4.3.2 Type-level vs. Instance-level . 74

4.3.3 Offline vs. Online . 74

ii

4.4 Hardness Results . 75

4.5 Online Suppression Algorithms . 78

4.5.1 Optimal Type-Level Algorithm 79

4.5.2 Hybrid Instance-Level Solution 83

4.6 Pattern Match Cardinality Estimation 88

4.6.1 Estimation by Arrival Rate . 90

4.6.2 Estimation by Periodicity . 91

4.7 Experimental Evaluation . 95

4.7.1 Experimental Setup . 95

4.7.2 Algorithms Compared . 96

4.7.3 Experiments on Hospital Workload 97

4.7.4 Experiments on Synthetic Workload 101

4.8 Related Work . 102

4.9 Conclusion . 104

5 Probabilistic Inference of Uncertain Identities over Event Streams 105

5.1 Introduction of FISS . 106

5.2 Problem Statement . 109

5.3 Proposed Graphical Model . 112

5.3.1 Components of the Model . 113

5.3.2 Dependencies for Object Association 115

5.4 Inferring IDs Over Streams: Initial Effort 117

5.4.1 Inference using FB Algorithm 118

5.4.2 Discussion of Deficiencies of FB Algorithm 122

5.5 Inference Speedup: Optimization Strategies 123

5.5.1 Pruning Unaffected Variables 123

iii

5.5.2 Early Termination Using Finish-Flags 124

5.5.3 Selective Smoothing via Pattern Matching 127

5.6 Experimental Evaluation . 134

5.6.1 Experimental Setup . 134

5.6.2 Alternative Approaches Compared 136

5.6.3 Experiments on Inference Accuracy 137

5.6.4 Experiments on Inference Efficiency 138

5.7 Related Work . 142

5.8 Conclusion . 143

6 Conclusions and Future Work 145

6.1 Summary . 145

6.1.1 Interrelationship of Proposed Techniques 146

6.2 Future Research Directions . 149

6.2.1 On-line Sensor Anomaly Detection 149

6.2.2 Revisiting Alternative Stream Transaction Models 151

iv

List of Figures

3.1 Representative hand hygiene logic. If the HCW is in the start-status node

and his behavior matches the pattern-query annotating an outgoing edge,

then change his status to the end-status node. 22

3.2 Stream concurrency examples. Input events are consumed in their appli-

cation time; Read and Write are executed by the system with system time.

Dashed line represents that the input event triggers a corresponding op-

eration. E.g., ReadQ1(Pk) denotes the Read performed by query Q1 on

shared table Pk . 27

3.3 Lock compatibility (X - incompatibility). 39

3.4 S-transactions and LWM Example. 43

3.5 readN vs. throughput (lockG=tuple). 47

3.6 readN vs. throughput (lockG=table). 47

3.7 writeN vs. throughput (lockG=tuple). 48

3.8 writeN vs. throughput (lockG=table). 48

3.9 Baseline latency. 48

3.10 Overhead of schedulers. 48

3.11 Input rate vs. latency. 48

3.12 Input rate vs. memory. 48

3.13 Active CEP System Architecture . 53

v

3.14 Logical execution plan for Q1 and R1 54

3.15 Backing-up data in a stream system . 59

4.1 An adversarial attack using public pattern matches 65

4.2 Problem space with three orthogonal dimensions 71

4.3 Type-level LP-based algorithm . 83

4.4 Motivation: suppressing c14 can be sub-optimal 85

4.5 Running example of hybrid algorithm 88

4.6 Estimating matches of SEQ(A,B) using periodic pattern 92

4.7 Estimating via periodic pattern for time 2T̂ 93

4.8 Performance on hospital workload . 98

4.9 Performance on synthetic workload . 100

5.1 Graphical model for FISS . 116

5.2 Forward-Backward inference example 120

5.3 Example of optimized smoothing when exit(127,R1,O1) just arrives. Up-

per: partitions of probabilistic events. Bottom: random variables with

finishing-flags. Dashed lines: hyper-links from events to random vari-

ables. 127

5.4 Pattern query Q1 specifying affected event 130

5.5 Comparison on Inference Accuracy . 138

5.6 Processing Time on Stream of 2000 Events 139

5.7 Smoothing window size vs. throughput 140

5.8 Output strategy vs. num. of output events 141

6.1 Interrelationship of Proposed Techniques 147

vi

List of Tables

3.1 Symbols for performance metric . 46

3.2 Parameters for queries and rules. 49

3.3 Architectural considerations . 52

4.1 Pattern query characteristics . 96

5.1 Summary of symbols . 113

vii

1

Chapter 1

Introduction

1.1. COMPLEX EVENT PROCESSING 2

1.1 Complex Event Processing

An increasing number of real-world applications require processing of streaming data

from different sources with an unpredictable rate to obtain timely responses to complex

queries. Examples of such applications come from the most disparate fields: from wire-

less sensor networks to on-line financial service, from traffic management to click-stream

inspection.

These requirements led to the development of Data Stream Management Systems

(DSMSs) [15–17, 19], which were designed as an evolution of traditional Database Man-

agement Systems (DBMSs). While traditional DBMSs are designed to work on persistent

data, where updates are relatively infrequent, DSMSs are specialized in dealing with tran-

sient data that is continuously updated. Accordingly, while DBMSs run queries just once

to return a complete answer, DSMSs execute continuous queries, a.k.a., long-running

queries, which run continuously and provide updated answers as new data arrives.

Recently numerous emerging applications, ranging from on-line financial transac-

tions, RFID based supply chain management, traffic monitoring to sensor networks, gen-

erate real-time event streaming data. To meet the special needs of processing event data

streams, Complex Event Processing technology (CEP) was developed with the focus on

detecting occurrences of particular composite patterns of events, whose occurrence has

to be notified to the interested parties in real-time. CEP systems exhibit sophisticated

capabilities for pattern matching in huge volume event streams [6, 13, 21, 27, 70, 98]. In-

deed, CEP systems put great emphasis on the issue that represents the main limitation of

DSMSs: the ability of detecting complex patterns of incoming items, involving sequenc-

ing and ordering relationships.

By analyzing and constructing several real-world CEP applications, we found that

CEP needs to be extended with advanced services beyond detecting pattern queries. We

1.2. MOTIVATING APPLICATION 3

summarize these emerging needs in three orthogonal directions. First, for applications

which require access to both streaming and stored data, we need to provide a clear se-

mantics and efficient schedulers in the face of concurrent access and failures. Second,

when a CEP system is deployed in a sensitive environment such as health care, we wish

to mitigate possible privacy leaks. Third, when input events do not carry the identification

of the object being monitored, we need to infer the probabilistic identification of events

before feed them to a CEP engine. Next we illustrate these needs using a health care

application as a representative example.

1.2 Motivating Application

According to US Centers for Disease Control and Prevention, healthcare- associated in-

fections hit 1.7 million people a year in the United States, causing an estimated 99,000

deaths [7]. HyReminder [93] is a real-time hospital infection control system, developed

collaboratively between WPI and Univ. of Massachusetts Medical School to continuously

track healthcare workers (HCWs) for hygiene compliance (for example cleansing hands,

wearing masks and sanitizing as required), and to remind the HCWs at the appropriate

moments to perform hygiene precautions - thus preventing the spread of infections in the

hospital.

At Univ. of Massachusetts Memorial Hospital, where our HyReminder system is de-

ployed, every HCW wears an electronic badge. The RF readers and Infrared sensors

installed over doors, near patient beds and on sanitizers observe each HCW’s behaviors.

CEP technology is employed to monitor and detect HCW’s hygiene performance. For

example, according to US hospitals hand hygiene regulations [25], a HCW must sanitize

hands after he contacts a patient. Hence, if the CEP engine detects a sequence of HCW’s

behaviors that the HCW left a patient room (modeled as “exit” event), and did not sani-

1.2. MOTIVATING APPLICATION 4

tize hands (modeled as “!sanitize” event, where ! represents negation), and then entered

another patient room (modeled as “enter” event), then the CEP engine will immediately

report such event pattern as a hand hygiene violation.

In order to remind a HCW to perform hygiene precautions upon the detection of a

hygiene risk or violation, every HCW’s badge has embedded a colorful light to indicate

his current hygiene status: “safe” (green), “warning” (yellow) or “violation” (red). For

example, if the CEP engine discovers a violation pattern described above, namely the

behavior sequence < exit, !sanitize, enter >, then we will set the HCW’s badge to

yellow, as a warning for him to sanitize hands. If the CEP engine later detects that the

HCW has been warned but still has not sanitized, at the following time he contacted

another patient, we can determine that this behavior pattern is a very dangerous sign of

infection spread. We will immediately set the HCW’s badge into red, as a serious urge

for him to perform hygiene precautions. It is critical for us to support such real-time

reactions, i.e., updating a HCW’s hygiene status, for the pattern queries. Furthermore,

the status of each HCW is also used as a condition by pattern queries, e.g., a pattern

query may only monitor HCWs in “safe” status. Clearly the reactions for queries that

update HCWs’ status will affect query results in turn. It is absolutely vital to control such

concurrent updates and accesses so as to assure the correct execution logic. Otherwise we

risk for a potentially highly contagious disease to be transmitted to vulnerable patients -

thus increasing patient suffering and even causing deaths.

Furthermore, we consider the issue that failures may arise, be it of the static data

source from which the CEP system may draw data from, one of the CEP engines in a dis-

tributed context, or possibly the machine the stream engine resides, and so on. Therefore

it is absolutely vital to build a appropriate recovery strategy for CEP that guarantees an

efficient recovery yet with a minimum overhead.

Besides correctly detecting HCW’s real-time hygiene status, privacy protection of

1.2. MOTIVATING APPLICATION 5

personal health data is another crucial requirement for HyReminder. While it is clear that

HyReminder can reveal useful event patterns for hygiene monitoring, it may also disclose

event patterns that patients would prefer to keep hidden. For example, an observation that

a doctor leaves a patient’s room and then immediately enters a psychiatrist’s office might

serve as an indication that this patient is experiencing psychiatric problems. The issue is

that when System-H monitors doctors’ behaviors (the intended use of this application),

the events being reported may disclose private information about individual patients as

a side-effect. We observe that the simplistic approach of not directly reporting private

patterns does not prevent their disclosure — the occurrence of several hygiene compliance

patterns that HyReminder does report may be used by an adversary to infer the existence

of private pattern matches. Therefore, to allow a CEP system to be safely used in a

sensitive environment like a hospital, we must take its privacy preservation issues into

account.

Now let us consider the input sensor data of HyReminder. These events may come

from heterogeneous monitoring devices. While some devices are capable to provide

events with object identification, e.g., RF sensors, other devices do not capture object

identification, e.g., Passive Infrared sensors. In particular, in the hospital RF taggers are

attached to medical equipments to track their distributions, while Infrared sensors are

installed in nurse stations and doctor offices to check the sterilization procedure of the

equipment. Therefore the input stream is composed of both ID-ed and non-ID-ed events.

As another example in the hospital environment, it is a regulation to restrict the number

of staff in an Operation Room [25] in order to prevent airborne infections to the patient in

operation. Infrared sensors are thus installed in Operation Rooms to check on the number

of staff over time, and to observe the door openings to get an insight into airflow transmis-

sion. Simultaneously, RF sensors are equipped to also monitor the hygiene performance

of healthcare workers. Events observed in such an environment are mixed with ID-ed and

1.3. STATE-OF-THE-ART 6

non-ID-ed events also. Given such a mixed input stream, those non-ID-ed events prevent

us from performing object-based analytics, such as object tracing, alerting and pattern

matching, which usually is the key service provided by a CEP system. Therefore, we

need address the fundamental data transformation problem for event streams mixed with

ID-ed and non-ID-ed events, namely to translate raw streams into queriable, probabilistic

event streams with object identification.

1.3 State-of-the-Art

We briefly discuss the state-of-the-art and its respective shortcomings in meeting the re-

quirements identified in Section 1.2, while detailed related work is presented in Sections

3.9, 4.8, and 5.7.

Transactional Stream Processing. Current CEP engines [21,70,98] and DSMS sys-

tems [6, 15, 27, 30] support “read-only” query processing. Pattern queries only contain

in-place conditions, i.e., the query qualification is either based on the attributes of events

matched in the input stream [21, 27, 70, 98] or on static information pre-loaded yet not

updated during query execution [6, 13, 41]. Moreover, reactions for event detection are

limited to “side-effect-free” actions like sending a message or logging events that do not

affect the event detection in turn [95]. Supporting concurrent update actions within the

continuous execution of pattern queries over streams, especially actions that directly af-

fect the pattern query results themselves, is an open problem.

This raises the critical problem of handling the real-time mutual effects between queries

and reactions for queries in high-volume stream execution. Most data stream systems

[6, 15, 27, 30] and CEP engines [21, 70, 98], which commonly use the push-based exe-

cution paradigm, have not addressed this challenge. In the push-based stream execution

paradigm, new events are evaluated by continuous queries immediately upon event arrival

1.3. STATE-OF-THE-ART 7

without any safeguard mechanism to synchronize the concurrent accesses and updates

during stream execution. Since continuous queries may vary in their complexities and

event consumption, they may exhibit different processing delays. As a result, events with

different timestamps tend to co-exist and be simultaneously executed in the system. Us-

ing this push-based execution for pattern queries and reactions for queries (represented as

active rules) may raise unexpected anomalies. We thus need a stream transaction model

embraces both relational and streaming data processing. In other words, we wish to sup-

port both push-based and pull-based query execution.

Moreover, to date no systematic failure recovery service has been designed for trans-

actional stream processing. In classic relational DBMSs, ARIES [72] is the gold standard

for transaction recovery. While the recovery strategies sketched in STREAM [15] and

Aurora [33] stream systems do not incorporate the transaction concept. In other words,

a recovery strategy that offers efficient services for both relational and streaming data is

lacking.

Privacy-Aware Event Stream Processing. To our knowledge, the issues of pri-

vacy preservation in CEP systems has not yet been addressed, though the problem of

privacy-preserving data publishing has been extensively studied in static databases. Most

prominently, there is a huge branch of work focusing on structural privacy, including

k-anonymity [86] and many of its successors like l-diversity [68], t-closeness [62], m-

invariance [99], and e-equivalence [51], that propose to recode the original database in

such that the modified database satisfies various structural properties that provides an

intuitive level privacy. Structural privacy – while suitable for relational databases that

correspond to a finite set of tuples – does not apply straightforwardly to the CEP model

where the data is a constantly arriving, possibly infinite stream of events. Our problem

also bears some resemblance with online query auditing [57,73], where the problem is to

determine whether to answer or deny answering queries based on the answers produced

1.3. STATE-OF-THE-ART 8

for previous queries, with the goal of disallowing the adversary from inferring private in-

formation by composing the answers to queries that are answered. However, those query

auditing techniques essentially make a one-time decision for the transient query. While

in CEP, we need to make continuous decisions for long-running queries. In CEP, it is

very likely that matches of a particular pattern query could not be reported at this time

but could be safely reported at other times. Hence the query auditing techniques are not

directly applicable to our problem.

Probabilistic Inference over Event Stream. Recent research on RFID data cleaning

and inference [28,32,54,56,89] assumes that events detected by RF readers are identified

by an exact object identification. Instead they focus on issues like cleaning redundant

readings and inferring objects’ precise locations from several overlapping sensors. In

other words, these works tackled fundamentally different problems from our problem of

uncertain object identification inference.

On the other hand, the probabilistic data association (PDA) problem is closer to our

target problem, as PDA aims to determine the correct correspondence between measure-

ments and objects [20]. The most widely-used approaches to tackle PDA are MHT [81]

and JPDAF [88]. These approaches establish probabilistic models based on the fact that

in a typical PDA application, such as identifying targets in radar observations or tracking

people in a video, the events never carry any object identification. Hence, if we were to

apply the PDA techniques to our event stream mixed with ID-ed and non-ID-ed events,

they would fail to take advantage of ID-ed events for inference. This then would result

in limited precision as confirmed by our experimental analysis. Besides, existing work of

PDA largely focused on modeling [20,81,88], while the efficiency of processing has been

overlooked - which is now a key objective of this dissertation.

1.4. RESEARCH CHALLENGES 9

1.4 Research Challenges

Our goal is thus to fill the voids as derived in the state-of-the-art (Sec. 1.3), so as to meet

the emerging requirements derived from our representative application. In particular, we

will tackle the critical challenges listed below.

• To deal with the concurrent interaction between pattern queries and the actions to

queries, a common way is to enforce concurrency control. However, existing con-

currency control schedulers [23,48] are based on the notion of a “database transac-

tion” - the execution of a finite sequence of one-time data manipulation operations

on conventional stored data sets [23]. While in our stream environments pattern

queries are continuously executed on potentially infinite data streams. This implies

that we cannot “finish” the current query as a finite-scoped operation before pro-

cessing another query. In short, we face a fundamental challenge that the concept

of a transaction has not been established for stream processing. Furthermore, trans-

actional execution usually has very strict scheduling constraints, while our CEP

applications require rear-real-time responsiveness. It is hard to guarantee the cor-

rectness of concurrent streaming operation scheduling as well as to achieve high

responsiveness over huge volume event streams.

• The intuitive goal of privacy-preserving CEP is to suppress events to eliminate the

occurrence of private patterns, at the same time to maximize the output of useful

non-sensitive patterns. A natural way to prevent a private pattern match is to sup-

press events that participate in the match. The tricky part is that private patterns

and public patterns are correlated. Namely, dropping an event could avoid dis-

closing a private pattern match while consequently eliminate some useful pattern

matches. We thus need to solve an optimization problem of utility-maximizing con-

tinuously over event streams. Given the unpredictable feature of event stream and

1.5. CONTRIBUTIONS OF THE DISSERTATION 10

the huge number of decisions, i.e., whether to drop or keep an event is a trade-off

between reporting useful public query matches and disclosing undesirable private

query matches, this optimization problem is intricate to find an optimal solution.

Further, we have to solve this problem in an on-line fashion to achieve real-time

system responsiveness.

• We first need to capture the underlying event stream generation process from the

physical world, including the key component−the temporal correlations among

events. The goal is to devise a time-varying graphic model, based on which we

then infer the object identification of non-ID-ed events. Unfortunately, most prob-

abilistic inference algorithms are off-line and time-consuming. For example, the

Forward-backward algorithm [74], a classical inference approach is suitable for

our inference logic. However, our experimental evaluation demonstrates that this

approach, is not efficient enough to provide near-real-time system responsiveness

nor scalable for a high volume event stream. We have to devise the strategies for

optimizing the performance of Forward-backward algorithm, while still offering

high-precision inference results.

1.5 Contributions of the Dissertation

This dissertation focuses on extending and applying the state-of-the-art complex event

processing model and infrastructure to meet the needs derived from our motivating ap-

plication by especially addressing the challenges presented in the Challenge section (Sec.

1.4). The main contributions of this dissertation include the following.

Stream Transaction Model and Active Complex Event Processing [91–93]. To

support real-time actions of pattern queries, we propose to embed active rule support

within the complex event processing paradigm. The key challenge is handling interac-

1.5. CONTRIBUTIONS OF THE DISSERTATION 11

tions among continuous queries and active rules. We identify this problem by introducing

the notion of a transaction in the stream context. Such novel stream transaction model

empowers us to leverage classical concurrency control approaches originally designed for

static databases to now solve the novel stream transaction scheduling problem. I further

develop stream transaction scheduling algorithms to solve the problem. The Strict-Two-

Phase-Locking (S2PL) scheduler successfully applies a pessimistic concurrency control

mechanism to the ACEP context. However, S2PL incurs a large synchronization delay

due to its rigorous order preserving. Hence we will provide a unique scheduler called

Low-Water-Mark (LWM) which is customized to our stream context to maximize con-

current execution without compromising correctness. We have implemented the proposed

techniques within HP CHAOS engine [49] and conducted extensive experiments to eval-

uate their effectiveness and efficiency.

Furthermore, we study the complications of failure recovery in a transaction stream

system. We then propose a new recovery strategy that dynamically combines stream

data backup and stream transaction logging. Our strategy enables a tradeoff between the

recovery time and the volume of checkpoints required to provide safety.

Privacy-Preserving Complex Event Processing Over Event Streams [51, 90]. First

we formally define the problem of utility-maximizing event suppression with privacy

preferences. Thereafter, we analyze possible variants of the problem. Our problem for-

mulation enables users to specify the relative importance of preserving certain private

leaks versus producing useful public pattern matches. We then design a suite of real-time

solutions that eliminate private pattern matches while maximizing the overall utility. We

first propose an approach based on linear programming that optimally solves the problem

at the event-type level (which suppresses all event instances of the same type). For the

computationally intractable instance-level problem (which suppresses individual event in-

stances), we observe that our solution at the event-type level provides a useful basis for

1.5. CONTRIBUTIONS OF THE DISSERTATION 12

further optimization. Specifically, we introduce the Hybrid solution to tackle the instance-

level problem by combining the solution at the event-type level with optimization heuris-

tics based on run-time pattern match cardinality estimation. We further develop two tech-

niques to address the subproblem of pattern match cardinality estimation, one based on

event arrival rates, and the other based on periodicity using the state-of-the-art periodicity

mining algorithms. Finally we conducted extensive experiments on both real-world and

synthetic event streams. We show that overall, our Hybrid solution preserves significantly

more utility than alternative approaches. Also our proposed solutions are efficient enough

to offer near real time system responsiveness.

Probabilistic Inference of Object Identifications for Event Stream Analytics [94].

We propose a probabilistic inference framework called FISS that efficiently transforms

raw streams of ID-ed and non-ID-ed events into queriable streams of events with proba-

bilistic object identifications. Specifically, we first devise a time-varying graphic model

to capture the underlying event stream generation process from the physical world. Based

on our proposed model, we extend a classical inference approach, the Forward-backward

algorithm [74], to infer the object identification of non-ID-ed events. However, our ex-

perimental evaluation demonstrates that this approach, though suitable for our inference

logic, is not efficient enough to provide near-real-time system responsiveness nor scalable

for a high volume event stream. We then devise a suite of strategies for optimizing the

performance of the Forward-backward inference. Our key insight is that the Forward-

backward algorithm conducts a large number of unnecessary computations during the

backward smoothing. We aim to avoid such waste by only computing the “affected”

events, i.e., events whose distributions should be revised in the backward smoothing. Our

first strategy is to prune random variables that can be shown to be unaffected by exploit-

ing the features of ID-ed events. The second optimization, called finish-flags mechanism,

enables early termination of the backward computation yet without sacrificing inference

1.5. CONTRIBUTIONS OF THE DISSERTATION 13

precision. Lastly, we propose to represent temporal conditional dependencies using CEP

pattern queries to capture temporal correlations of events in a large volume stream. And

then chasing down “affected” events can be transformed into a pattern matching. Mean-

while, we devise an advanced data structure customized for streaming uncertain events

to speed up the optimized backward probability computation. These strategies together

lead to a solution that keeps up with high-volume streams while offering high-precision

inference results. Finally, the experimental results demonstrate that our proposed model

achieves better inference precision compared to the MHT model [1, 81]. Moreover, our

optimization techniques for the Forward-backward algorithm make it work 15 times faster

than the basic implementation [2].

In summary, this dissertation focuses on the three tasks listed above. It is worth noting

that the techniques developed in this dissertation are general in the following ways. First,

though the techniques deal with issues in the CEP context, the requirements listed above

are also common in the general data stream management systems. Many of our pro-

posed solutions, including the stream transaction model, stream transaction scheduling

algorithms in Chapter 3, the stream data cardinality estimation algorithms in Chapter 4

and the probabilistic inference approaches over streams in Chapter 5 are applicable in the

DSMS context as well. Second, this work sheds a light on extending CEP with crucial

components. For each sub-problem studied in this work, we have explored alternative

schemes to enhance the existing CEP model and engine. Our solutions proposed for each

sub-problem range from the basic one that needs minimal change of an existing CEP en-

gine, to the other extreme that embeds the functionality inside the CEP kernel. Many

experiments further show the trade-off between the infrastructure and performance.

1.6. ROAD MAP 14

1.6 Road Map

The rest of this proposal is organized as follows. Chapter 2 first provides the background

and preliminary materials needed for this dissertation proposal. Chapter 3 presents the

models and techniques for active complex event processing. Chapter 4 solves the privacy-

preserving complex event processing problem. Chapter 5 studies the probabilistic in-

ference of non-ID-ed events. Chapter 6 discusses the related work. Finally, Chapter 7

contains the future work.

15

Chapter 2

Preliminary

2.1. COMPLEX EVENT MODEL 16

2.1 Complex Event Model

An event instance is an occurrence of interest in a system which can be either primitive

or composite as further introduced below. Each event instance ei has two time-stamps,

application time, denoted as ei.ts, and system time, denoted as ei.sts [84]. The application

time refers to the discrete moment of the occurrence of the event instance assigned by the

event source. While the system time of an event instance is assigned by the CEP engine

using the system wall-clock time when the event arrives at the system. ei.st and ei.et

denote the start and the end application timestamp of an event instance ei, respectively,

with ei.st ≤ ei.et.

A primitive event instance denoted by a lower-case letter (e.g.,‘ei’) is the smallest,

atomic occurrence of interest in a system. For a primitive event instance ei, ei.st = ei.et.

For simplicity, we associate ei a single application timestamp, denoted as ei.ts, where

ei.ts = ei.st = ei.et. In this proposal, we use the superscript attached to a primitive

instance to denote its timestamp, e.g., e12.

A composite event instance, denoted as cei, is composed of constituent primitive event

instances cei = < e1, e2, ..., en >. A composite event instance e occurs over an interval.

In this dissertation, following the state-of-the-art literature [27,70,98], a composite event

output by a pattern query is assigned a single application time when the last event instance

that composes the composite event occurs. Specifically, cei.ts = max{ej .ts | ∀ ej ∈ cei

}. In other literature [21, 61], it is also common to assign the start and end timestamps

of cei, namely cei.st = min{ej .st | ∀ ej ∈ cei } and cei.et = max{ej .et | ∀ ej ∈ cei },

respectively.

An event type is denoted by a capital letter, say Ei. An event type Ei describes a set of

attributes that the event instances of this type share. An event type can be either a primitive

or a composite event type. Primitive event types are pre-defined in the application domain

2.2. COMPLEX PATTERN QUERY LANGUAGE 17

of interest. Composite event types are aggregated event types created by combining other

primitive and/or composite event types to form an application specific type. ei ∈ Ej

denotes that ei is an instance of the event type Ej . Suppose one of the attributes of type

Ej is attrj and ei ∈ Ej , we use ei.attrj to denote ei’s value for that attribute attrj .

Finally, an event stream is an unbounded sequence of events.

2.2 Complex Pattern Query Language

A pattern query specifies how individual events are filtered and multiple events are corre-

lated via time-based and value-based constraints. The syntax of defining a pattern query

over event streams we adopt here is commonly used in the literature [70, 98]:

CREATE QUERY <query-name>

PATTERN <event-pattern> ON <event-stream>

[WHERE <qualification>]

[WITHIN <window>]

RETURN <output-specification>

The event-pattern describes an event pattern to be matched. In the event pattern,

we say an event ei is a positive (respectively negative) event if there is no “!” (respectively

with “!”) symbol used before its respective event type. Positive events appear in the

final query result while negative events do not. The qualification clause imposes

predicates on event attribute, as in state-of-the-art CEP engines. The window clause

describes the maximum time span during which events that match the pattern must occur.

The output-specification clause defines the expected output stream form by the

pattern query.

2.2. COMPLEX PATTERN QUERY LANGUAGE 18

The sequence (SEQ) pattern is a core functionality for pattern queries that specifies a

particular order in which the events of interest must occur.

Definition 2.1 A sequence pattern operator (SEQ) specifies a particular order in which

the event instances of interest should occur and these event instances form a composite

event instance. That is,

SEQ(E1, E2, ..., En)[S] = {< ei1, ei2 , ..., ein > |(ei1 .ts < ei2 .ts... < ein .ts)

∧ < ei1, ei2 , ..., ein >∈ E1[S]× E2[S]× ...En[S]}

The accepting event type refers to the last event type specified in a sequence pattern.

We focus on the SEQ with positive accepting event type in this work, while negative

accepting event handling refers to [63].

Example. We now explain the clauses using examples drawn from our motivating

healthcare application, HyReminder system (Section 1). Assume the raw sensor reading

is bound to semantic knowledge, so that each input event has the schema (timestamp,

worker-ID, behavior, location).

CREATE QUERY Q1 ON estream

PATTERN SEQ(EXIT, !SANITIZE, ENTER)

WHERE EXIT.workerID = SANITIZE.workerID AND

EXIT.workerID = ENTER.workerID AND

EXIT.location != ENTER.location

WITHIN 45 sec

RETURN ENTER.HCW-ID, ENTER.location

In the pattern query Q1, the SEQ operator SEQ(EXIT, !SANITIZE, ENTER)

together with the window constraint WITHIN 45 sec detects a specific HCW behavior

pattern. Namely, a health care worker does not wash hands after exiting a patient room,

and then enters another patient room within 45 seconds. The equivalence test on the

2.2. COMPLEX PATTERN QUERY LANGUAGE 19

common attribute, [HCW-ID], across an entire event sequence ensures that the pattern is

regarding the same individual health care worker.

20

Chapter 3

Active Complex Event Processing and

Stream Transaction

3.1. INTRODUCTION OF ACTIVE CEP 21

3.1 Introduction of Active CEP

Complex patterns of events often capture exceptions, threats or opportunities occurring

across application space and time. Complex Event Processing (CEP) technology has

thus increasingly gained popularity for efficiently detecting such event patterns in real-

time [13, 21, 27, 70, 98]. However, to allow CEP technology to be an end-to-end solution,

beyond monitoring the world via pattern queries, we also need to react to the risks and

opportunities detected by pattern queries in real-time. We now illustrate this need using a

healthcare application as a representative example.

Motivating Application. We consider the representative application, HyReminder [93],

as a running example. Recall that the HyReminder system is a hospital infection con-

trol system developed by WPI and UMass Medical School to continuously track health-

care workers (HCWs) for hygiene compliance (for example sanitizing hands and wearing

masks), and to remind HCWs to perform hygiene precautions - thus preventing the spread

of infections [93]. As shown in Figure 3.1, every HCW wears a RFID badge which has

a three-color light for indicating his (hygiene) status: “safe”, “warning” or “violation”.

Pattern queries continuously monitor each HCW’s behaviors observed by sensors. The

status of each HCW is continuously changed upon detecting certain event patterns. For

example, a detected hygiene violation pattern will change the HCW’s status to “violation”

(henceforth his badge light). In order to urge a HCW to perform precautions immediately

upon the detected hygiene violation, it is critical for us to support such real-time reactions

for the pattern queries. Furthermore, the status of each HCW is also used as a condition

by pattern queries, e.g., a pattern query may only monitor HCWs in “safe” status. Clearly

the reactions for queries that update HCWs’ status will affect query results in turn. It

is absolutely vital to control such concurrent updates and accesses so as to assure the

correct execution logic. Otherwise we risk for a potentially highly contagious disease to

3.1. INTRODUCTION OF ACTIVE CEP 22

Figure 3.1: Representative hand hygiene logic. If the HCW is in the start-status node
and his behavior matches the pattern-query annotating an outgoing edge, then change his
status to the end-status node.

be transmitted to vulnerable patients - thus increasing patient suffering and even causing

deaths.

Further we found that the requirements derived above are prevalent across applica-

tions ranging from algorithmic trading to fraud detection. Unfortunately, current CEP

systems support “read-only” query processing. Pattern queries only contain in-place con-

ditions, i.e., the query qualification is either based on the attributes of events matched in

the input stream [21, 27, 70, 98] or on static information pre-loaded once yet not updated

during query execution [6,13,41]. Moreover, reactions for event detections are limited to

“side-effect-free” actions like sending a message or logging events that do not affect the

event detection in turn [95]. Supporting concurrent update actions within the continuous

execution of pattern queries over streams, especially actions that directly affect the pattern

query results themselves, is an open problem.

Supporting Active Rules. We propose to tackle this unsolved problem by embed-

ding active rule support within the complex event processing paradigm, henceforth called

Active CEP (ACEP). Active rules in ACEP allow us to specify a pattern query’s dynamic

condition and real-time actions that in turn may affect the query results.

A critical technical challenge is to handle the real-time mutual effects between queries

and reactions for queries in the high-volume stream execution. In ACEP we abstract such

effects as interactions among continuous queries and active rules. Apparently, state-of-

3.1. INTRODUCTION OF ACTIVE CEP 23

the-art data stream systems [6, 27, 30] and CEP engines [21, 70, 98], which commonly

use the push-based execution paradigm, have not addressed this challenge. In fact, as we

demonstrate via real-world examples in Section 3.2, using the push-based execution for

interactions among continuous queries and active rules leads to a variety of anomalies and

thus erroneous results.

Introducing Stream Transactions. A common approach to deal with interactions

between concurrent accesses and updates is to enforce concurrency control. However,

existing concurrency control schedulers [23, 48] are based on the notion of a “database

transaction” - the execution of a finite sequence of one-time data manipulation operations

on conventional stored data sets [23]. While in our stream environments pattern queries

are continuously executed on potentially infinite data streams. This implies that we cannot

“finish” the current query as a finite-scoped operation before processing another query. In

short, the concept of a transaction has not been established for stream processing. In this

work, we fill this void by introducing the notion of a transaction in the stream context.

Furthermore, we design transactional pattern query processing to deal with interac-

tions among continous queries and active rules. This processing is especially challenging

because concurrency control poses strict time-based constraints, while our algorithms

have to work for high-volume streams yet achieve near-real-time responsiveness.

Contributions. In this chapter, we have made the following contributions.

I. We propose the first model of integrating active rules into a stream processing sys-

tem, called ACEP model, which significantly extends the state-of-the-art CEP model to

meet the needs of reacting in real-time by affecting the physical or virtual world. (Section

3.3).

II. To characterize the interactions among continuous queries and active rules, we

define the notion of correctness for stream-centric execution given concurrent accesses

and updates. Based on this notion, we introduce the stream transaction model along with

3.1. INTRODUCTION OF ACTIVE CEP 24

stream-specific ACID propositions. To the best of our knowledge, our work is the first at

introducing the transaction concept into the stream processing context. (Section 3.4).

III. Our model empowers us to leverage classical concurrency control approaches

originally designed for static databases to now solve the novel stream transaction schedul-

ing problem. Our Strict-Two-Phase-Locking (S2PL) scheduler successfully applies a pes-

simistic concurrency control mechanism to the ACEP context. However, S2PL incurs

a large synchronization delay due to its rigorous order preserving. Hence we provide

a unique scheduler called Low-Water-Mark (LWM) which is customized to our stream

context to maximize concurrent execution without compromising correctness. (Section

3.5).

IV. We implement the proposed techniques within the HP CHAOS CEP engine and

conduct comprehensive experimental studies using real data streams. We show that LWM

achieves orders-of-magnitude better throughput in high-volume workload compared to

S2PL (Section 5.6).

V. We design the infrastructure that efficiently implements the ACEP model. Specifi-

cally we integrate the active rule extension into the CEP kernel. This approach is in sharp

contrast to the systems that tend to build an external software layer on top of the CEP

kernel. Based on this infrastructure we develop a rewriting-based optimization technique

to expedite rule condition evaluation and reduce intermediate result sizes, thus improving

the ACEP system responsiveness (Section 3.7).

VI. Transactional stream processing poses new challenges for stream system recov-

ery. After describing the complications of failure recovery in ACEP, we propose a new

recovery strategy that dynamically combines stream data backup and stream transaction

logging. Our strategy enables a tradeoff between the recovery time and the volume of

checkpoints required to provide safety (Section 3.8).

3.2. STREAM CONCURRENCY PROBLEM: EXAMPLES 25

3.2 Stream Concurrency Problem: Examples

In the commonly-employed push-based stream execution paradigm [6, 21, 27, 70, 98],

new events are evaluated by continuous queries immediately upon event arrival with-

out any safeguard mechanism to synchronize the concurrent accesses and updates during

stream execution. Since continuous queries may vary in their complexities and event con-

sumption, they may exhibit different processing delays. As a result, events with different

timestamps tend to co-exist and be simultaneously executed in the system. Using this

push-based execution for pattern queries and reactions for queries (represented as active

rules) may raise unexpected anomalies. We illustrate the problems with three examples

drawn from the HyReminder application1. Suppose pattern query Q1 continuously de-

tects the event sequence (EXIT, !SANITIZE, ENTER) within 45 seconds for HCWs whose in

“safe” status when his ENTER event occurs. The checking of a HCW’s status is abstracted

as a Read operation on the shared table storing his current status. Suppose an active

rule R1 concurrently monitors the output of Q1: once Q1 produces a match for a spe-

cific HCW, R1 changes the HCW’s status into “warning”. This action is abstracted as a

Write operation on the shared table. Suppose another query Q2 is also executed. Q2

detects the event sequence (MASK,EXIT) within 5 sec for HCWs in “warning” status when

his EXIT event occurs. Figure 3.2 depicts the following examples respectively.

Example 3.1 Correct Query and Rule Processing. Let us consider processing an event

sub-stream {exit2, enter10 and exit15} with the superscript denoting the event’s appli-

cation timestamp. Suppose before application time 10 the HCW was in the “safe” status

and enter10 leads to a match of Q1. Consequently R1 is triggered and updates the HCW’s

status to “warning”. Later Q2 consumes the next input event exit15 and recognizes that

this is an event for a HCW in “warning” status (by accessing the shared table). The

1We assume that the discussion below is regarding the same individual healthcare worker (HCW) and that the status of a HCW is
independent from that of others.

3.2. STREAM CONCURRENCY PROBLEM: EXAMPLES 26

above query output and the value of the shared table are both as expected conforming to

the desired application semantics.

Example 3.2 Read-too-late Anomaly. Let us process the same event stream as in Exam-

ple 1 using the push-based execution model. Suppose Q1 evaluates enter10 first. Then

when Q2 evaluates exit2, R1 has already updated the HCW’s status into “warning”. So

Q2 would read the HCW status as “warning”, though intuitively at application time 2

the status should have been “safe”. Subsequently the query processing result of Q2 is

“incorrect”- not matching the semantics required by the application. The problem is that

Q2 reads the shared table “too late”. As depicted in Figure 3.2(b), the dashed lines

for WriteR1(Pk) and for ReadQ2(Pk) cross, indicating the conflict between these two

operations.

Example 3.3 Write-too-late Anomaly. Considering the same Q1, Q2 and R1 as above,

now suppose Q2 evaluates exit15 first. Thereafter Q1 evaluates enter10, and then R1

updates HCW’s status into “warning”. In this case Q2 should have read the status

“warning” because after application time 10 the HCW’s status should become “warn-

ing”. However Q2 reads some other value instead. The problem is that R1 writes “too

late”: the shared table has already been read by Q2 that theoretically should have exe-

cuted later. As depicted in Figure 3.2(c), the dashed lines for WriteR1 and for ReadQ2

cross - this time in the opposite order.

It is important to note that the above identified problems of stream concurrency are

general, and would indeed equally arise in alternate stream-centric computational models,

other than the active rule model employed above, that express the reactions to pattern

queries. See Section 3.3.2 for details.

3.3. THE ACTIVE COMPLEX EVENT MODEL 27

Figure 3.2: Stream concurrency examples. Input events are consumed in their application
time; Read and Write are executed by the system with system time. Dashed line represents
that the input event triggers a corresponding operation. E.g., ReadQ1(Pk) denotes the
Read performed by query Q1 on shared table Pk

.

3.3 The Active Complex Event Model

To support the specification of actions for pattern queries, we design an Active CEP model

that integrates active rules into the CEP context.

Event Instances and Types. The input to the ACEP system is a potentially infinite

event stream that contains all events of interest. Each event instance (e.g., ei) represents

3.3. THE ACTIVE COMPLEX EVENT MODEL 28

an instantaneous occurrence of interest. Each event instance has two time-stamps, appli-

cation time and system time [84]. The application time for ei refers to the discrete moment

of the occurrence of ei assigned by the event source, denoted as ei.ts. While the system

time of an event instance is assigned by the ACEP engine using the system wall-clock

time, denoted as ei.sts. Similar event instances can be grouped into an event type. Event

types are distinguished by event type names (e.g., EXIT).

Shared Store. In real-world applications, raw event data is typically augmented with

semantically richer information. Semantic information regarding the application hence

needs to be maintained in the system, referred to as shared store through this paper. For

illustration, we assume the shared store is organized using the relational model. A table

in the shared store can be either static, namely the knowledge is loaded once and not

updated throughout the system execution (e.g., the mapping between RFID to HCW-ID),

or dynamic, namely the information can be changed over time (e.g., a HCW’s current

hygiene status). In ACEP, a shared store thus may be both readable and updatable by

multiple queries and active rules. We abstract all data processed in the ACEP system as

ACEP system state.

Definition 3.1 Let I be the domain of input event stream. If i is an input sub-stream

in I , then i =< e1, e2, ..., en > where ei is an event instance. Let O be the domain of

output event streams. If o is an output stream in O, then o = {ce1, ..., ceh} where cei is a

composite event output by a pattern query. Let P be the domain of shared tables. If p is

a shared table in P , then p = {t1, t2, ..., tm} where ti is a shared tuple within the system.

All data in the ACEP system, including events and shared tuples, together constitute the

ACEP system state.

ACEP Query. We now consider basic operations on the ACEP system state prevalent

in any ACEP application. For operations over an event stream, we focus on the dequeue

3.3. THE ACTIVE COMPLEX EVENT MODEL 29

operation, i.e., to consume the first available event from the head of a stream2, and the

enqueue operation, i.e., to append an event to the end of a stream. These queue-based

operations are common across most CEP and stream systems [27, 63, 70, 98]. A CEP

query consumes the input stream, executes specified query semantics and then appends

the result events to the output stream (if any). Formally we define a CEP query as below.

Definition 3.2 Let Φ be the domain of dequeue operations, Ψ be the domain of enqueue

operations. A CEP query, q, is defined as a function that takes as argument an instance

of Ψ on the input stream, i.e., an arrival of input event, and returns an instance of Φ

on the input stream and zero or more instances of Ψ on the output stream. That is,

q : I ×Ψ→ {I × Φ} ×{O ×Ψ}.

Operations over the shared store are Read and Write. An ACEP query can be viewed

as a combination of shared store accesses (e.g., to check the HCW’s hygiene status) and

a CEP query (e.g., to detect the pattern SEQ(EXIT, !SANITIZE, ENTER)). Namely, an ACEP

query can defined as below.

Definition 3.3 Let Rd be the domain of Read operations and Wr be the domain of Write

operations on shared tables. An ACEP query, q′, can be defined as a function that:

q′ : I ×Ψ→ {I × Φ}× {P ×Rd} × {O ×Ψ}.

We further abstract a set of one or more operations, including both operations on event

streams and on the shared store, as ACEP system change, as formally defined below.

Definition 3.4 Let ∆ be the domain of ACEP system changes, if δ is an ACEP system

change in ∆, then δ ∈ {Φ,Ψ, Rd,Wr}.

ACEP Rule. As widely recognized [12, 79], active rules have intricate run-time se-

mantics even in static databases. We are the first to explore active rules in the streaming
2Here we mean multi-reader dequeuing (for multi-query).

3.3. THE ACTIVE COMPLEX EVENT MODEL 30

context and thus focus on the core features. An ACEP active rule is triggered by the out-

put of an ACEP query. The condition of an active rule is a logical test that, if evaluates to

true, causes the action of the active rule to be carried out. Similar to the qualification of a

pattern query, the logical test can be based on the attributes of the triggering event or on

the content of the shared store. The action of an active rule supported in the current ACEP

model is the Write operation on the shared store. Such active rules are of great use and

ubiquitous in ACEP applications as demonstrated by our motivating examples. Namely,

pattern queries read the shared store, while the active rules may write the shared store,

both in real-time. Hence the newly updated value of the shared store will in turn affect

subsequent query execution. Our model includes a rule type that describes the definition

of a rule, denoted by upper-case letters (e.g., “RA”), and a rule instance that corresponds

to an instantiation of a rule type, denoted by lower-case letters (e.g., “rAi”). Formally,

Definition 3.5 An ACEP active rule, r, is a function that takes as argument an ACEP

query output and returns a boolean value (indicating whether the rule is triggered or not)

and a set of operations on the shared store. That is, r : O × Ψ → {true, false}×

{P × {Rd,Wr}} .

3.3.1 Active Rule Specification

For illustration, we adopt a declarative active rule language implementing the model de-

scribed above based on the commonly used ECA format [79, 97].

CREATE [OR REPLACE] RULE <rule-name>

ON OUTPUT <query-name>

[REFERENCING NEW AS <new-event-name>]

[FOR EACH EVENT]

3.3. THE ACTIVE COMPLEX EVENT MODEL 31

[WHEN <trigger-condition>]

<action-body>

For ACEP queries, we are interested in sequential pattern queries commonly sup-

ported in most CEP systems [27,70,98], namely the SEQ operator that specifies a partic-

ular order in which the events of interest must occur. We now explain the clauses using

examples drawn from our motivating healthcare application. Assume each event has the

schema (timestamp, HCW-ID, behavior, location). Also assume the current hygiene status

of every HCW is stored in a shared table named workerStatus, with the schema worker-

Status:(workerID, status). In this example, the Read operation (resp. Write) on HCW

status is expressed as a SELECT clause (resp. UPDATE) supported by standard SQL.

CREATE QUERY Q1 ON estream

PATTERN SEQ(EXIT, !SANITIZE, ENTER)

WHERE [HCW-ID] AND

EXIT.location != ENTER.location AND

’safe’=(SELECT status FROM workerStatus

WHERE workerID=ENTER.HCW-ID)

WITHIN 45 sec

RETURN ENTER.HCW-ID, ENTER.location

CREATE RULE R1

ON OUTPUT Q1

REFERENCING NEW AS newEvent

FOR EACH EVENT

BEGIN

UPDATE workerStatus SET status = ’warning’

WHERE workerID = newEvent.HCW-ID

3.3. THE ACTIVE COMPLEX EVENT MODEL 32

END

In pattern query Q1, the SEQ operator SEQ(EXIT, !SANITIZE, ENTER) together with the

window constraint WITHIN 45 sec detects a specific HCW behavior pattern. The attribute

enclosed in the square bracket, i.e., [HCW-ID] stands for the equivalence test on this common

attribute across an entire event sequence. The qualification ’safe’=(SELECT ...) specifies

that such pattern detection should only be applied to the HCW who is in “safe” status

when he enters the patient room. The active rule R1 is triggered by any output event

produced by Q1, represented as ON OUTPUT Q1. The action of R1 (defined in the BEGIN...END

block) states that once a match of Q1 is detected, a rule instance of R1 will update the

HCW’s status to “warning”. It is worth noting that Q1 checks the HCW’s hygiene status

for query evaluation, while the output of Q1 can result in changing the HCW’s status

(via triggering R1). In short, here we have demonstrated how to define a pattern query’s

dynamic condition and real-time action based on the shared table.

3.3.2 Alternate Models

While we have chosen the active rule model as foundation of our solution, alternate for-

malizations to express the reactions for pattern queries are also possible. By describing

these alternate models below, we show that no matter which computational model is em-

ployed, the issues of concurrent accesses and updates during stream execution would

still need to be tackled. For this, our core innovation, including the correctness notion,

stream-transactions and the scheduling strategies (Sections 3.4, 3.5) could continue to be

an elegant solution for executing other models.

Feedback Stream Model. We could collect the results of pattern queries into an in-

termediate stream and then feed this stream back to the queries. In each query, a predicate

could read such feedback stream to determine the selective consumption of original input

events. Specifically, we could extend an CEP engine with the following functionalities:

3.3. THE ACTIVE COMPLEX EVENT MODEL 33

(1) Allow a query to delete and/or modify an event in an intermediate stream. (2) Allow

multiple queries to publish their results into one single intermediate stream. Note that

there needs to be some atomicity and synchronization between the read and removal from

such intermediate streams. Now we employ this feedback stream processing model to

express our example application logic in Figure 1.

(i) We create an intermediate stream named InGreenStatus, which has the schema

(worker-ID, timestamp) representing that the worker with the worker-ID is on the green

status since the timestamp moment. The operations on this intermediate stream include:

APPEND a new event (when a worker becomes in green status); REMOVE an existing event

(when a worker is not longer in green status); TEMPORAL-JOIN with a given to-join-workerID

and to-join-timestatmp. TEMPORAL-JOIN works as follows: it first checks whether there exists

an event, say ei, in InGreenStatus with the worker-ID equals to the to-join-workerID; if

there exists such ei, then it checks whether ei.timestamp ≤ the to-join-timestamp. Sim-

ilarly, create two additional intermediate streams: InYellowStatus and InRedStatus with

the same semantics as above.

(ii) We then define query Q1. Q1 takes two input streams: the original input stream

and the intermediate stream InGreenStatus. Q1 first detects the pattern SEQ(EXIT, !SANITIZE,

ENTER). And then for a matched event sequence, say cei, Q1 performs TEMPORAL-JOIN on In-

GreenStatus with to-join-workerID = cei.worker-ID and to-join-timestamp = cei.ts. That

is, Q1 checks whether the worker with the worker-ID was on green status at the moment

when his ENTER event occurred. If the TEMPORAL-JOIN checking returns “true”, Q1 inserts

an event of the worker into InYellowStatus. Namely, a matched Q1 pattern will lead the

worker to yellow status. At the same time, Q1 removes the corresponding event of the

worker in InGreenStatus, because the worker is not longer in green status. Similarly, we

also define query Q2 and Q3.

Given the above design, the read-too-late and write-too-late anomalies still arise. For

3.4. STREAM TRANSACTIONS 34

example, when Q1 tries to read InGreenStatus for checking worker007’s status at ap-

plication time 15, the event (worker007, 12) should have been already inserted by Q2.

However, Q2 in fact inserted such event after Q1’s checking. In this case, Q1 should have

read the information that “worker007 was on green status at time 15” but read some other

value instead.

State Transition Machine Model. We could model the interaction between queries

and actions of queries using a state transition table in the form of (current value of a

shared table Pk (v-current), set of queries to execute ({Qi}), new value of the store (v-

new)). The semantics are when an input event ei arrives, if the current value of Pk equals

to v-current, then the queries in {Qi} should consume ei for evaluation. If a query in {Qi}

produces matches, then the value of Pk is updated to v-new. In this setting, atomicity and

synchronization mechanisms are still needed when multiple queries read and update Pk

simultaneously.

3.4 Stream Transactions

3.4.1 Notion of Correctness

In this section we introduce our notion of correctness for the simultaneous execution of

pattern queries and active rules in the stream context. To better capture the time-based

properties of active rules, we first design the timestamp assignment mechanism.

Timestamp of active rule instance. At the moment when the triggering event occurs,

the change defined by the rule action is assumed to take effect instantaneously. We model

this by associating an application timestamp with each rule instance, denoted as rj.ts, and

setting the value to be the same as the timestamp of its corresponding triggering event.

Timestamp of an operation on shared store. For a Write operation Writei on the

shared store performed by an active rule instance ri, we assign Writei.ts = ri.ts. For a

3.4. STREAM TRANSACTIONS 35

Read operation Readi to retrieve the value of a shared store at the application time t1, we

assign Readi.ts = t1.

Distinguishing Features of our notion of application correctness include: First, it tar-

gets ACEP applications, such as the motivating healthcare system, which apply real-time

effect to the external world, and thus do not tolerate the undo or redo of any externally

visible output or action. Second, in our target applications, a Write operation represents

a real-time effect, e.g., changing a HCW’s badge color. Hence the order of executing

Writes must confirm to their timestamp order. In our formal definition below, let Writei,

Writej , Readk and Readl be operations on a shared table. We use the symbol ≺ to

denote the preceding order of two operations in the system time.

Definition 3.6 (Correctness of Real-time Operations). An algorithm for scheduling op-

erations on a shared table performed by pattern queries and active rules is called cor-

rect if every schedule produced by the algorithm exhibits the following properties: (1)

if Writei.ts < Readk.ts, then Writei ≺ Readk; (2) if Writei.ts < Writej.ts, then

Writei ≺ Writej; (3) ifReadk.ts < Writei.ts, thenReadk ≺ Writei; (4) ifWritei.ts =

Readk.ts, or Readk.ts ≤ Readl.ts, or Writei.ts= Writej.ts, then the order of execu-

tion conforms to what the application specifies.

3.4.2 Stream Transaction Model

When we attempt to exploit the concurrency control principles from static databases [23,

48] to analyze our stream concurrency problem, a fundamental obstacle we encounter that

the concept of a transaction has not been established for stream processing. Traditionally

a database transaction corresponds to a user program that is invoked when a user explicitly

requests so, while our stream query processing is triggered by incoming streaming events.

Moreover, a database transaction corresponds to the execution of a sequence of one-time

3.4. STREAM TRANSACTIONS 36

queries [23,48], while in our stream system the pattern queries are continuously running.

Therefore we must first define the notion of a transaction in the stream context.

Definition 3.7 A stream transaction, or short s-transaction, in ACEP is a sequence of

ACEP system state changes that are triggered by a single input event.

This definition considers the active rule execution to be an in-line extension of the trig-

gering transaction [40]. The top of Figure 3.4 illustrates four s-transactions corresponding

to three input events respectively. To focus on covering the core requirements drawn from

ACEP applications, we first assume there is no system failure of the ACEP engine. We

then discuss the system recovery for ACEP engine in Section 3.8.

3.4.3 Stream-ACID properties

A database transaction has been traditionally defined to be an encapsulated sequence of

user operations that must be ACID [48]. However, these ACID properties cannot directly

apply to our s-transactions due to significantly different transactional models. We thus

have proposed a mapping of the classical ACID properties to stream-ACID properties

(s-ACID) as follows.

• s-Atomic (stream-atomic): all operations stimulated by a single input event should

occur in their entirety.

• s-Consistent (stream-consistent): the execution of stream transactions must guar-

antee to start in a correct ACEP system state and then end leaving the ACEP system

state correct (as per Definition 3.6).

• s-Isolated (stream-isolated): the ACEP system state

changes triggered by a single input event must appear to be executed as if no other

3.5. STREAM TRANSACTION SCHEDULING 37

input events are being processed at the same time, i.e., no unexpected interactions

among s-transactions.

• s-Durable (stream-durable): the output of the pattern queries must satisfy the “per-

manently valid” property of query output defined in [63]. That is, at any given time

point, all output events from the system so far satisfy the ACEP query semantics.

3.5 Stream Transaction Scheduling

Our s-transaction scheduling algorithms have two objectives: first, to guarantee the cor-

rect execution of pattern queries and active rules as per Definition 3.6; second, to assure

the near-real responsiveness as required by high performance stream processing. The

strict application-time based correctness requirement are in conflict with the high system

responsiveness requirement, posing great challenges.

We introduce three solutions for s-transaction scheduling to address this challenge.

The first solution, called Single-Event-Initiated (SEI) scheduler, requires minimum change

of an existing CEP engine and hence is easy to use. The second solution adapts a general-

purpose concurrency control mechanism, namely the Strict Two-phase Locking (S2PL

[23]), to the ACEP context, demonstrating that our proposed notion of s-transactions al-

lows us to leverage existing concurrency control approaches. The third solution, called

Low-Water-Mark (LWM), successfully combines the optimistic and pessimistic principles

to maximize concurrent execution in our stream context and achieves high system respon-

siveness without compromising the correctness. Preliminary features common across all

three algorithms are:

• Orderness of stream. Following the state-of-the-art literature [49, 70, 98], we initially

assume events are fed into our system in strictly increasing application time order.

3.5. STREAM TRANSACTION SCHEDULING 38

• Rule execution order. For ACEP real-time applications, we assume that the execu-

tion order of rule instances that have the same timestamp makes no difference on the

appearance of observable actions. This is a reasonable assumption commonly used in

state-of-the-art active database literature [79,97]. It is also practical in our target appli-

cations, since it is the application administrator’s responsibility to ensure active rules

are well-defined.

• Termination of s-transaction. Our current ACEP model uses the no-cascading-trigger

assumption. That is, rules are triggered by the stream output of queries while rules

do not produce any stream output. Hence cycles in triggering will not arise. We also

assume every single s-transaction is finite. Consequently, all s-transactions in ACEP are

guaranteed to terminate. This model, while simple, has practical utility as demonstrated

by our motivating applications. Similarly, most DBMSs in the literature [12, 40] or in

practice (e.g., Oracle) either require finite rule specification or they place a hard-coded

threshold on the number of cascading trigger calls allowed.

3.5.1 Single-Event-Initiated Scheduler

Based on Definition 3.7, the most direct scheduling strategy would be to take a single

input event at a time and to execute all affected queries and rules to converge, i.e., until

no more actions are queued to be executed and all output has been generated. This is an

intuitive solution due to its simplicity and thus ease of adoption within any CEP engine.

However it suffers from the following drawbacks. First, since it only permits one input

event to be processed at a time, it may cause a large delay due to blocking a significant

number of input events. Second, s-transactions that would not conflict are unnecessarily

delayed. This may underload inter-operator buffers and waste processing cycles.

3.5. STREAM TRANSACTION SCHEDULING 39

Figure 3.3: Lock compatibility (X - incompatibility).

3.5.2 Strict 2PL Scheduler

We now relax the single s-transaction at a time constraint. When multiple s-transactions

are executed concurrently, an s-transaction obtains “locks” on the shared tables it accesses

to prevent other s-transactions from accessing these tables at the same time and thereby

incurring the risk of errors. We now adopt and adapt the Strict Two-Phase Locking ap-

proach (S2PL) to our ACEP context. Below we assume locks are performed at the table

level, yet our schedulers can be easily extended to support locks with multiple granulari-

ties.

If an s-transaction Ti intends to write the shared table Pk, Ti needs to have a write

lock on Pk, denoted as xli(Pk). If a transaction Ti wishes to read Pk then Ti requests a

read lock, denoted as sli(Pk). Mimicking the classical S2PL [23], our S2PL inserts locks

into an s-transaction ahead of all query and rule processing (known as Phase I). All locks

applied by an s-transaction Ti are released after the s-transaction has successfully ended

(known as Phase II).

The lock insertion algorithm (Algorithm 9) used in Phase I determines Reads and

Writes possibly requested by analyzing active rules and queries. We also employ the lock

ordering mechanism to avoid deadlock [23]. Consequently, under our in-order-stream

assumption, Algorithm 9 ensures no deadlock will occur hence no rollback will be per-

formed. We have thus shown the successful application of a pessimistic concurrency

control mechanism originally designed for static databases, namely S2PL, to the ACEP

context. However, S2PL incurs a large synchronization delay due to the rigorous lock

3.5. STREAM TRANSACTION SCHEDULING 40

Algorithm 1 InsertLock
1: for each input event ei of type Ei do
2: initiate s-transaction Ti
3: if Ei = accepting-event-type of query Qi

AND ∃ rule Rj monitors Qi’s output as triggering event
AND action of Rj contains update on Pk then

4: insert write lock xli on Pk
5: end if
6: if ∃ pattern query Qi

Qi consumes ei and Qi access Pk then
7: insert read lock sli on Pk
8: end if
9: end for

incompatibility as depicted in Figure 3.3.

Example 3.4 Let us consider Examples 3.2 and 3.3. First for s-transaction T1 created for

input event exit2, the lock inserted by S2PL is {sl1(Pk)}. Then for T2 created for enter10,

the locks are {sl2(Pk), xl2(Pk)}. Next for T3 created for exit15, the lock is {sl3(Pk)}. As

we can see, since T1 holds the read lock first, xl2(Pk) from T2 is delayed until T1 releases

it. So the read-too-late anomaly is prevented. Similarly, sl3(Pk) held by T3 must wait

until T2 unlocks Pk. Consequently the write-too-late anomaly is also prevented.

3.5.3 Low-Water-Mark Scheduler

We now propose the Low-Water-Mark scheduling strategy (LWM) customized for stream-

transaction execution.

Consistent application-time based timestamping. A distinguishing characteristic

of an s-transaction is that operations issued by an s-transaction have concrete application-

time based constraints (as per Definition 3.6). For that reason, we propose to timestamp

an s-transaction (say Ti) based on the application timestamp of Ti’s triggering input event

(say ei). That is, Ti.ts = ei.ts. This assignment is consistent with our previous timestamp

3.5. STREAM TRANSACTION SCHEDULING 41

Algorithm 2 LWM(using object-oriented design)
1: class Scheduler {
2: Map<STransaction, List¡SharedTable¿> lockTable
3:
4: void RequestRead(Readtsi (Pk)){
5: while ts > Pk.GetLWM() do
6: //blocking
7: end while
8: Readtsi (Pk) is executed }
9:

10: void RequestWrite(Writetsi (Pk)){
11: while ts! = Pk.GetLWM() do
12: //blocking
13: end while
14: Writetsi (Pk) is executed }
15:
16: void TimestampLock() {
17: InsertLock() // given in Algorithm 9
18: xlRj .ts = ei.ts
19: slQi .ts = ei.ts }
20:
21: void ReleaseLock(Ti) {
22: List<SharedStore> sStore = lockTable.GetValue(Ti)
23: for each store in sStore do
24: store.xLockQueue.ReleaseLock(Ti)
25: end for
26: }
27:
28: class SharedTable{
29: Map<time,string> versions
30: XLockQueue xLockQueue
31: SLockQueue sLockQueue
32: string Read(){}
33: void Write(){}
34: time GetLWM(){} }
35:
36: class XLockQueue{
37: List<XLock> locks
38: time lwm
39:
40: void AddLock(xlRj){
41: locks.add(xlRj)
42: MaintainLWM()}
43:
44: void ReleaseLock(Ti){
45: locks.Remove(all locks held by Ti)
46: MaintainLWM()}
47:
48: void MaintainLWM(){
49: lwm = MINn

i=1(locki.ts|∀locki ∈ locks)} }
50: //denoted as Upi(Pk) in the proof}

3.5. STREAM TRANSACTION SCHEDULING 42

management for the shared store and active rules (Section 3.4.1), which is a core concept

underlying our proposed notion of correctness.

Our scheme of application-time based timestamping is in contrast to the mechanism

employed by classical Multi-version Concurrency Control protocol (MVCC) or Time-

stamp Concurrency Control (TSCC). The later generates timestamps using the system

counter in a first-come-first-served manner [23, 48]. While our scheme models the real-

time application logic that at the moment when the input event occurs, the operations

triggered by this event are assumed to take effect instantaneously.

Given our timestamping scheme, to allow different s-transactions to access the specific

value of the shared store that is appropriate for each s-transaction’s application time based

progress, we propose to maintain historic records (multi-versions) of each shared table.

Specifically, when a Write operation updates a shared table, say Pk, the new record of

Pk is appended to the end of the sequence of historical records. This technique designed

to increase the concurrent execution level mimics MVCC. However, as we demonstrate

below, MVCC cannot be applied to solve our s-transaction scheduling problem directly,

as it fails to meet our correctness requirement.

Demonstration of failure of MVCC. In MVCC [23, 48], every shared table Pk has

an associated Read-timestamp, denoted as Pk.Rts, which is set to the maximum of all

executed readers’ timestamp. If a transaction Ti wants to write Pk and Ti.ts < Pk.Rts,

then MVCC will abort Ti and restart Ti with a new, larger timestamp. First, abort of a

transaction, representing an undo of externally visible output or action, is not acceptable

in ACEP applications, as stated in Section 3.4.1. Second, restarting a transaction with

a different timestamp is equally unacceptable. In LWM, an s-transaction’s timestamp

reflects the application time when its issued operations should take effect. Hence if a

restart were to occur, the newly set timestamp would lead the s-transaction to read and

write the wrong version thus incur erroneous results.

3.5. STREAM TRANSACTION SCHEDULING 43

Figure 3.4: S-transactions and LWM Example.

Low-water-mark based scheduling. To avoid those undesired side-effects described

above, we leverage the approaches of integrating locking and multiversioning [23]. Our

key novel technique is an intelligent strategy to consistently render the synchronization

order of both locking and timestamping. As the first step, LWM assigns an application-

time based timestamp for each lock, after determining locks needed by an s-transaction

using Algorithm 9. Specifically, for each write lock xli(Pk) (resp. read lock sli(Pk))

inserted into an s-transaction Ti, we set xli(Pk).ts = Ti.ts (resp. sli(Pk) = Ti.ts).

Observation 3.1 Given the multi-versioned shared tables and timestamped locks, a write

lock xlt1i (Pk) represents a potential Write on the shared table Pk at application time t1.

When Readi(Pk) intends to access Pk at application time t2, to avoid the write-too-later

anomaly, it is safe to execute the Read only if t2 ≤ t1. That is, we need to make sure

Readi(Pk) obtains the value of Pk that will never be affected by any future Write.

Hence, we introduce the low-water-mark (lwm for short, a special control parame-

ter) based mechanism to guarantee the correctness. Intuitively lwm represents the oldest

3.5. STREAM TRANSACTION SCHEDULING 44

timestamp among all the timstamps of the write locks on a shared table. And lwm is

updated whenever a write lock is added or released. lwm is formally defined below.

Definition 3.8 Given the write lock queue XL = {xlt11 , ..., xltnn } on a shared table Pk,

the low-water-mark (lwm) of Pk, denoted as lwmPk , is defined to be

lwmPk = MINn
j=1{xlj.ts|xlj ∈ XL}.

Our LWM scheduler then synchronizes Reads and Writes based on lwms respectively:

• A read lock sltsi (Pk) is granted if sli.ts ≤ lwmPk ; otherwise sltsi (Pk) is delayed until

lwmPk > sli.ts. Intuitively, a Read is guaranteed to access the right record of Pk after

all Writes earlier than the Read have completed.

• LWM grants a write lock xltsi (Pk) only if xltsi (Pk) becomes the oldest write lock among

all write locks held on Pk, namely only if xli(Pk).ts = lwmPk . Basically a Write is not

allowed to jump the queue of Write requests on Pk.

Given this novel granting strategy, we now can relax the lock compatibility (Figure

3.3). On the one hand, a read lock does not block acquiring a write lock on the shared

table. That is, slt1i (Pk) will not block xlt2j (Pk) even if t1 < t2. On the other hand, a

write lock not necessarily to block a read lock. Namely, xlt2j (Pk) will not block slt1i (Pk)

if t1 < t2. These compatibilities in turn enable significantly more s-transactions to be

executed concurrently.

Example 3.5 In Figure 3.4 we illustrate LWM using Examples 3.2 and 3.3. Before the

s-transaction T2 created for input event enter10 ends, the read lock sl21 is granted and

the corresponding Read accesses the proper version, i.e., (1, safe); while the read

lock sl15
3 is delayed due to the lwm constraint. After T2 ends, the lwm is updated to

application time 18. Consequently sl15
3 is granted and the corresponding Read obtains

(10, warning). At this time, any Read operation with timestamp earlier than 18 can

be executed immediately and guaranteed to read the right value.

3.6. EXPERIMENTAL EVALUATION FOR ACEP 45

We now give the pseudocode of the Low-water-mark scheduling algorithm in Algo-

rithm 50. The overall workflow of the algorithm is: the Adding & Timestamping-Lock

procedure inserts appropriate locks, (similar to the Phase I of S2PL), and timestamps locks

and passes the locking information to the Maintaining-LWM procedure. The Granting-

Lock procedure determines whether to delay or execute Read and Write operations based

on the low-water-mark of a particular shared table. The Releasing-Lock procedure re-

leases locks, and passes the updated locking information to Maintaining-LWM. The al-

gorithm and proof below assume locking is performed at shared table level. But they can

be straightforwardly extended to support locking at different granularities.

3.6 Experimental Evaluation for ACEP

3.6.1 Experimental Settings

We have implemented our proposed ACEP technology within HP CHAOS CEP engine

[49]. All queries and rules drawn from our real-world heathcare application are main-

tained in the query-rule pool. The query and rule parameters are listed in Table 3.2.

HP CHAOS system indeed employs multi-threaded processing [49]. Our extension for

ACEP also uses multi-thread programming. Specifically, each stream operator is executed

by a thread. We execute ACEP on Intel Core 2 Duo CPU 3.0GHz with 3.21GB of RAM

running Windows 7 and Java JRE 6.

We use the real-world application workload collected from UMass Medical School

Hospital, where our HyReminder system is being deployed for clinical studies. Our input

stream adapter feeds workloads collected from the hospital with arrival patterns modeled

as the uniform process and with various arrival rates.

Referring to the hand hygiene regulations applied in US hospitals [25], we have cre-

ated ACEP queries and active rules using the following methodology: (1) model the

3.6. EXPERIMENTAL EVALUATION FOR ACEP 46

Term Description
estsi An event with system timestamp sts
outstsi A query output with system timestamp sts
numOut Number of query outputs so far
Tinii System time when the rule instance is created
Tfini System time when the rule instance finishes
numRules Number of rule instances executed so far

Table 3.1: Symbols for performance metric

specific sequence of HCW behaviors using pattern queries; (2) model the HCW’s hand

hygiene performance with three status, namely “safe”, “warning” and “violation”. The

status of each HCW is maintained via a shared tuple within a shared table; (3) model

the logic of a HCW status transitions, namely a certain sequence of behaviors leading the

HCW from one status to another status, using active rules. We refer an active rule Rj

together with the pattern query Qi whose output is monitored by Rj as a query-rule pair.

All the application query-rule pairs are maintained in the query-rule pool.

Performance Metrics. The performance terms are listed in Table 3.1. The perfor-

mance metric throughput is measured as number of events processed per second. Namely,

given a batch of input events of size numIn (numIn is set to be much larger than the

maximum window size of all queries), suppose the system time span taken to process the

batch is Tproc, then throughput= numIn/Tproc. The metric average query latency Lquery

is the average time difference between the time a pattern queryQi produces an output and

the maximum arrival time of any of the event instances that is composed into that output

(both system time). Given outi = {e1, ..., em}, Lquery can be measured by:

Lquery =
ΣnumOut
i=1 (outi.sts−max{ej .sts|ej ∈ outi, 1 ≤ j ≤ m})

numOut
(3.1)

The metric average rule latency Lrule corresponds to the average time difference between

3.6. EXPERIMENTAL EVALUATION FOR ACEP 47

the time a rule instance is initiated and the time the rule instance finishes, i.e.,

Lrule =
ΣnumRules
i=1 (Tfini − Tinii)

numRules
(3.2)

The metric average combined latency Lcombined corresponds to the sum of the average

query latency and the average rule latency, i.e.,

Lcombined = Lquery + Lrule (3.3)

Figure 3.5: readN vs. throughput
(lockG=tuple).

Figure 3.6: readN vs. throughput
(lockG=table).

3.6.2 Experimental Results

In this section we study the performance of our s-transaction scheduling algorithms,

namely SEI, S2PL and LWM. The performance metrics we measure include throughput,

average query latency Lquery, average rule latency Lrule and average combined latency

Lcombined,. For S2PL and LWM, we employ the locking at two-level hierarchy of the

shared store: table-level, e.g., all HCWs’ status, and tuple-level, e.g., each individual

HCW’s status.

Varying Number of Reads vs. Throughput. We evaluate the throughput while

3.6. EXPERIMENTAL EVALUATION FOR ACEP 48

Figure 3.7: writeN vs. throughput
(lockG=tuple).

Figure 3.8: writeN vs. throughput
(lockG=table).

Figure 3.9: Baseline latency. Figure 3.10: Overhead of schedulers.

Figure 3.11: Input rate vs. latency. Figure 3.12: Input rate vs. memory.

3.6. EXPERIMENTAL EVALUATION FOR ACEP 49

Par. Description
seqL length of the pattern in a query
win time-based window size (in sec)
readN average num. of Read per s-transaction
writeN average num. of Write per s-transaction
lockG lock granularity (table/tuple)

Table 3.2: Parameters for queries and rules.

varying the average number of Read operations per s-transaction (readN) from 1 to 6.

The average number of Write operations per s-transaction (writeN) is set to 0.25 by

selecting the corresponding query-rule pairs from the pool. S2PL and LWM perform

locks at tuple level. Figure 3.5 shows that LWM scales more gracefully than S2PL. This

is mainly because LWM is capable to grant significantly more locks concurrently.

We next measure the throughput when the lock granularity for S2PL and LWM is

at the coarsest level, i.e., lockG = table. Figure 3.6 shows the results for the three

schedulers when we vary readN from 1 to 6. SEI’s performance degrades rapidly as

readN increases. Because more processing delay per s-transaction leads to a longer

blocking period for subsequently arriving events, which in turn causes more processing

delays to accumulate. Compared to Figure 3.5, the performances of both S2PL and LWM

degrade due to the coarse lock granularity reducing the concurrency level. However LWM

still outperforms the other schedulers, i.e., LWM achieves 2.5x higher throughput than

S2PL and 3.4x higher than SEI on average, and gains 3x higher throughput than S2PL

and 4.5x higher than SEI when readN = 6.

Varying Number of Writes vs. Throughput. We here consider the throughput while

varying the average number of Write operations per s-transaction (writeN) from 0.125

to 1.0. The average Reads per s-transaction (readN) is set to 1. The lock granularity is

set to be at tuple level. Figure 3.7 shows that the throughputs drop as writeN increases.

One main reason is that the average processing complexity per s-transaction rises. The

3.6. EXPERIMENTAL EVALUATION FOR ACEP 50

increasing cost also comes from more write-locks being requested. LWM beats S2PL due

to allowing more overlaps among s-transactions.

Next we set the lock granularity to be at table level. As per Figure 3.8, the throughput

of S2PL and LWM become more sensitive to writeN compared to Figure 3.7. Especially

when writeN = 1, S2PL performs similar to SEI, because on average one table-level

write lock is held for every s-transaction and S2PL in fact serializes every s-transaction

while synchronizing very few (if any) concurrent executions.

Overhead of Schedulers: Varying Pattern Length vs. Latency. In this set of

experiments, we set up the underloaded scenario, in which the input rate is set to be

much less than the saturation level of the engine. In this scenario, no transaction conflict

will occur hence no transactional scheduling is needed. We first measure the empirical

baseline of Lquery and Lrule by executing a single query-rule pair without running any

transactional scheduler. The baseline results are depicted in Figure 3.9.

And then we execute the schedulers in the underloaded scenario so as to observe their

overhead. Figure 3.10 depicts Lquery, Lrule and Lcombined relative to the baseline (as per

Figure 3.9). For example, 2% in the figure corresponds to 2% more latency than the

baseline. In this experiment the pattern query length (seqL) varies from 2 to 6, and S2PL

and LWM perform locks at the tuple granularity. SEI incurs 3x to 6x larger combined

latency than S2PL and 3x to 5x larger than LWM. The primary cause is that S2PL and

LWM only invoke locks for s-transactions that may potentially read or write the particular

tuple. Instead SEI gives every s-transaction the exclusive access to all shared tuples, hence

brings significant overhead. LWM bears a slightly larger combined latency than S2PL in

this underloaded scenario due to maintaining multi-versions and lwms.

Varying Input Rate vs. Latency. We measure the latency while varying the input rate

from 50 to 20000 events/sec. The parameters are readN = 1, writeN = 0.25, seqL = 3,

lockG = tuple. Figure 3.11 shows the latency relative to the baseline (Figure 3.9). We

3.7. ACEP INFRASTRUCTURE 51

observe that the latency rises as the input rate increases because more events have to be

held back waiting to be processed as more events arrive per unit of time. LWM incurs 1/9

of the combined latency of SEI and 1/3 of the combined latency of S2PL when input rate

is 2000 events/sec. This confirms the effectiveness of our design of LWM maximizing

concurrent execution.

Varying Input Rate vs. Memory. From Figure 3.12 we can see that, the memory

consumption for all schedulers increases with input rate as expected. LWM spends extra

memory to maintain multi-versions of the shared store. However, when input rate≥ 5000,

the memory used to buffer input events due to processing delays becomes dominant.

3.7 ACEP Infrastructure

In this section we design the infrastructure that efficiently implements the ACEP model

described in Section 3.3. We first consider possible architectures.

3.7.1 Architectural Considerations

Alternative 1: Loosely-coupled. One option would be to consider the CEP engine as a

black box (an off-the-shell component) for executing pattern queries. That is, we would

not change anything within the kernel of the engine. However existing CEP technology

only provides pattern matching services. We would need to design several extensions in

order to achieve the full functionality of ACEP. The extensions for supporting active rules

would be done as loosely-coupled software components on top of the CEP engine, in the

form of a dedicated middle-ware or a hard-coded application.

Alternative 2: Build-in. Instead of adding loosely-coupled components on top of the

CEP engine, our proposal is the development of a novel architecture that directly realizes

the desired active rule functionality as part of the CEP engine itself, henceforth referred

3.7. ACEP INFRASTRUCTURE 52

as “Build-in” solution.

Table 3.3 outlines the primary differences between these infrastructure design choices.

The metric of Concurrency refers to the real-time concurrency control problem raised

by the interactions among pattern queries and active rules in the streaming context. The

Loosely-coupled solution cannot easily support real-time concurrency control because the

external components could not for instance control the underlying CEP engine to block

certain query processing for the sake of assuring correctness. Moreover, the performance

of the Loosely-coupled approach may suffer as efforts have to be made for crossing the

border between the CEP engine and the application layer repeatedly for the handling of

possibly one single rule. In contrast, the Build-in approach would establish real-time

concurrency control as part of the ACEP services hence offers better guarantees. Also the

Build-in approach provides integrated rule processing, which not only holds the promise

of fine-grained optimizations but also assures that the message passing is done in a timely

fashion. In summary, we chose the Build-in architecture for ACEP.

Metric Loosely-coupled Build-in
Concurrency user-defined, on top of kernel coherent system service
Communication messages across layers integrated process
Optimization only application level fine-grained, kernel level

Table 3.3: Architectural considerations

Figure 3.13 illustrates the system architecture of our ACEP system. The Semantics

Repository maintains the shared store within the application space. The Transaction Man-

ager handles real-time concurrency control and provides reliable interfaces to read and

write the shared store for the CEP engine and the Rule Manager. The Complex Event Pro-

cessor supports long-running pattern matching queries with access to the shared store. A

query issued by the application is rewritten by the query optimizer into an efficient form

and then passed to the CEP engine for execution. The Rule Manager is tightly integrated

with the CEP processor. The rule rewriter collaborates with the query optimizer to convert

3.7. ACEP INFRASTRUCTURE 53

Figure 3.13: Active CEP System Architecture

a rule into an alternate, potentially more economical form. Rule event detection is imple-

mented by placing the checking and notification code inside the kernel of the CEP engine.

The rule action may write to the shared store and in turn affect the query processing.

3.7.2 The ACEP Execution Plan

We now present our query and rule processing techniques for the ACEP system. A query

plan in ACEP consists of a data-flow pipeline of stream operators, including SEQ, win-

dow, static-predicate, active-predicate, result-construction. The SEQ operator employs

a non-deterministic finite automaton (NFA) for pattern retrieval [98]. We also push win-

dow filtering into SEQ. The static-predicate and result-construction operators are stan-

dard CEP operators supported in our Ecube engine [44]. We thus focus on the active-

predicate, in which the evaluation includes the access to the shared store. A rule plan

in ACEP consists of three sub-components: event-detection, condition-evaluation and

action-execution.

Let us take Q1 and R1 defined in Section 3.3 for illustration. A dataflow of pattern

3.7. ACEP INFRASTRUCTURE 54

Figure 3.14: Logical execution plan for Q1 and R1

query Q1 and active rule R1 is depicted in Figure 3.14. As we can see in the figure, the

left shows the query plan for Q1, the top right depicts the rule plan of R1, and the bottom

right illustrates a relevant shared store. An example input sub-stream is depicted at the

bottom, where the super-script of an input event denotes the event’s application timestamp

and the sub-script denotes the HCW-ID of the event.

Existing data stream systems and CEP engines [6, 21, 44, 70, 98] employ the push-

based execution model. In this execution model, new events are evaluated by all regis-

tered queries immediately upon their arrival at the system. The SEQ operator and static-

predicate operator in ACEP follow this execution model. Specifically, the execution of

the SEQ and static-predicate in query plan Q1 is pipelined: if a newly arriving event trig-

gers a match of Q1 (e.g., enter65
HCW007), a corresponding event sequence is emitted from

SEQ operator right away (e.g., (exit15
HCW007, enter

65
HCW007)), and pipelined through the

subsequence operators.

3.7. ACEP INFRASTRUCTURE 55

However, different from the above mentioned existing systems, the active-predicate

in ACEP may block the pipelining. That is, the Transaction Manager may delay a Read

operation for concurrency control purposes. For example, when Q1 requests to read

HCW007’s status value, another rule may concurrently be updating this value. Then

the Read is delayed until the update completes, so that the value obtained is correct based

on the application’s logic.

The output of Q1 is passed to the rule plan of R1 in a timely fashion, so that the output

can trigger fast reaction to the current situation. If a rule instance’s triggering event has

been detected and its condition holds, then its action is submitted to Transaction Manager

for execution. The Transaction Manager schedules Write operations on the shared store

and guarantees the correctness based on the application’s business process.

3.7.3 Optimization Techniques

We present the technique of pushing rule conditions down to CEP query, to illustrate that

the tight coupling of rule and query processing in our proposed Build-in infrastructure

holds promise for exploring mature database optimization techniques.

The Rule Manager needs to be notified for each output event by the pattern query that

is monitored by an active rule. Hence if a large number of triggering events are passed

to the Rule Manager but later do not lead to final actions due to rule condition disquali-

fication, tremendous work in query processing and rule event notification is wasted. For

efficient rule processing, we thus adopt rewriting-based techniques to convert a rule into

an alternate, potentially more economical form in ACEP.

An important optimization for preventing unnecessary events from being passed to the

rule manager is to evaluate the rule conditions as early as possible, similar to the idea of

pushing predicates down into a query plan. Consider the following query and rule derived

from our HyReminder application:

3.7. ACEP INFRASTRUCTURE 56

CREATE QUERY Q2 ON estream

PATTERN SEQ(ENTER,!MASK, EXIT)

WHERE [HCW-ID] WITHIN 60 sec

CREATE RULE R2

ON OUTPUT Q2

REFERENCING NEW AS newEvent

FOR EACH EVENT

IF newEvent.location = ’highly-contagious-area’ AND

BEGIN

UPDATE workerStatus SET status = ’violation’

WHERE workerID = newEvent.HCW-ID

END

Clearly utilizing the basic approach described in Section 3.7.2 will entail passing all

output events of Q2 to the rule processing. However only few of the tuples will end up

triggering the rule (especially when the rule condition is highly selective). Intuitively, it

would be more efficient to rewrite the rule into the following:

CREATE QUERY Q2 ON estream

PATTERN SEQ(ENTER,!MASK, EXIT)

WHERE [HCW-ID] AND

EXIT.location = ’highly-contagious-area’

WITHIN 60 sec

CREATE RULE R2

ON OUTPUT Q2

REFERENCING NEW AS newEvent

3.8. RECOVERY OF TRANSACTIONAL STREAMS 57

FOR EACH EVENT

BEGIN

UPDATE workerStatus SET status = ’violation’

WHERE workerID = newEvent.HCW-ID

END

The above rewriting algorithm aims to decrease the total amount of events being pro-

cessed by the rule manager. The primary overhead would be the new query registered to

the CEP engine, assuming the original query cannot be replaced by the newly re-written

one. Our system performs a cost-based analysis for each rule before executing the rewrit-

ing algorithm. In short, the choice of rewriting is based on the expected number of events

that would be filtered by the rule’s condition.

3.8 Recovery of Transactional Streams

In this section, we explore the crash recovery mechanism with stream transaction seman-

tics. Recovery in a transactional stream management system poses special requirements

as follows.

(1) Stream sources do not stop delivering data to the engine while the system is down,

requiring the engine to “catch up” following a crash.

(2) We need to keep both relations and streams in a consistent state after a crash.

(3) The output stream is directly visible by the external world, thus may do not tolerate

an undo or a duplicate.

Therefore, we will first study the issue of stream-based data backup, which is an

essential part for all stream management systems. And then we discuss the transaction

recovery strategy, which need to be specially designed for transactional streams. We also

assume that the input stream arrives in a strictly increasing time order, while leaving the

3.8. RECOVERY OF TRANSACTIONAL STREAMS 58

discussion of recovering an out-of-order stream as future work.

3.8.1 Basic Stream Data Backup

Figure 3.15 depicts where the data reside in a typical stream system. As we can see,

events in the Input buffer are the newest and waiting to be processed by the queries. We

have to frequently backup these events, because we cannot afford to lose any event that

has not been processed yet. We also keep the timestamp of the latest checkpoint for events

in the input buffer, denoted as Tinput.

When a continuous query is executed in memory, we typically utilize customized data

structures to store the events of interest and intermediate results. Figure 3.15 illustrates

a NFA and associated queues for Q1, which is widely adopted in CEP engines. As we

can see, events are organized based on their event types, and indexes are built between

correlated events. To facilitate the “catch-up” task after a failure, we can also backup such

Query data structures. We use TQj to denote the latest checkpoint of a query Qj . We may

choose different volumes of checkpoints for a query based on their run-time progress.

Lastly, output events are enqueued to the Output buffer. We use Toutput to denote the

latest checkpoint of the output buffer.

To summarize, Tinput, TQj and Toutput all refer to the application timestamp of the

events that have been backed-up. Therefore we can directly compare the time different

between them.

During a failure recovery, for each running query Qj , we can directly bring the in-

termediate results of a query to memory, and then re-load the raw events with timestamp

from TQj to Tinput. Apparently backing up the intermediate results incurs significant over-

head, but it helps expedite the recovery process. An intuitive criteria of whether and how

often to add checkpoints for intermediate results is the likelihood of crash recovery.

3.8. RECOVERY OF TRANSACTIONAL STREAMS 59

Figure 3.15: Backing-up data in a stream system

3.8.2 Recovery for Stream-Transaction

Now we augment the basic stream system with the notion of transaction and relation

data. Using the Stream-Oriented model, a relation will be transformed into an internal

stream. Let us consider an example scenario where a system failure makes the transac-

tional stream processing incorrect. Suppose a query intends to update two tables R1 and

R2 in a single transaction. But after updating R1 the system fails, while R2 still has not

been updated yet. This leaves the system in an inconsistent state.

To deal with inconsistent system states such as above during a failure recovery, we

would leverage the golden standard ARIES [72] for database recovery. Three main prin-

ciples lie behind ARIES: (1) Write ahead logging; (2) Repeating history during Redo;

and (3) Logging changes during Undo. In our Stream-Oriented model, we apply these

principles as follows.

First of all, we need to keep logfiles in the stream system. Any update to a stream

(i.e., APPEND operation) and to a relation (i.e., WRITE) is first recorded in the log, and

the log must be written to disk before changes to the stream are written to disk.

On restart after a crash, we first restore the data from the latest checkpoint. And then

we redo the actions of the stream system before the crash, including all the changes of

3.8. RECOVERY OF TRANSACTIONAL STREAMS 60

uncommitted transactions that were running at the crash time 3. Redo may generate

duplicate events for streams. We thus also need to perform de-duplication for streams

during the Redo.

Handling Undo. Lastly, we need to undo all uncommitted changes to leave the stream

system in a consistent state. In order to support undo during a crash recovery, a special

“revision” punctuation for internal streams, which represents the modification over a pre-

vious event, is also needed. Unfortunately, as we state earlier, the final output stream may

or may not tolerant an undo, depending on the particular application.

However we argue that by using a concurrency control protocol that produces recover-

able schedules, undo over the final output stream can be avoided. The reason is as follows.

We know that a transaction has three states: active, commit and abort. Causes of an abor-

tion in our stream-driven processing include: (i) an operation cannot be completed due to

hardware or network problem. (ii) an transaction is aborted by the concurrency control

protocol. Any aborted transaction will be rolled back. But for an transaction aborted due

to hardware/network reason, it will be redone. In other words, once such an uncommitted

transaction is redone during the Redo phase, we do not need to undo it any more. On the

other hand, by using a conservative concurrency control protocol that does not abort trans-

action, like SS2PL and Low-water-mark algorithm, we will not face the second condition

anyways. Therefore, we ensure that no undo is needed for final output stream during a

crash recovery.

In conclusion, the recovery strategy in a transactional stream system dynamically

combines the stream-based data backup and the ARIES-style transaction logging.

Optimization. Moreover, further optimization is needed for improving the perfor-

mance of the transactional recovery mechanism. For example, given the fluctuation of

3The underlying logic is that all uncommitted transactions should be rolled back. But we cannot do such
rollback directly, because we do not know which portion of an uncommitted transaction has been executed
before the crash. Therefore, we need to first re-do the uncommitted transaction to acquire all the changes it
would make. And then in next phase, we can undo these changes all together.

3.9. RELATED WORK 61

streaming data, it is important to provide a wide spectrum of recovery models, ranging

from a high-volume checkpoints/fast-recovery approach to a low-volume checkpoints/slow-

recovery approach. So that we can trade-off between the recovery time and the volume of

checkpoints in accord with the arrival rate of input streams. For example, we may even

skip some checkpoints when the stream system is already busy with a burst of inputs.

3.9 Related Work

The scheme of supporting active rules in ACEP borrows several principles from active

databases [12, 79, 97], e.g., the “in-line” coupling model [40] and the ECA format. How-

ever, ACEP rules differ significantly from active rules in static databases. ACEP rules

have the unique formalization of being triggered by the output of continuous queries over

infinite streams. Its distinguishing application time based correctness (Def. 3.6) and chal-

lenging requirement of near-real-time responsiveness (Sec. 3.5) are also special to the

stream context. To our best knowledge, no previous work addressed the issues of defining

active rules in the CEP context, nor in the more general data stream processing context.

CEP technologies exhibit sophisticated capabilities for pattern matching in huge vol-

ume event streams [6, 13, 21, 27, 70, 98]. However, effort in supporting actions of pattern

queries, especially actions that will subsequently affect the pattern matching results, is

lacking. Our ACEP technology tackles this unsolved problem by supporting active rules

within the CEP context.

Existing CEP engines allow applications to specify business logic as an additional

layer of software on top of the engine [6, 13]. Instead, our ACEP system supports ac-

tive rule facilities as an integrated service of the CEP engine, which frees us from the

limitations of the layered approach, providing performance benefits and optimization op-

portunities as demonstrated in this chapter.

3.9. RELATED WORK 62

Authors in [95] presents a methodology to define the reactions for RFID event detec-

tion. But it only deals with “trivial” reactions like sending a message or logging events,

that do not affect the event detection in turn. Such scenario is simpler than the query-rule

interaction problem we study in our work - thus the concurrency can be safely ignored

in [95].

Transaction processing has been intensively explored in RDBMS. See [23] for a sur-

vey of this field. To the best of our knowledge our work is the first attempt at intro-

ducing the transaction concept into the stream processing context. Our invention of the

stream-oriented ACID proposition and stream-transaction allows us to leverage existing

concurrent control principles and further optimize them.

Our innovation then triggers several research efforts on transactional stream process-

ing. Most notable, Botan, Fischer, Kossmann and Tatbul [24] extended our notations to

the more general data stream management context, and emphasized the importance of

continuous query execution over both static and streaming data in the face of concurrent

access and failures. However, while in ACEP we keep both streams and relations in their

original forms, the model in [24] only functions on relational data. Namely the authors

of [24] propose to transform a stream to an unbounded relation and to represent a contin-

uous query as a set of one-time queries. Though their proposal results in a unified model,

such transformation would sacrifice the performance.

63

Chapter 4

Privacy-Preserving Complex Event

Processing via Event Suppression

4.1. INTRODUCTION OF PRIVACY-PRESERVING CEP 64

4.1 Introduction of Privacy-Preserving CEP

While CEP technology has received significant attention from both the database research

community [11,70,98] and industry [3,5], its privacy implications have been overlooked.

However, reporting CEP patterns without taking privacy preference into account may lead

to undesirable privacy violations, if sensitive knowledge patterns are discovered from the

output stream. We explain with a concrete motivating example below.

Motivating Applications. Let us consider the real-time health care system HyRe-

minder [93] again. As an example of a pattern query in HyReminder, a doctor who exits a

patient room (represented by an Exit-patient-room event) should perform hand sani-

tization (indicated by a Sanitize event) within a short period of time. We represent such

a hygiene compliance pattern using Q1 below. Similarly, a doctor should wash hands (a

Wash event) before entering an office (say, an Enter-psychiatrist-office event)

to prevent spreading contagious diseases, as expressed by Q2 below. These regulations

are commonly known as “wash-in, wash-out” in hospital jargon [25].

Q1: SEQ(Exit-patient-room, Sanitize)

WITHIN 2 min

Q2: SEQ(Wash, Enter-psychiatrist-office)

WITHIN 2 min

While the benefit of such CEP applications is apparent, the privacy implications of

this CEP query model are more subtle. That is, sensitive event patterns that reveal an

individual’s private information may exist. For example, an observation that a doctor

leaves a patient’s room and then immediately enters a psychiatrist’s office might serve as

an indication that this patient is experiencing psychiatric problems. This event sequence,

when expressed as a “private” pattern, can be written as:

P1: SEQ(Exit-patient-room, Enter-psychiatrist-office)

4.1. INTRODUCTION OF PRIVACY-PRESERVING CEP 65

Figure 4.1: An adversarial attack using public pattern matches

WITHIN 5 min

The issue is that when HyReminder monitors doctors’ behaviors (the intension of this

application), the events being reported may disclose private information about individual

patients as a side-effect. Even though HyReminder will never directly reveal such private

information, the occurrences of hygiene compliance patterns that it does report may be

used by an adversary to infer the existence of private pattern matches.

As an example, in Figure 4.1, there is a stream of four events associated with the

same doctor observed in HyReminder. Each event has a superscript indicating its time-

stamp in minutes. Over this particular event stream, there exists one match for Q1,

that is (Exit-patient-room2, Sanitize4), and also one match for Q2: (Wash5,

Enter-psychiatrist-office6). Now by concatenating the query matches of Q1 and

Q2, an adversary can infer that a match for private pattern P1, namely (Exit-patient-room2,

Enter-psychiatrist-office6) also exists. This example illustrates that the exis-

tence of private pattern matches can still be inadvertently revealed even when only legiti-

mate queries are reported. It underlines the importance of taking private preferences into

account when deploying CEP systems in sensitive environments like a hospital.

As another example in which privacy issues can arise in CEP systems, consider a

hospital inventory management and asset tracking system [8], which is also deployed

in the hospital. Such an inventory management system uses events triggered by RFID

tags attached to medical equipment or expensive medicine to provide real-time inventory

information, which, among other things, can be used to track supply usage and reduce

4.1. INTRODUCTION OF PRIVACY-PRESERVING CEP 66

inventory costs. Privacy can again be an issue here. Consider the combined output pro-

duced by the HyReminder and the inventory management system: the fact that a doctor

picks up and checks out some expensive cancer medicine, a pattern reported by the in-

ventory management system, before he/she sanitizes and enters a patient room, a pattern

reported by the HyReminder, would be an indication of the patient’s health condition. As

we can see, the output of the well-intentioned CEP systems, if not handled carefully, can

have undesirable effects on patients’ privacy.

At a high level, the real-world problem we consider is when a CEP system is deployed

in a sensitive environment such as health care, retail and financial, the user wishes to

mitigate possible privacy leaks while ensuring that the useful nonsensitive patterns can

still be reported by the CEP engine. Specially, we consider two kinds of event patterns:

those that the user wishes to detect (which we term “public” patterns), and those that the

user prefers not to reveal because of privacy concerns (which we term “private” patterns).

The decision of what is public and what is private is made by the system administrator

or data owner. The goal of our work is thus to minimize private pattern matches while

maximizing public pattern matches.

Event Stream Suppression. A natural way to prevent a private pattern match is to

suppress events that participate in the match. For example, in Figure 4.1, dropping any

event in the sequence ensures that one match of Q1 or Q2 would not be reported, thus

preventing P1 from being inferred. In this work we focus on such event suppression

mechanisms, while other possible mechanisms are briefly discussed in Sec. 4.2.1.

There are numerous ways in which events in the input stream could be suppressed. It

is important to note that whether to drop or keep an event is a trade-off between reporting

useful public query matches and disclosing undesirable private query matches. We thus

provide a utility-maximizing framework that allows users to quantify their preferences by

setting relative weights of public and private patterns. Then our goal is to offer event

4.1. INTRODUCTION OF PRIVACY-PRESERVING CEP 67

suppression decisions to optimize the overall utility in an online fashion.

To the best of our knowledge, to date no practical solution for this problem of utility-

maximizing event suppression with privacy preference in the CEP context has been pro-

posed. Our previous work [52], which is a collaboration with Univ. of Wisconsin Madi-

son, identifies the privacy concern in CEP systems. But in [52] we only studied the

hardness of one particular variant of the problem from a theoretical perspective, while no

practical algorithm nor empirical studies have been conducted. To fill this void, in this

chapter we analyze possible variants of the utility-maximizing event suppression problem,

propose real-time algorithms to solve the problem, as well as experimentally evaluate our

algorithms using both real-world and synthetic streams.

Contributions. Specially, our technical contributions include:

1. Our first contribution is to formally define the problem of utility-maximizing event

suppression with privacy preferences. Thereafter, we analyze possible variants of the

problem (Section 4.3). Our problem formulation enables users to specify the relative

importance of preserving certain private leaks versus producing useful public pattern

matches. We then study the computational hardness of the problem (Section 4.4). This

sheds light on designing practical algorithms to solve the problem efficiently.

2. Our second contribution is the design of a suite of real-time solutions that elim-

inate private pattern matches while maximizing the overall utility. We first propose an

approach based on linear programming that optimally solves the problem at the event-

type level (which suppresses all event instances of the same type). For the computa-

tionally intractable instance-level problem (which suppresses individual event instances),

we observe that our solution at the event-type level provides a useful basis for further

optimization. Specifically, we introduce the Hybrid solution to tackle the instance-level

problem by combining the solution at the event-type level with optimization heuristics

based on run-time pattern match cardinality estimation. We further develop two tech-

4.2. THE COMPLICATION: PRIVATE PATTERNS 68

niques to address the subproblem of pattern match cardinality estimation, one based on

event arrival rates, and the other based on periodicity using the state-of-the-art periodicity

mining algorithms (Section 4.5).

3. To better understand the performance of our proposed solutions, we conducted ex-

tensive experiments on both real-world and synthetic event streams. We show that overall,

our Hybrid solution preserves significantly more utility than alternative approaches. Also

our proposed solutions are efficient enough to offer near real time system responsive-

ness. In addition, we demonstrate that in real world scenarios, periodicity information is

needed in order to produce accurate cardinality estimation. The performance advantage of

periodicity-based estimation is reproduced and reaffirmed using synthetically generated

data streams (Section 5.6).

4.2 The Complication: Private Patterns

Next we introduce the notion of a private query pattern. The existence of private pat-

terns and the preference of preventing their disclosure sets our problem apart from con-

ventional CEP literature.

In terms of syntax, private query patterns are just like SEQ queries, i.e., they consist

of a sequence of events and an associated time window. The fundamental difference,

however, is that while as many query pattern matches as possible should be reported,

private pattern matches are undesirable and should not be reported. In the remainder of

this work we will refer to these two types of patterns as private query patterns and

public query patterns, respectively. Q1 and Q2 mentioned in the motivating application,

for example, are public query patterns, while P1 is a private query pattern. When the

context is clear, we simply refer to public (resp. private) query patterns as public (resp.

private) queries or public (resp. private) patterns for short. We denote the set of public

4.2. THE COMPLICATION: PRIVATE PATTERNS 69

query patterns by Q and the set of private query patterns by P .

There are multiple ways in which an adversary could compromise privacy in search

of private patterns. For example, an adversary could potentially break into a CEP system

to access the original data stream. This security aspect of CEP systems, while important,

is beyond the scope of this dissertation. Instead we focus on the scenario in which the

adversary does not violate security, but rather violates privacy by observing the reported

matches of public patterns and using that information to infer the occurrence of private

pattern matches. For the rest of this chapter we will focus on the externally observable

public event sequence instead of the original event sequence.

In this chapter, we focus on queries with positive event types. The problem of sup-

porting negation in event stream suppression is an intriguing area for future work.

4.2.1 Suppressing Private Query Patterns

A natural way to suppress a private pattern match is to suppress events that participate in

the match. For example, in Figure 4.1, dropping any event in the sequence ensures that

one match of Q1 or Q2 would not be reported, thus preventing P1 from being inferred.

Recall that for now we only consider queries with positive events. In this case us-

ing event suppression can ensure a desirable property, namely we only report a subset

of the original CEP query matches. This means no spurious matches that do not exist

in reality will ever be produced. This is desirable because the opposite is troubling —

it would be disturbing if a hospital hygiene compliance system reported false hygiene

compliance/violations because they were generated by the privacy enforcement system.

While we focus on event suppression in this work, other possible approaches also

exist. In the classical database anonymization literature, a frequently used technique

is generalization [62, 68, 86, 99], in which a specific value is “generalized” so that its

presence reveals less information. Similarly one could also adopt “event generalization”

4.3. PROBLEM STATEMENT AND VARIANTS 70

for our problem, by generalizing detailed events into generic events. For example, the

event Enter-psychiatrist-office can be generalized to Enter-room, and simi-

larly Exit-patient-room can be generalized to Exit-room. Although event general-

ization does mitigate privacy concerns, it can cause trouble in producing query matches.

For example, in Figure 4.1, if we only observe the generalized Exit-room event instead

of the specific Exit-patient-room, matches for Q1 cannot be produced in a determin-

istic manner. Even if the generalized events can be interpreted in a probabilistic way, the

matches so produced are no longer a subset of the original query matches, violating the

desirable property that event suppression offers.

Another possible data manipulation approach is to “shuffle” events around by altering

their timestamps. This alternative is also problematic, again because it risks introducing

spurious query pattern matches that do not exist in reality, thus violating the important

subset property outlined above.

Therefore, we observe that event suppression is a simple yet effective mechanism to

preserve privacy in the context of CEP. As such, in this dissertation, we will focus on

the event stream suppression strategy. Other possible approaches to tackle the privacy

complication are interesting direction for future work.

4.3 Problem Statement and Variants

In this section, we first formally define the problem of utility-maximizing stream suppres-

sion for privacy preservation. To better understand the problem, we then study its possible

variants by exploring three important dimensions of the problem.

Problem Statement. Since there are multiple ways in which events could be sup-

pressed to preserve privacy, a natural question is which events should be dropped over

others. An intuitive answer is to suppress events such that more “useful” public pattern

4.3. PROBLEM STATEMENT AND VARIANTS 71

on
lin

e
of

fli
ne

Figure 4.2: Problem space with three orthogonal dimensions

matches are kept. In order to quantify the preference of a public query match, we define a

positive utility weight w(Qi) for each public query Qi, which measures the usefulness of

reporting one match for Qi. For example, in the hospital where HyReminder is deployed,

another public pattern, henceforth referred to as Q3, may be needed to produce a query

match if a doctor exits a highly-contagious patient room, does not sanitize his hands, and

immediately enters the ICU. A match for Q3 represents a grave violation of hygiene reg-

ulations. In the application such a match should thus be assigned a higher importance

than a match for query Q1 or Q2. Assigning appropriate weights to different queries in

real-world applications requires domain expertise. In this work we assume that the utility

weights for queries are provided by domain experts as part of the input to the system. We

then define utility gain as a weighted sum of all public pattern matches as below.

Definition 4.1 Let w(Qi) ∈ R+ be the utility weight of public query Qi ∈ Q, and let

C(Qi, S) be the number of matches forQi over event stream S. The utility gain generated

for query Qi is:

U(Qi, S) = w(Qi) · C(Qi, S) (4.1)

4.3. PROBLEM STATEMENT AND VARIANTS 72

The utility gain generated over the entire query set Q = {Qi} is:

UQ =
∑
Qi∈Q

U(Qi, S) (4.2)

To model the fact that private pattern matches are undesirable, each such match is

assigned a negative utility value, or a utility penalty. In contrast to the utility gain con-

tributed by a public pattern, the utility loss is the side-effect caused by private patterns.

We then formally define utility loss as follows.

Definition 4.2 Let w(Pj) ∈ R− be the utility penalty weight of private pattern Pj ∈ P ,

and C(Pj, S) be the number of matches for Pj over event stream S. The utility penalty or

utility loss associated with Pj is:

U(Pj, S) = w(Pj) · C(Pj, S) (4.3)

Since our goal is to both maximize utility gain and minimize utility loss, our objective

function is an aggregate objective function. Such aggregate functions are commonly used

in the multi-objective optimization literature [85]. While it is natural to define utility as

a linear function of the number of matches, there may exist applications in which utility

is best defined in other alternative manners (e.g., a submodular function with diminishing

returns). Considering such utility variants for stream suppression is an interesting area for

future research.

Definition 4.3 The overall utility generated over Q = {Qi} and P = {Pj} is thus:

UQ+P =
∑
Qi∈Q

U(Qi, S) +
∑
Pj∈P

U(Pj, S). (4.4)

The problem of utility-maximizing stream suppression for privacy preservation can

4.3. PROBLEM STATEMENT AND VARIANTS 73

then be described as follows.

Problem 4.1 (Utility-Maximizing Stream Suppression) Given an input event stream S, a

set of public queries Q, a set of private queries P , and a utility weight function w(·) ∈

R associated with Q and P , find a subset S ′ of S such that the total utility UQ+P is

maximized for the chosen S ′ over all possible subsets of S.

4.3.1 Hard-constraint vs. Soft-constraint

In some applications, the user requires that the adversary cannot infer even a single pri-

vate pattern match. In other words, the constraints imposed by the private patterns are

“hard”, assuring no private pattern match is ever disclosed. We term such suppression

requirement hard-constraint. To enforce the hard-constraint, the user can set the utility

penalty weights for private patterns to negative infinity. In this case we guarantee that

there is no privacy leak at all.

What is more important, our problem formulation allows trade-offs between reporting

useful public query matches and disclosing undesirable private query matches. We term

this flexible formulation soft-constraint. This soft-constraint problem variant is espe-

cially appealing in applications where the user has multiple preferences. For example, in

a hospital environment as described in Section 4.1, the administrator cares about many

different aspects of the hospital, including controlling in-hospital infections, regulating

staff’s activities, as well as preserving patients’ privacy, and so on. In this scenario, the

administrator wants a solution that gauges the benefit of reporting a public pattern match

and the penalty of potential privacy leaks. Our soft-constraint variant meets this need by

ensuring that a pattern match will be output only when its benefit outweighs its penalty in

expectation, otherwise, it is suppressed.

Therefore, the soft-constraint variant will be the focus of this paper. Supporting the

4.3. PROBLEM STATEMENT AND VARIANTS 74

more general soft-constraint variant is a key contribution of our work, as the prior related

literature [52] only studied the hard-constraint variant in theoretical properties.

4.3.2 Type-level vs. Instance-level

Mirroring the classical taxonomy proposed for relational data privacy [59], our problem

can be classified into “type-level” (corresponding to the “global recoding” in relational

k-anonymity), or “instance-level” (corresponding to “local recoding”).

More specifically, the type-level problem makes simplified suppression decisions at

the event type level by either suppressing or preserving all events of the same type. That

is, events of the same type are either all suppressed or all preserved, irrespective of when

they occur in the stream.

On the other hand, the instance-level problem treats each event differently based on

its run-time context, i.e., the previously arrived events in the active windows of queries,

and the expectation of future events. An instance-level solution can suppress one event

of a certain type while preserving another of the same type. It thus allows flexible event

suppression decisions that offer more opportunities for utility optimization, but as a con-

sequence it presents a harder optimization problem.

4.3.3 Offline vs. Online

Orthogonal to the two dimensions above, our problem can be further classified into offline

and online variants.

The offline event suppression produces decisions after the whole stream has arrived.

Although this is not a practical assumption, studying the offline variant does allow us to

eliminate the hardness arising from the randomness of the online problem and focus on

optimal event suppression in a deterministic setting.

4.4. HARDNESS RESULTS 75

In the online event suppression, decisions have to be made in real-time for the cur-

rently arriving event without complete knowledge of future events. While this problem

variant is more fitting for CEP applications, which typically demand real-time responsive-

ness, it is also intuitively more difficult. Challenges arise because (1) We must estimate

future events and pattern matches that are probabilistic in nature, and (2) Even if future

estimates are accurate, smart suppression decisions are still needed to maximize utility,

which is in essence similar to the offline variant.

In summary, we will tackle the online event suppression problem with either hard or

soft-constraint for both type-level and instance-level solutions.

4.4 Hardness Results

In this section, we study the hardness of the utility-maximizing event suppression prob-

lem. This sheds light on designing practical algorithms to solve the problem (Section 4.5).

The proofs of our theorems are presented in Appendix. We first show in Theorem 4.1 that

the instance-level offline variant is NP-hard.

Theorem 4.1 The problem of instance-level utility-maximizing event suppression is NP-

hard in the total number of event instances. It remains NP-hard even if each query con-

tains exactly two event types.

Proof. We reduce the Maximum Weighted Edge Biclique (MWEB) problem [87] to offline

instance-level event suppression problem with soft-constraint. In the decision version of

MWEB, given a bipartite graph G = (V1, V2, H) where edges take on both positive and

negative weights W (h) ∈ R, h ∈ H , the problem is to determine if there exists a bipartite

subgraph whose sum of edge weights is no less than a given number U . For each vertex

v ∈ V1 ∪ V2, construct an event type Ev and one event instance ev of type Ev. The input

4.4. HARDNESS RESULTS 76

event sequence S is a randomly ordered sequence that consists of one instance ev for all

v ∈ V1 ∪ V2. For each edge h = (u, v) ∈ H , if the edge weight is positive W (h) > 0, we

build two public queries Qh = SEQ(Eu, Ev) and Q′h = SEQ(Ev, Eu), both with utility

weight W (h), and infinite window size. Similarly if the edge weight is negative, we build

two private queries Ph = SEQ(Eu, Ev) and P ′h = SEQ(Ev, Eu) also with utility weight

W (h) and infinite window size. We first show that if there is a solution to MWEB with

edge weight no less than U , then there exists a solution to the event suppression problem

that has utility no less than U . Let G′ = {V ′1 , V ′2 , H ′} be the subgraph of G that has

weight C, where C ≥ U . We can preserve every event instance ev if v ∈ V ′1 ∪V ′2 . The set

of query matches would correspond directly to the set of edges H ′ in G′, thus producing a

total utility of C. Since we know C ≥ U , this proves the forward direction. Now we need

to show that if there is a solution to the event suppression problem with utility at least U ,

there is a bi-clique in the original graph that has an edge weight at least U . Let T = ev

be the set of event instances preserved in event suppression solution. The subgraph GT

of G induced by V = {v : ev ∈ T} has a one-to-one correspondence between an edge in

GT and a query match in the solution T . The edge weight of GT is thus the same as the

utility of the solution T , which is no less than U . This completes our proof. 2

Moreover, we show that the instance-level utility-maximizing event suppression prob-

lem is unlikely to be approximable in polynomial time.

Theorem 4.2 Let n be the total number of event instances in the stream. There is a fixed

constant ε ≥ 0 such that if there is nε factor approximation algorithm for instance-level

utility-maximizing event suppression problem, then RP = NP.

Proof. It was shown in [87] that there exists a constant ε > 0, such that unless RP = NP,

the MWEB problem cannot be approximated within a factor of nε in polynomial time,

where n is the number of vertices in the graph. We note that the reduction from MWEB

4.4. HARDNESS RESULTS 77

above is value preserving. That is, if a MWEB problem instance has a weight value

of U , then the corresponding event suppression problem we construct also has a utility

value of U . We show that the soft-constraint variant cannot be approximated within nε

by contradiction. Suppose there exists an polynomial time algorithm that approximates

the offline variant within a factor of nε. Then we would have found an algorithm that

approximates MWEB within nε. This contradicts with the inapproximability result in [87]

under standard complexity assumptions, thus proves the inapproximability of the offline

soft-constraint variant of the event suppression problem. 2

The hardness and inapproximability results illustrate the unfortunate fact that unless

we are dealing with streams that have a small number of events, utility-maximizing event

suppression at instance-level is unlikely to be even approximated efficiently. The problem

is not much simpler even if we focus on very simple query constructs (e.g., two event types

per query). Given that stream systems typically need to handle potentially a large number

of event instances in real-time, efficient optimal solutions with a good quality guarantee

are unlikely to exist.

Even for the less ambitious type-level variant, we now show the surprising result that

this problem exhibits a similar hardness result as follows.

Theorem 4.3 The problem of type-level utility-maximizing event suppression problem is

NP-hard in the total number of event types.

Proof. We show this problem variant is NP-hard using a proof similar to the proof in

Theorem 4.1, which is for the offline instance-level variant. In proving the hardness of

offline instance-level variant, each problem instance we construct for each instance of

MWEB problem has exactly one event instance per event type. In this particular case, an

instance-level solution is also a type-level solution, and vice versa. Thus, using a similar

proof, we can also show the hardness of the offline type-level variant. 2

4.5. ONLINE SUPPRESSION ALGORITHMS 78

Despite the hardness result, we show in the following fixed-parameter-tractable spe-

cial case that under some natural assumptions, the type-level event suppression problem

can be solved optimally.

Proposition 4.1 Suppose the expected number of matches for each query Q ∈ Q and

P ∈ P over some standard time unit is known. Suppose the total number of public and

private queries, |P|+ |Q|, is some fixed constant. Then the problem of utility-maximizing

online type-level event suppression can be solved in polynomial time to obtain the optimal

solution in expectation.

This proposition follows from a constructive algorithm to be described in Section 4.5.1.

We would like to point out here that in comparison to the offline type-level variant, in the

online version the solution is only optimal in expectation. The reason is because in the

online version, only expectations of query matches are known and events can still arrive in

an uncertain manner that deviates from the expectation. As such, one type-level solution

may not be the optimal for all event stream instances. Rather it is optimal in the sense

that in the long term, when the number of query matches converge to the expectation, the

solution is optimal in expectation.

Given that the instance-level variant is intractable while the type-level problem can

be optimally solved in theory, we next propose to first tackle the type-level variant (in

Section 4.5.1), and then develop the Hybrid solution at instance-level by combining the

type-level solution with local optimization heuristics (Section 4.5.2).

4.5 Online Suppression Algorithms

In this section, we devise two real-time event suppression strategies that maximize the

overall utility. The first algorithm offers optimal suppression decisions at the event-type

4.5. ONLINE SUPPRESSION ALGORITHMS 79

level. Due to the fluctuations in the event stream, the optimal type-level decisions may

not be the best decision for each event instance. This leads us to design the instance-

level algorithm that tweaks type-level decisions based on run-time context, henceforth

called Hybrid algorithm. The key idea is that while the type-level approach provides a

pretty good long-term decisions, the instance-level decisions can fine-tune the type-level

solution based on the events in the local windows.

Both of our algorithms need to estimate the cardinality of pattern matches as part of

their decision making processes. Therefore, we also propose two advanced cardinality

estimation approaches. The first light-weight estimation approach treats each type of

event independent of each other, while the second sophisticated approach takes advantage

of periodicities in the stream to produce even more accurate estimations.

4.5.1 Optimal Type-Level Algorithm

Inspired by Proposition 4.1, we first look at the type-level problem variance. We propose

an optimal online solution to suppress events based on their types. This solution will be

also used as a guidance for further optimizations in our instance-level algorithm presented

in Section 4.5.2.

We propose to model the type-level suppression problem as an integer linear program.

Specifically, let Σ = {Ei} be the set of all event types. Let the integer xi ∈ {0, 1} be

the decision variables to drop/keep all events of type Ei in order to ensure privacy, with

xi = 1 denoting to keep Ei, and xi = 0 to drop Ei. Further let the integer yj ∈ {0, 1}

denote whether or not public pattern Qj ∈ Q will be output, and zk ∈ {0, 1} denote

whether private pattern Pk ∈ P will be output.

Let NT (Qj) and NT (Pk) be the expected number of pattern matches for Qj and Pk

produced over a standard time period T respectively. Using historical data, we can obtain

statistics about the stream, like the average event arrival rate. These statistics then allow

4.5. ONLINE SUPPRESSION ALGORITHMS 80

us to get a rough estimate of NT (Qj) and NT (Pk) (we defer a detailed discussion on the

orthogonal issue of cardinality estimation to Section 4.6). Now assume that NT (Qj) and

NT (Pk) are computed and treated as known constant values. The objective utility function

then becomes:

U =
∑
Qj∈Q

w(Qj)NT (Qj)yj +
∑
Pk∈P

w(Pk)NT (Pk)zk (4.5)

Recall that w(·) represents the utility weight function. We note that whether or not

query Qj can be reported (yj is 0 or 1) depends on the values of the xi’s. Let σ(Qj) be the

multi-set of event types in Qj . If one constituent event type Ei of a query pattern Qj is

dropped (xi = 0, for Ei ∈ σ(Qj)), then the query pattern can never be revealed (yj = 0).

We express the dependence using the following linear constraint. For all Qj ∈ Q

0 ≤ yj ≤
1

|Qj|
∑

Ei∈σ(Qj)

xi (4.6)

Intuitively, this says that in a type-level solution where events are suppressed at event type

granularity, Qj can be reported (yj = 1) if and only if none of its participating event types

are dropped.

Similarly, a variable zk ∈ {0, 1} is subject to the constraint:

1 ≥ zk ≥
1

|Pk|
− 1 +

1

|Pk|
∑

Ei∈σ(Pk)

xi (4.7)

This captures the fact that the private pattern will be reported (zk = 1) when all its

participating event types are preserved. When at least one constituent event type is absent,

zk can get a value of 0, which would avoid the utility penalty.

The problem of maximizing U is then an integer linear programming problem subject

to the constraints in Equations (4.6) and (4.7). Putting the issue of estimatingNT (Qj) and

4.5. ONLINE SUPPRESSION ALGORITHMS 81

NT (Pk) aside, this online type-level variance is really no different from offline type-level

variance. From Proposition 4.1, we know that it is solvable if the total number of event

types or queries is limited.

This is useful, for although the number of event instances may be unbounded in a

stream system, the number of queries or event types tends to be limited (System-H, for

example, has 6 event types and 14 queries and the corresponding LP can be solved in

20 ms). Furthermore, even when we are dealing with problems that have a large number

of queries and events, since the type-level decisions would stay the same for every new

arriving event, the LP only needs to be solved once for a long period of time (until new

statistics arrive, at which point the decisions need to be re-computed). This approach

thus provides a practical way to solve the type-level event suppression problem. We use

Example 4.1 to illustrate this algorithm.

Example 4.1 Suppose we have five event types, Σ = {A,B, C, D, E}. A sample event

stream is illustrated in Figure 4.3a. The superscript of an event denotes its time-stamp.

As can be seen from the figure, events with different event types arrive with the same

arrival rate, namely 1 event instance per 10 time units for all event types, in a simple and

recurring pattern (a, b, c, d, e).

Assume that there are three public queries, namely

Q1 = SEQ(B,C,D), Window(Q1) = 10, w(Q1) = 5;

Q2 = SEQ(A,B), Window(Q2) = 10, w(Q2) = 20;

Q3 = SEQ(D,E), Window(Q3) = 10, w(Q3) = 20;

and one private pattern,

P1 = SEQ(A,C,E), Window(P1) = 10, w(P1) = −10;

So as an example, the query Q1 looks for pattern (B,C,D) that appears within win-

dow of 10 time units. In Figure 4.3a, (b2, C4, d6) is an instance of match for Q1, and this

match produces an utility gain of 5.

4.5. ONLINE SUPPRESSION ALGORITHMS 82

Let [x1, x2, ..x5] be the decision variables of whether events of type A, B, C, D, E

can be preserved, [y1, y2, y3] be the variables that indicate whether Q1, Q2, Q3 can be

reported, and [z1] be the variable indicating whether P1 will be produced. Using Equa-

tions (4.5), (4.6) and (4.7), we obtain a linear program with the objective function:

U =
1

10
· 5 · y1 +

1

10
· 20 · y2 +

1

10
· 20 · y3 −

1

10
· 10 · z1

where the four 1
10

s are essentially NT (Qj) and NT (Pk), i.e., the expected number of pat-

tern matches over a time period T . Since there is 1 match over 10 time units for all four

patterns, the values are all 1
10

.

The utility maximization is subject to constraints:

0 ≤ y1 ≤
1

3
(x2 + x3 + x4)

0 ≤ y2 ≤
1

2
(x1 + x2)

0 ≤ y3 ≤
1

2
(x4 + x5)

1 ≥ z1 ≥
1

3
(x1 + x3 + x5)− 2

3

Solving the linear program gives us the optimal type-level solution, [x1, x2, ...x5] =

[1, 1, 0, 1, 1]. Namely, events of type C will all be suppressed. This solution is intuitive.

Dropping event type C ensures that no matches for P1 and Q1 will be produced. Since the

arrival rate of Q1 and P1 are both 1
10

, and the utility weight w(Q1) = 5 while w(P1) =

−10, it is profitable to drop event type C.

Once the type-level decisions are computed, at execution time, all events of type C

will simply be suppressed, resulting in the event stream in Figure 4.3b.

Discussion of LP-based algorithm. While this LP-based algorithm is practical for

4.5. ONLINE SUPPRESSION ALGORITHMS 83

Global lp‐based example

a0 b2 c4 d6 e8 a10 b12 c14 d16 e18 a20 b22 c24 d26 e28

(a) Original event stream

Global lp‐based example

a0 b2 d6 e8 a10 b12 d16 e18 a20 b22 d26 e28

(b) With type-level suppression

Figure 4.3: Type-level LP-based algorithm

the type-level problem variance, it would be impractical for the instance-level variance.

Recall that the instance-level variance makes suppression decisions at the granularity of

event instances. Hence for an instance-level solution, a decision variable xi is needed for

each event instance, and each pattern match will be represented as a constraint. Note that

both of these two can quickly become impractically large, resulting in too big a linear

program to be solved efficiently. Hence, in the next section we propose a hybrid approach

that combines the type-level solution with instance-level heuristics.

4.5.2 Hybrid Instance-Level Solution

We now explore solutions to online instance-level event suppression, which can produce

better utility than a type-level solution for the following reason. Recall that in the type-

level solution, the expected number of pattern matches, NT (Qj), is an average statistic

produced over a long term. It is possible that over a short period of time event frequencies

may deviate from their long term averages. Therefore, if the type-level solution is used as

an instance-level solution, it may be sub-optimal in the short-term local windows. This

observation is illustrated in the following example.

Example 4.2 We revisit the event stream in Figure 4.3 while considering the same query

patterns. Recall that in Example 4.1, the type-level solution is to suppress event type C

based on the long term event arrival expectation.

4.5. ONLINE SUPPRESSION ALGORITHMS 84

In Figure 4.4a, however, no a10 arrives as expected, which is different from what the

long-term statistics predict. Then when c14 arrives, there is no event of type A prior to

c14 within Window(P1) = 10. Hence, at time 14, no match for P1 = SEQ(A,C,E) can

be produced even if c14 is kept. In that case, keeping c14 is essentially “free” (without

any utility penalty). An optimal solution should keep c14 since it bears the potential of

producing a match for Q1 = SEQ(B,C,D). The type-level solution in this example fails

to make this optimal decision.

The reasoning in the type-level solution, however, is not without merit. Over the long

term, we expect one event of type A prior to an event of type C within Window(P1)

on average, which leads to one match of P1. We also expect one match of Q1 in which

the same event of type C participates. So the type-level solution decides to suppress the

event of type C, because the expected utility penalty of keeping it is w(P1) = −10, which

outweighs the expected utility gain w(Q1) = 5.

The particular case of c14 is different because there is no previous event of type A in

c14’s active window. This deviation from the long term statistics renders the type-level

solution sub-optimal.

As another example, in Figure 4.4b, there are many more events of type B prior to c14

than expected, namely b11, b12 and b13. In this case, at time 14 it may be advisable to keep

c14 because there are three potential matches for Q1. This will result in a utility gain of

3 × w(Q1) = 15, which outweighs the potential utility penalty of one match of P1, i.e.,

w(P1) = −10.

This example illustrates that due to fluctuations in the event stream, the optimal type-

level solution may not be the best decision. Instead it would be beneficial to deviate

from the type-level decisions. This leads us to design an enhanced algorithm that extends

type-level solution by instance-level heuristics that “tweaks” type-level decisions based

on run-time context. The intuition is that while the type-level approach provides a “pretty

4.5. ONLINE SUPPRESSION ALGORITHMS 85

Local hybrid motivation

a0 b2 c4 d6 e8 b12 c14 d16 e18 a20 b22 c24 d26 e28

(a) Event distribution fluctuation 1

Local hybrid example 2

b11 b13

a0 b2 c4 d6 e8 a10 b12 c14 d16 e18 a20 b22 c24 d26 e28

(b) Event distribution fluctuation 2

Figure 4.4: Motivation: suppressing c14 can be sub-optimal

Algorithm 3 A Hybrid Algorithm for Online Instance-Level Suppression
Suppress Hybrid Instance Level (history):
Suppress T [] = Solve LP(history)
while new event arrives do

utl gain = 0
for each partial match of q that new event participates do

exp match← Est Match (partial match, Suppress T [])
utl gain += exp match ∗ w(q)

end for
utl penalty = 0
for each partial match of p that new event participates do

exp match← Est Match (partial match, Suppress T [])
utl penalty += exp match ∗ w(p)

end for
if utl gain + utl penalty < 0 then

suppress new event
else

preserve new event
end if

end while

good” overall solution, the local decisions can mostly stick to the type-level solution but

fine-tune based on the fluctuations of events in the local windows. We describe our Hybrid

algorithm in Algorithm 3.

The overall flow of Algorithm 3 is summarized below. First it computes the expected

utility gain of keeping the newly arrived event, ei, by estimating the expected number of

public query matches ei could participate in. Then it computes the expected utility penalty

4.5. ONLINE SUPPRESSION ALGORITHMS 86

if ei is kept by estimating the expected number of private pattern matches ei could be part

of. It then decides to either suppress or keep ei by comparing the expected utility gain

and penalty.

We now describe Algorithm 3 in detail. First, the type-level decision for each event

type is computed once in Solve LP. Then, as each new event ei arrives, we look up

those events that have previously arrived for partial matches that ei can participate in.

Since each such partial match is only a “prefix” of a full match, we then estimate in the

subroutine Est Match the number of matches for the “suffix” pattern from events that are

expected to arrive in the future.

To produce an accurate estimate, two challenges arise: (1) to estimate the expected

number of future matches of the “suffix” pattern, and (2) to estimate the event suppression

decisions for the future events. We defer the first issue to Section 4.6. The second issue

is also hard, because the suppression decision of a future event could affect the decisions

about other future events thereafter. Our intuition, however, is that the type-level solu-

tion should provide guidance of what events tend to be suppressed in general. After all,

instance-level decisions deviate from the type-level solution only when the local event

distribution differs substantially from the long term average. It can be expected that sup-

pression decisions should in general converge to the type-level solution. Thus we estimate

the number of matches for the “suffix” of the partial match by making the assumption that

events in the future will be suppressed in the same manner that the type-level solution dic-

tates.

With that estimate in Est Match we can calculate an expected utility gain for each

partial match. Summing all the utility expectations gives us an estimation of the benefit

of keeping the newly arrived event. In the next step, we can do a similar estimation of

the total utility penalty that we suffer if the new event is kept. In the end, by a simple

comparison of total utility gain and utility penalty we can determine, based on the events

4.5. ONLINE SUPPRESSION ALGORITHMS 87

that have arrived, whether to suppress the newly arrived event or to keep it. We use the

running example in Example 4.3 to illustrate Algorithm 3.

Example 4.3 In Figure 4.5, we revisit the event stream in Figure 4.4a of Example 4.2

while considering the same patterns. In Figure 4.5, event a0 arrives first, which partic-

ipates in Q2 = SEQ(A,B). According to the type-level decision, we expect events of

type B will be kept in the future, with which a0 is likely to contribute to matches of Q2.

Then the utility gain of keeping a0 is expected to be w(Q2) = 20. On the other hand,

a0 also forms a partial match for P1 = (A,C,E). Suppose in the Est Match procedure

one match for the remaining suffix (C,E) is expected to arrive. However we reason that

events of type C will most likely be suppressed, according to the type-level solution. As a

result, the expected utility penalty of keeping a0 is 0. Hence a0 is preserved.

Next arrives b2, which participates in Q1 and Q2 but does not participate in any

private pattern. Hence keeping b2 will not incur any utility penalty. Without further

estimation, we keep b2.

Now consider c4. It participates in bothQ1 = SEQ(B,C,D) and P1 = SEQ(A,C,E).

Suppose the Est Match procedure tells that for the partial match (b2, c4) of Q1, one event

of type D is expected in the remaining window. Accordingly, the utility gain of keeping c4

would be w(Q1) = 5. Similarly for P1, suppose Est Match expects that in the remaining

window of the partial match (a0, c4), one event of type E will come. That would lead to a

utility penalty of w(P1) = −10 if c4 is kept. Hence c4 should be suppressed.

Following the same logic, d6, e8 and b12 will be preserved. So far all the suppression

decisions have been the same as the type-level solution. Next we consider c14. First, for

the partial match (b12, c14) ofQ1 that it participates in, suppose Est Match again predicts

that one event of type D will arrive in the remaining window, which amounts to a utility

gain of 5. Then for P1, in which c14 could participate, we find that from time 4 to 14,

no event of type A exists, namely no partial match of P1 that c14 could join with. Hence,

4.6. PATTERN MATCH CARDINALITY ESTIMATION 88

a0 b2 c4 d6 e8 b12 c14 d16 e18 a20 b22 c24 d26 e28

Figure 4.5: Running example of hybrid algorithm

keeping c14 will produce a net utility gain with no utility penalty. In this case we will keep

it, which is a different decision from the type-level solution.

The preservation of event c14 by our algorithm matches our intuition — it should not

be suppressed in this particular case, due to the event fluctuations in the local window.

This example manifests how the Hybrid algorithm can exploit local optimization oppor-

tunities to maximize utility.

We skip the explanation of the decisions on remaining events. The upshot is that

decisions about remaining events converge to the type-level solutions (keeping all but

event C). This is an intuitive justification for our simplifying assumption that events which

arrive in the future will most likely be suppressed as predicted by the type-level solution.

4.6 Pattern Match Cardinality Estimation

So far we have treated the computation of NT (Qj) in our type-level solution and the

cardinality estimation of Est Match in the Hybrid solution as black boxes. Recall that

the reason we need an estimate using NT (Qj) in the type-level solution is to measure the

expected utility Qj yields on average. The need of Est Match is to weigh the utility gain

and penalty of keeping the current event based on existing events in the active windows.

The key issues behind both operations are essentially the same, which is to estimate the

number of pattern matches over a time range T in the future.

As a matter of fact, in many applications the continuously arriving events tend to ex-

4.6. PATTERN MATCH CARDINALITY ESTIMATION 89

hibit certain regular patterns. If history is of any guidance for the future, using statistics

from historical data would allow us to make an educated guess of the pattern match car-

dinality in the future. The problem then is to use historical data to estimate the cardinality

of future pattern matches. Formally, given a pattern query Qj = SEQ(Ej1 ,Ej2 , ..), and a

time variable T , we want to estimate, using event arrival statistics, the number of matches

for Qj produced within T , henceforth referred to as NT (Qj).

The time range T is a variable because it depends on how far apart in time the first

event and the last event in the partial match are. For example, in Figure 4.5 of Exam-

ple 4.3, when c4 arrives, we need to estimate the number of events of type D that may

arrive, which along with the existing partial match (b2, c4), can form full matches for

query Q1 = SEQ(B,C,D). Because Window(Q1) = 10, and the first event in the par-

tial match is b2, at current time 4, events of type D that arrive in the next 10− 4 + 2 = 8

time range can contribute to this particular match. This, then, is the value of T that we

need to compute. However if the first event in the partial match is, say b1 instead of b2,

then the window over which event of typeD should be estimated is 10−4+1 = 7, instead

of 8. In other words the window of the partial suffix match is not fixed but varies, which

makes the problem of cardinality estimation challenging (if the time window for cardi-

nality estimation is always some fixed value then the problem can be solved by simply

counting the historical data, with no computation involved).

In general, in order to estimate the number of matches in Est Match in the Hybrid

solution, we can compute the corresponding value using the function NT (Qj). Let ef .ts

be the timestamp of the first event in the partial match, ec.ts be the timestamp of the

current event under consideration, andQS be the suffix pattern that remains to be matched.

Then estimates can be expressed as N(Window(Qj)−ec.ts+ef .ts)(QS).

It is clear that accurate pattern match cardinality estimation, or the computation of

NT (Qj), provides an important basis for our suppression solutions. Next we devise two

4.6. PATTERN MATCH CARDINALITY ESTIMATION 90

approaches for pattern match cardinality estimation.

4.6.1 Estimation by Arrival Rate

Our first estimation approach assumes that the event arrivals follow a certain statistical

model, namely the Poisson process. The Poisson process is a common model used for

data arrival in queuing theory in the performance modeling literature [58], as well as

in the stream processing literature [18, 55]. In the context of CEP, the Poisson process

dictates that each type of event occurs continuously and independently of each other.

Each type of event, Ei, arrives with an arrival rate λi, and the number of events that arrive

in a fixed time period follows a Poisson distribution. In practice, when events arrive in

a Poisson process, λi can be estimated by sampling the arriving events. Considering the

fact that events may follow different distributions as time evolves, a moving sample of

recently arrived events can be used to estimate the arrival rate [36]. This should give us a

good estimate of λi.

Given the arrival rate λi for event type Ei, we describe how NT (Qj) can be estimated.

We first compute for each event type in Qj the expected number of event occurrences in

time range T , denoted by li. This can be computed as li = λiT . Further we denote by

Γ(Qj) the multi-set of event types in Qj , σ(Qj) the set of event types in Qj , and |Qj| the

pattern length of Qj (for example, query Q = SEQ(A,A,B) has Γ(Q) = {A,A,B},

σ(Q) = {A,B}, and |Q| = 3). Denote by Lj =
∑

Ei∈σ(Qj)
li the expected number of

occurrences of events relevant to Qj in T . We can then estimate the expected number of

query matches for Qj in T as:

NT (Qj) =
(
Lj
|Qj |

) ∏
Ei∈Γ(Qj)

λi∑
Ek∈σ(Qj)

λk
(4.8)

Equation (4.8) can be explained as follows. Given a total of Lj event occurrences in

4.6. PATTERN MATCH CARDINALITY ESTIMATION 91

T , we need to pick |Qj| events to form one query match. Let us pick the first |Qj| events

among the Lj events, and compute the probability that the first |Qj| events produce a

match. Let the event at the first position ofQj be of type Ei1 . The probability that the first

event picked is actually of type Ei1 is λi1∑
Ek∈σ(Qj)

λk
, which is Ei1’s arrival rate λi1 divided

by the sum of arrival rates of all events in Qj . For the second event in the sequence, the

probability that it matches the event type at the second position of Qj can be computed

similarly. In the end the probability that the first |Qj| events all match the event types

specified in Qj and thus produces a query match is the cross product of individual terms,∏
Ei∈Γ(Qj)

λi∑
Ek∈σ(Qj)

λk
. Given that there are a total of

(
Lj
|Qj |

)
possible permutations out of

Lj events and by symmetricity, the expected count of query matches can be expressed as

the product of the two, thus Equation (4.8).

4.6.2 Estimation by Periodicity

Estimation using the event arrival rate is generally applicable in the sense that it does not

assume dependencies between events of interest. However, it is often the case that many

event streams exhibit certain periodic patterns that are highly regular. For example, in the

hospital setting, a nurse may sanitize and enter patient rooms at a regular time interval,

say every hour, for routine patient check-ups. Such patterns, being periodic and regular,

can be leveraged to produce even more accurate pattern match cardinality estimation. We

use Example 4.4 to illustrate this observation.

Example 4.4 Suppose we have two types of events, A and B, as in Figure 4.6. From their

respective arrival rates we know there will be two instances of A and B in a time period

T . Knowing only this information, the best we can do is to use Equation (4.8) to produce

an average estimate of the number of matches for pattern SEQ(A, B).

If we can ascertain that events of type A and B follow certain periodic patterns, then

we can do a significantly better job. Suppose A and B have the periodic pattern “A, B,

4.6. PATTERN MATCH CARDINALITY ESTIMATION 92

T

a1 b2 a3 b4 a5 b6 a7 b8

(a) Periodic pattern 1

T

b1 b2 a3 a4 b5 b6 a7 a8

(b) Periodic pattern 2

Figure 4.6: Estimating matches of SEQ(A,B) using periodic pattern

A, B” as illustrated in Figure 4.6a. Then starting at 0 over a period of time T there are

a total of three matches, namely {(a1, b2), (a1, b4), (a3, b4)}. On the other hand, if the

periodic pattern is of the form “B, B, A, A” as shown in Figure 4.6b, then even if the

arrival rate of A and B stays the same over T , no match for SEQ(A, B) can be produced.

This illustrates the importance of discovering periodic patterns embedded in the event

data, for if such patterns can be revealed and utilized, a much better pattern match estimate

can be produced. The natural problem then is to discover such periodic patterns in a given

stream. This problem of periodicity mining has been extensively studied. In this work we

adapt the techniques in [43, 67] to discover the periodic patterns.

Once such periodic patterns are discovered, we can compute the number of matches

for pattern Qj in each periodic cycle T̂ , denoted by NT̂ (Qj). The problem that remains

to be solved is to extrapolate the expected pattern match cardinality of an arbitrarily long

time period TX . More specifically, the problem can be stated as given a periodic cycle T̂

andNT̂ (Qj), what is the number of pattern matches ofQj in time period TX , orNTX (Qj)?

Care must be taken in calculatingNTX (Qj). While it is tempting to think that if TX = 2T̂ ,

then N2T̂ (Qj) can be simply computed as N2T̂ (Qj) = 2NT̂ (Qj), the analysis presented

in Example 4.5 shows the error in this thinking.

4.6. PATTERN MATCH CARDINALITY ESTIMATION 93

T1 =

2

NT1(A)=NT1(B)=2
NT1(AB)=3

T2 =

NT2(A)=NT2(B)=2
NT2(AB)=3

a1 b2 a3 b4 a6 b7 a8 b9

(a) Periodic pattern 1

T1 =

2

NT1(A)=NT1(B)=2
NT1(AB)=0

T2 =

NT2(A)=NT2(B)=2
NT2(AB)=0

b1 b2 a3 a4 b6 b7 a8 a9

(b) Periodic pattern 2

Figure 4.7: Estimating via periodic pattern for time 2T̂

Example 4.5 We revisit Example 4.4 in Figure 4.7. Given the periodic pattern “A, B, A,

B” of stream in Figure 4.7a, and supposing we know that in the periodicity T̂ , there

are two instances of A and B, respectively, denoted by NT̂ (A) = NT̂ (B) = 2, and

three matches of pattern SEQ(A,B), or NT̂ (AB) = 3, what is the number of pattern

matches for SEQ(A, B) in 2T̂? Note that N2T̂ (AB) = 2NT̂ (AB) = 6 is problem-

atic, because when the time period is extended from T̂ to 2T̂ , As in T1 and Bs in T2

also produce matches in a cross-product manner. In this particular case, N2T̂ (AB) =

NT1(AB) + NT2(AB) + NT1(A)NT2(B) = 3 + 3 + 2 ∗ 2 = 10. This can be verified by

enumerating the number of SEQ(A,B) matches in 2T̂ . Similarly, in the second periodic

pattern in Figure 4.7b, the number of pattern matches N2T̂ (AB) follows the same for-

mula: N2T̂ (AB) = NT1(AB) +NT2(AB) +NT1(A)NT2(B) = 0 + 0 + 2 ∗ 2 = 4, which

correspond to {(a3, b5), (a3, b6), (a4, b5), (a4, b6)}.

In general, to compute NnT̂ (Qj) given NT̂ (Qj), where n ∈ Z+, Equation (4.9) can be

used following the logic derived in Example 4.5. First, define a continuous i-segmentation

4.6. PATTERN MATCH CARDINALITY ESTIMATION 94

of Qj as a segmentation that breaks the event sequence of Qj into i non-empty seg-

ments (for example, 2-segmentations of Q = SEQ(A,B,C,D) include (A/BCD),

(AB/CD), and (ABC/D)). Each segment in an i-segmentation is referred to as a chunk

(for example, A and BCD are two chunks in the segmentation (A/BCD)). Denote by

Mi(Qj) all continuous i-segmentations of Qj , and m = (c1, c2, ...ci) be one such segmen-

tation in Mi(Qj), where ck is the k-th chunk in m. Let D(m) =
∏

ck∈mNT̂ (ck) be the

cross-product of the count statistics of chunk ck. Then the estimation of NnT̂ (Qj) can be

written as:

NnT̂ (Qj) =

n∑
i=1

(n
i

) ∑
m∈Mi(Qj)

D(m) =

n∑
i=1

(n
i

) ∑
m∈Mi(Q)

∏
ck∈m

NT̂ (ck) (4.9)

So far we have only considered estimating pattern matches in a time period that is an

exact multiple of a periodic cycle T̂ . Next we extend the logic to the general case. To

estimate pattern match cardinality of a time period that is less than a full periodic cycle,

we can detect the number of pattern matches within that time period from the known

periodic pattern. To handle a time period that is longer than T̂ but not an exact multiple of

T̂ , we first estimate the utility within the time of a multiple of T̂ using Equation (4.9), and

then detect the number of matches within the remaining time period using the periodic

pattern. Finally we combine the two parts of estimation to obtain a final estimate.

We implemented the periodicity mining and the periodicity based cardinality estima-

tion approach as an alternative to estimation using the Poisson arrival process. For event

streams without such periodicities we will fall back to use the arrival rates (Section 4.6.1)

to estimate pattern match cardinality. As we will see in our experiments in Section 5.6,

event streams with stronger periodic patterns can significantly benefit from this periodic-

ity based estimation.

4.7. EXPERIMENTAL EVALUATION 95

4.7 Experimental Evaluation

4.7.1 Experimental Setup

We have implemented our proposed algorithms on the HP CHAOS stream engine [49],

and used the OptimJ [4] module as the linear program solver. All experiments were

conducted on a machine with an Intel Core 2 Duo 3.0GHz CPU and 3.2GB of RAM

running Windows 7 and Java JRE 6.

Our experiments were conducted using both a real-world workload and a synthetic

workload. The real-world event stream was collected from a hospital where the a real-

time hygiene monitoring system is deployed [93]. Public query patterns were created in

reference to the hand hygiene regulations established for US hospitals [25], while private

queries were constructed in consultation with domain experts. The weights of pattern

queries were assigned by the domain experts as well. The characteristics of real-world

pattern queries are summarized in Table 4.1.

The synthetic event stream is produced with a parameterized degree of periodicity.

Periodicity 1 corresponds to a perfectly periodic stream, whereas periodicity 0 means

perfectly random. The synthetic event stream is produced as follows. First we generate a

perfectly periodic stream, by randomly generating a short “seed” event sequence, which

is then replicated over time in a periodic manner. The event stream so produced has de-

gree of periodicity 1. On the other hand we generate another event stream that using a

pure Poisson process. Because no intentional periodicity is embedded in its generation

we denote its periodicity as 0. Between these two extremes we can generate a spectrum

of event streams with varying degrees of periodicity. Specifically, we randomly sample

γ% of events from the perfect periodic stream, and sample (100 − γ%) events from the

non-periodic, Poisson stream. These two streams are then combined to produce a stream

with γ% of periodicity. For example, in the stream with 0.8 degree of periodicity, 80% of

4.7. EXPERIMENTAL EVALUATION 96

Parameter Value range
Number of public patterns 10
Number of private patters 4
Pattern length 2 to 6
Time-based window size 30 seconds to 2 hours
Weight of public patterns 1 to 10
Weight of private patterns -1 to -1000

Table 4.1: Pattern query characteristics

the events come from the perfectly periodic stream and the rest from the Poisson stream.

Synthetic pattern queries are generated by randomly picking pattern lengths, event types

and window sizes using value ranges of real-world queries in Table 4.1. Each synthetic

experiment is reported using results averaged over 20 runs with randomly generated pat-

terns.

4.7.2 Algorithms Compared

We compare algorithms proposed in this work, namely the type-level LP-based solution

(labeled as “Type-lvl”), the instance-level Hybrid solution with independent Poisson ar-

rival estimation, (labeled as “Hybrid-I”), and the Hybrid solution with periodicity esti-

mation (labeled as “Hybrid-P”). We also implemented two alternative event suppression

solutions, namely the “Hybrid optimal” algorithm and the “Greedy” algorithm, to com-

pare against our proposed algorithms, in order to shed light on the performance of our

algorithms.

Hybrid optimal. The first baseline approach is the so-called Hybrid-optimal. Recall

that one key problem that we address in this work is to estimate the cardinality of pattern

matches in the future. In this algorithm, we assume the Hybrid-optimal algorithm has

perfect statistics, that is, it can magically know the exact number of pattern matches in

the future. This can be implemented by looking at the events in the future and counting

the number of matches. Comparing our approach with such an “oracle” algorithm that

4.7. EXPERIMENTAL EVALUATION 97

essentially “cheats” helps us to understand the utility loss due to inaccurate match cardi-

nality estimations. Experimental results for this perfect-statistics solution are labeled as

“Hybrid-opt”.

Although it is interesting to compare with an “offline-optimal” solution to see the util-

ity deficit against the optimal instance-level solution, it turns out that solving the optimal

offline problem at instance-level is so computationally expensive that we can only finish

with 30 event instances in a reasonable amount of time, which is too small a number to

produce any meaningful results (our data stream has at least thousands of event instances).

Greedy solution. In addition, we experimented with a greedy algorithm that detects

and eliminates breaches in a detecting-then-removing fashion [96]. Specifically, for each

event ei, it calculates the utility gain of public query matches that ei triggers, as well as the

utility loss of private query matches that ei triggers over the stream of events output for

public query matches. Both utility gain and loss are calculated using currently detected

matches without estimating the effect of ei on future matches. The greedy approach would

suppress ei if the utility loss outweighs the utility gain, and keeps ei otherwise. This

approach will be labeled as “Greedy” in the experiments.

4.7.3 Experiments on Hospital Workload

We observe that events collected from the hospital during the day are usually dominated

by random healthcare worker activities, which tend to be chaotic and aperiodic. However,

events during the night are more regular with a higher degree of periodicity, due to the

fact that at night time nurses on duty in ICU typically only conduct routine check-ups in

every room at regular intervals. We thus separate the stream into two sub-streams, one

with day-time events and the other with night-time events.

Num. of public patterns vs. utility. In the first experiment, we vary the num-

ber of public queries and keep private queries unchanged. Figure 4.8a shows the util-

4.7. EXPERIMENTAL EVALUATION 98

Num. of public patterns

utility

0

500

1000

1500

2000

2500

2 4 6 8 10

Type‐lvl
Hyb‐I
Hyb‐P
Greedy
Hyb‐opt

(a) Event stream at day time

Num. of public patterns

utility

0

20

40

60

80

100

2 4 6 8 10

Type‐lvl
Hyb‐I
Hyb‐P
Greedy
Hyb‐opt

(b) Event stream at night time

Weight of each private query

N
um

ber of m
atches output

0

10000

20000

30000

0

1000

2000

3000

4000

0 ‐1 ‐10 ‐100 ‐1000

private

public

utility

ut
ili
ty

(c) Vary private query weights

Num. of total patterns

Throughput (events/sec)

0

1000

2000

3000

4000

5000

6000

7000

6 8 10 12 14

No‐PP Type‐lvl
Hyb‐I Hyb‐P
Greedy

(d) Throughput

Figure 4.8: Performance on hospital workload

ity gain comparisons over the day-time stream. Clearly, Hybrid-opt (with perfect esti-

mates of matches) has best utility gains. Our Hybrid-P approach (estimating with pe-

riodicity) comes second, slightly outperforming Hybrid-I (estimating with independent

arrival rates). Both hybrid algorithms consistently outperform the Type-level algorithm

by around 30%, and Hybrid-P outperforms the Greedy algorithm by up to 4x. This un-

derlines the effectiveness of our Hybrid algorithms.

Figure 4.8b shows the utility comparisons over the night-time event stream. While the

relative performance of the Hybrid-I and Hybrid-P is close in Figure 4.8a, in Figure 4.8b

Hybrid-P produces 40% more utility than Hybrid-I. More impressively, it has only 10%

less utility than the Hybrid-opt. This is encouraging, because it shows that if the event

stream exhibits certain periodic patterns, then our periodicity based cardinality estimation

4.7. EXPERIMENTAL EVALUATION 99

can capture these patterns and produce accurate estimations that ultimately lead to better

utility-preserving decisions.

Pattern weight vs. num. of output. In this experiment we vary the weights of

private patterns from 0 to −1000. Figure 4.8c shows the number of private matches vs.

public matches produced by our Hybrid-P approach, as well as the corresponding utility.

As the weights become more negative, the number of private matches output decreases.

Observe that when the negative weight has significantly larger absolute value than the

positive weight, no private match can be output at all. This also shows that our solutions

can be configured with extremely negative weights to solve the hard-constraint problem.

In this experiment we compare the private and public pattern matches produced by the

soft-constraint variant vs. hard-constraint variant. For the soft-constraint setting, we vary

the weights of private patterns from 0 to −100. For the hard-constraint setting, we set the

weights of private patterns to be−1000. Figure 4.8c shows the number of private matches

vs. public matches produced by our Hybrid-P approach, as well as the corresponding

utility. As the weights become more negative, the number of private matches output

decreases. Observe that in the hard-constraint scenario (weight equals to −1000), no

private match is output at all. This confirms that our approach can guarantee that there is

no privacy leak in the hard-constraint setting.

Num. of patterns vs. throughput. Figure 4.8d depicts the throughputs, in terms

of events/second, of the competing approaches. An overall message here is that all of

our proposed approaches can successfully achieve near-real-time responsiveness, i.e., at

least 3500 events/second on modest hardware. To put this in perspective, in our real-

world hospital environment the event arrival rate is around 20 events/sec. The proposed

approaches are thus efficient and more than sufficient to deal with real-world applications

like HyReminder.

In terms of the performance of each approach, the Type-level solution has almost the

4.7. EXPERIMENTAL EVALUATION 100

Degree of periodicity

utility

0

100

200

300

400

500

600

700

0 0.2 0.4 0.6 0.8 1

Hybrid‐I
Hybrid‐P
Hybrid‐Opt

(a) Vary degree of periodicity

Pattern length

utility

0

200

400

600

800

1000

2 3 4 5

Type‐lvl Hyb‐I
Hyb‐P Greedy
Hyb‐opt

(b) Vary pattern length

Num. of private patterns

utility

0

100

200

300

400

500

600

0 1 2 3 4 5

Type‐lvl
Hyb‐I
Hyb‐P
Greedy
Hyb‐Opt

(c) Vary private patterns

0
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000

4 16 32 64 128

No‐PP
Type‐lvl
Hyb‐I
Hyb‐P
Greedy

Total num. of patterns

Throughput (events/sec)

(d) Throughput

Figure 4.9: Performance on synthetic workload

same throughput as the baseline approach without any privacy preservation (denoted as

“No-PP”). Because the linear program associated with HyReminder can be solved very ef-

ficiently (within 20 ms), and after that Type-level approach only follows the pre-computed

policy at run-time with virtually no computational overhead. The Greedy approach has

lowest throughput, as it produces private pattern matches – while other methods just es-

timate future matches. The Hybrid-P approach has slightly lower throughput than the

Hybrid-I as it is more computationally expensive. Overall, the computation overhead of

hybrid algorithms on this real workload is not significant, which makes them attractive

especially considering their substantial utility benefits.

4.7. EXPERIMENTAL EVALUATION 101

4.7.4 Experiments on Synthetic Workload

Periodicity degree vs. utility. Now we assess the relationship between degree of period-

icity in event streams and utility in a more systematic way. Figure 4.9a compares Hybrid-I

and Hybrid-P over six synthetic streams with varying degrees of periodicity. With no pe-

riodicity Hybrid-P and Hybrid-I yield almost the same utility. As we move from a less

periodic stream to a more periodic one, Hybrid-P achieves better utility preservation. The

utility gain of Hybrid-P in the case of perfect periodicity (periodicity degree = 1) is almost

2x than that of Hybrid-I. It is also worth noting that even for streams with low degree of

periodicity, say 0.2, there is a positive, albeit slight, utility advantage of using periodicity

based cardinality estimation. For the rest of experiments in this section we fix the degree

of periodicity at 0.4.

Pattern length vs. utility. Next, we vary pattern complexity by changing pattern

length from 2 to 5 and compare the corresponding utility of different algorithms. As we

can see in Figure 4.9b the utility drops as the pattern length increases. This is because

the number of matches decreases when the pattern length increases and becomes more

complex. Our proposed Hybrid-P achieves only 12% less utility than the Hybrid-Opt,

and outperforms all other approaches in this experiment.

Num. of private patterns vs. utility. In Figure 4.9c we vary the number of private

patterns while keeping public patterns the same. When there is no private pattern, each

approach produces the same utility, as no event suppression is needed. As the number

of private patterns increases, the proposed Hybrid-P and Hybrid-I outperform all other

alternatives except for the oracle version Hybrid-Opt.

Num. of patterns vs. throughput. Finally, we conduct a throughput test by increas-

ing the number of synthetic queries. Figure 4.9d shows that the most expensive Hybrid-P

algorithm attains at least 55% of the throughput of a vanilla system when a large number

of queries are present. Its relatively efficiency and superior utility makes it an appeal-

4.8. RELATED WORK 102

ing approach for CEP privacy. We also note that the Type-level approach achieves only

slightly less throughput than the vanilla CEP (No-PP). Considering the fact that Type-

level significantly outperforms the Greedy approach in terms of utility, it may also be an

attractive alternative when system resources is a concern.

4.8 Related Work

The problem of sequential pattern hiding was recently investigated in [10,46] for static se-

quence databases. Their approaches function on a set of sequences which are independent

from each other. While in our CEP context, the single input stream contains potentially

endless events that are temporal correlated. Therefore their approaches cannot be applied

to solve our problem. Technically we have been inspired by several principles from their

approaches, such as minimizing side-effects and data distortion [46].

The problem of privacy and security has also been looked at in different contexts for

streaming data. Authors in [102] consider k-anonymity in streaming data, where the aim

is to generalize clusters of tuples into equivalence classes of size at least k. Recently,

authors in [47] consider the problem of filtering sensitive user location data in a stream

to preserve privacy. The problem of access control in a stream environment has also been

studied [75, 83]. These techniques, while useful for their respective purposes, are not ap-

plicable as they do not consider CEP pattern query semantics nor the utility optimization

problem.

The mechanism of event suppression has been used in relational stream load shed-

ding [39, 100] to keep up output rate when system resources are limited. However, the

notion of privacy preference was not considered in the literature of this area. Besides,

loading shedding for the specific semantics of CEP pattern queries has not been studied

to date.

4.8. RELATED WORK 103

The general idea of combining “global” (type-level) prediction and “local” (instance-

level) prediction in our Hybrid algorithm has been applied to problems in completely

different contexts, such as to predict the movement of mobile users [65], and to predict

branches in the computer architecture literature [101].

In comparison to the relative lack of research efforts on privacy in the context of CEP,

There is an extensive body of literature focusing on privacy preservation in relational

databases. K-anonymity [86] and its successors (e.g., [62, 68]) have been extensively

studied, which recode the original database in ways such that the modified database sat-

isfies structural properties with privacy protection. Differential privacy [42] has been

proposed more recently as a rigorous alternative. However, both approaches focus on sta-

tistical queries on static relational data, which are not directly applicable to CEP which is

more concerned with producing pattern matches in real-time.

Differential privacy achieves privacy preserving by injecting additive noise to statisti-

cal aggregates (e.g., SUM queries). This model, however, does not extend to CEP, because

SEQ queries employed in CEP are more concerned with producing individual sequence

matches, for which differential privacy are not suitable.

The problem of PP-CEP also bears some resemblance to online query auditing [57,

73], where the goal is to determine whether answering a SQL query given previous

queries would disclose private information. While query auditing is mostly about de-

ciding whether answering a query would compromise privacy, PP-CEP focuses on opti-

mizing utility. In addition the significant difference in the data and query model of these

two problems make solutions to query auditing inapplicable to PP-CEP.

4.9. CONCLUSION 104

4.9 Conclusion

In this chapter we study the problem of utility-maximizing event stream suppression with

privacy preference. Our problem formulation enables users to specify relative importance

of preserving private leaks and producing useful public pattern matches. This transforms

event suppression into the problem of computing the expected gain and loss of reporting

a pattern match, with the goal of optimizing the overall utility. We first introduce a tax-

onomy of the utility-maximizing PP-CEP problem. We then propose a suite of solutions,

including a LP-based type-level solution that achieves optimal type-level decisions, and

a hybrid instance-level solution that exploits current event distributions. Our experiments

using real-world and synthetic data show that our proposed approaches can preserve util-

ity effectively and efficiently. Furthermore, we demonstrate that the periodicity-based

approach is needed for accurate cardinality estimation in at least one real world scenario

and many more synthetically generated datasets.

105

Chapter 5

Probabilistic Inference of Uncertain

Identities over Event Streams

5.1. INTRODUCTION OF FISS 106

5.1 Introduction of FISS

Real-time object monitoring systems are becoming increasingly popular in domains rang-

ing from healthcare, inventory management, public transit management, traffic monitor-

ing to home safety care [8, 64, 66, 93, 98]. These systems receive high-volume event

streams from sensors installed at locations of interest. These events then are filtered and

correlated for complex pattern detection, aggregated on various temporal and geographic

scales, and transformed into high-level actionable information.

In object monitoring systems, while sensed events are often attached with the unique

identification of the tagged object (called “ID-ed” events), it is equally common that

events may not carry their object identification (called “non-ID-ed” events). Consequently

input event streams may be composed of both ID-ed and non-ID-ed events. Reasons that

cause such mixed event streams include:

• Events may come from heterogeneous sources. While some devices are capable to

provide events with object identification, e.g., RF sensors [8, 28, 54], other devices

do not capture object identification, e.g., Passive Infrared sensors [34, 77, 88]. Ob-

ject monitoring applications may consist of heterogeneous monitoring devices, for

example both RF sensors and Infrared sensors. For instance in a hospital inventory

management system [8], RF taggers are attached to medical equipments to track

their distributions, while Infrared sensors are installed in nurse stations and doctor

offices to check the sterilization procedure of the equipment. As another example

in the hospital environment, it is a regulation to restrict the number of staff in an

Operation Room [25] in order to prevent airborne infections to the patient in op-

eration. In some hospitals, Infrared sensors are thus installed in Operation Rooms

to check on the number of staff over time, and to observe the door openings to get

an insight into airflow transmission. Simultaneously, RF sensors are equipped to

5.1. INTRODUCTION OF FISS 107

also monitor the hygiene performance of healthcare workers [93]. As a result, data

collected in those applications will have mixed ID-ed and non-ID-ed events.

• Furthermore, some objects being monitored, usually human beings, may adver-

tently choose to conceal their identification for privacy concerns, or inadvertently

forget to show their identification. In some settings, the environmental condition

detection, like detecting an object’s motion and presence, is only loosely coupled

with an object’s identification detection. For instance, in real-time hospital infec-

tion control systems, such as HyReminder [93], a sensor installed in the hospital

has two components: the motion reader that detects a healthcare worker’s behav-

iors, such as sanitizing hands and entering a patient’s room; and the badge reader,

which records a worker’s identification only when she actively presents her badge

to the reader. So when a worker shows her badge and then washes her hands, a

“wash” event with her identification is generated. Otherwise, if the worker chooses

not to present her badge or forgets to show her badge, a “wash” event without any

identification is generated. Consequently event streams observed in such applica-

tions also consist of both ID-ed and non-ID-ed events.

Given such a mixed input stream, those non-ID-ed events prevent us from performing

object-based analytics, such as object tracing, alerting and pattern matching, which usu-

ally is the key service needed in object monitoring applications. For example, the HyRe-

minder system [93] continuously tracks each healthcare worker for hygiene compliance

by running a set of pattern queries. An example pattern query is to observe whether a

worker cleanses her hands before contacting a patient. These pattern queries are based on

events associated with an individual worker. This means we have to know the worker’s

identification associated with an event before we can correctly utilize the event in the

query evaluation process. Therefore, in this paper we address a fundamental data trans-

5.1. INTRODUCTION OF FISS 108

formation problem for event streams mixed with ID-ed and non-ID-ed events, namely to

translate raw streams into queriable, probabilistic event streams with object identification.

Contributions. In this chapter, we propose a novel probabilistic inference framework

called Familiar- Stranger System, or FISS 1, that efficiently transforms raw streams of

ID-ed and non-ID-ed events into queriable streams of events with probabilistic object

identifications. Specifically, our technical contributions include:

Modeling. We devise a time-varying graphic model to capture the underlying event

stream generation process from the physical world, including the key component−the

temporal correlations among events. In contrast to existing work on either solely ID-ed

events [28, 32, 54] or solely non-ID-ed events [81, 88], we now embrace ID-ed and non-

ID-ed events within a single model. This keeps our model simple yet while concisely

expressing both the true objection identifications (which we may not observe) and the

sensed events (which we do observe) (Section 5.3).

Efficient Inference. Based on our proposed model, we extend a classical inference

approach, the Forward-backward algorithm [74], to infer the object identification of non-

ID-ed events (Sec. 5.4). However, our experimental evaluation (Sec. 5.6.4) demonstrates

that this approach, though suitable for our inference logic, is not efficient enough to pro-

vide near-real-time system responsiveness nor scalable for a high volume event stream.

Our second contribution is to devise a suite of strategies for optimizing the perfor-

mance of the Forward-backward inference. Our key insight is that the Forward-backward

algorithm conducts a large number of unnecessary computations during the backward

smoothing. We aim to avoid such waste by only computing the “affected” events, i.e.,

events whose distributions should be revised in the backward smoothing. Our first strat-

egy is to prune random variables that can be shown to be unaffected by exploiting the

1A familiar stranger is an individual who we repeatedly observe and yet do not know directly.
Our system is given this name because it aims to identify those continuously observed non-ID-ed
events.

5.2. PROBLEM STATEMENT 109

features of ID-ed events. The second optimization, called finish-flags mechanism, enables

early termination of the backward computation yet without sacrificing inference precision.

Lastly, we propose to represent temporal conditional dependencies using Complex Event

Processing (CEP) pattern queries to capture temporal correlations of events in a large

volume stream [13,70,98]. And then chasing down “affected” events can be transformed

into a pattern matching. Meanwhile, we devise an advanced data structure customized for

streaming uncertain events to speed up the optimized backward probability computation.

These strategies together lead to a solution that keeps up with high-volume streams while

offering high-precision inference results (Section 5.5).

System and Evaluation. Our third contribution is the implementation and thorough

performance evaluation of FISS over event streams of healthcare object monitoring. The

experimental results demonstrate that our proposed model achieves better inference pre-

cision compared to the MHT model [1, 81]. Moreover, our optimization techniques for

the Forward-backward algorithm make it work 15 times faster than the basic implemen-

tation [2] (Section 5.6).

5.2 Problem Statement

Physical world. FISS targets environments with well-bounded sub-spaces, such as an

Intensive Care Unit (ICU) with dozens of separated patient rooms, where sensors are

installed within each room. In this setting, the surveillance areas of sensors do not overlap.

So an object will be detected by at most one sensor at a time. This is a distinct difference

from the existing RFID data cleaning literature, where an object can have many redundant

readings at a time [28, 54, 56, 89], due to assuming sensors with overlapped surveillance

areas.

For ease of exposition, the rest of this chapter assumes the environment is an ICU, as

5.2. PROBLEM STATEMENT 110

depicted in Figure 5.2a. Such layout is typical in clinics and hospitals. In this chapter,

we use the HyReminder [93] system, deployed at University of Massachusetts Memorial

Hospital, as a representative application. However our techniques are general and can

equally be applied to other applications that work with streams mixed with ID-ed and

non-ID-ed sensor readings. In summary, the physical world being monitored is an ICU

composed by a set of separate rooms R = {R1, ..., R|R|} and a set of healthcare workers

being monitored, i.e., objects O = {O1, ..., O|O|}.

To simplify our discussion, we assume the physical world is closed, namely, the num-

ber of rooms and number of objects remain constant. We also assume that each object is

independent of each other, which is the “disjoint tracks constraint” commonly adopted in

the PDA literature [20, 81, 88].

Input event stream. Each sensor in the ICU interrogates objects’ movements in its

range and immediately returns its reading to the server. The server collects raw readings

from all sensors and merges them into a single input stream. We abstract each sensor

reading as an event. Each event in the stream, denoted by a lowercase e, corresponds to

an instantaneous and atomic occurrence of interest [98]. Events are conceptually grouped

into event types. Every event type is distinguished by its event type name. The event

type of e is derived based on the physical information about the sensor. For exam-

ple, a motion sensor installed over a patient room’s door will generate events of type

Exit-patient-room and Enter-patient-room, whereas a sensor installed at a

sanitizer will generate events of type Sanitize. The integrated input stream is mixed,

meaning events may or may not have object identifications. Such stream is commonly

seen in object monitoring applications for various reasons provided in Section 4.1.

Each event type has associated attributes as defined by the schema. We assume an

event e in the input stream has the schema: event-type (nonce,ts,room#,OID).

Here nonce is a unique number attached by the server distinguishable for any events.

5.2. PROBLEM STATEMENT 111

room# ∈ R represents the room of the sensor that generates e, i.e., e’s location. As

described previously, our target environment is well-bounded and closed, so room# is

assumed to be accurate. OID is the object identification associated with e. Since the

object identification of e may not be available, we allow OID to be a concrete Oi ∈ O, or

OID = null. In the rest of this chapter, we denote an ID-ed event as ê, and a non-ID-ed

event as ẽ.

Output event stream. The output of FISS is a probabilistic event stream, where

each event has an associated probabilistic object identification. As in most probabilistic

data management models [9,22], we represent the probabilistic object identification using

the possible-worlds semantics. Namely, the OID of an output event consists of a set of

mutually-exclusive alternatives with associated confidence values. Intuitively, the object

identification takes the value of one of its alternatives, and the probability of taking a par-

ticular alternative is given by its confidence value. For example, consider an output event

enter-patient-room(127,12/01/28 17:30:00,R1,<O1:0.6,O2:0.3,O3:0.1>).

This event is most likely associated with object O1 (60% chance), but may also be with

O2 (30%) or O3 (10%).

Intuitively, the uncertainty of OID can change over time when additional information

is obtained from a newly arrived event. Then the previously inferred object association

could be revised to gain a more accurate probability. This revision task is called smooth-

ing in probabilistic inference algorithms [82]. Therefore, FISS is designed to also output

a special event called revision, which represents the modification over a previously in-

ferred OID of an event. A revision has the format: Rev(nonce-of-previous-event,

new-OID). Whether to output revisions is an option chosen by the user. In this chapter

FISS supports three commonly-used output strategies: (i) report any change of identifi-

cation association obtained during the smoothing; (ii) report when the revision results in

100% confidence; or (iii) report when the revised probability is more than a threshold,

5.3. PROPOSED GRAPHICAL MODEL 112

say 50% different from the previous probability of that event.

In summary, FISS outputs a stream consisting of probabilistic events and optionally

revision events. Such output stream can then be fed into an event management system for

object-based analytics. For example, the output stream from FISS for the HyReminder

application will be used for hand hygiene pattern detection [93]. Many stream systems

are capable to process various queries over such probabilistic streams, including relational

queries [56], complex event queries [80] and aggregate queries [35]. Also, several event

stream processing systems [13, 21, 69] support revisions that amend previously arrived

events.

The inference problem. Finally, the problem we solve in this chapter is: given an

input stream of raw sensor reading events, where an event may or may not have an asso-

ciated object identification, we derive a queriable, probabilistic event stream where each

event is associated with probabilistic object identification. We aim to infer the identifica-

tion association as accurately as possible and to do it in an efficient manner so to achieve

near real-time responsiveness.

5.3 Proposed Graphical Model

In this section we present our proposed probabilistic model that captures the correspon-

dences among sensed events and monitored objects. In contrast to existing work on either

solely ID-ed events [28,32,54] or solely non-ID-ed events [81,88], our solution embraces

ID-ed and non-ID-ed events within a single model. This keeps our model simple yet while

concisely describing the physical world.

5.3. PROPOSED GRAPHICAL MODEL 113

ê an ID-ed event
ẽ a non-ID-ed event
si room state variable for Room Ri

ψj object identification association variable for ẽj
εj information variable for event ej

Table 5.1: Summary of symbols

5.3.1 Components of the Model

Our model describes the world using random variables that present both true object iden-

tification associations, which we may not observe, and the input events, which we directly

observe.

Given numerous event types abstracted in the representative HyReminder application,

to simplify our discussion, we focus on two important event types Enter-patient-room

and Exit-patient-room, or Enter and Exit in short respectively. These two types

of events are most critical because they tell us an object’s movements throughout the ICU,

which serve as the basic knowledge from which we can estimate object identification.

Time and space. Same as most data stream management systems [15, 98], we divide

time into a sequence of discrete epochs of, for example, one second in duration. All sensor

readings that occur in the same epoch are treated as simultaneous. Each event e can thus

be attached with a timestamp from the discrete epoch domain, denoted by e.ts. In our

representative application, assuming the epoch granularity is one second, a healthcare

worker can conduct at most one action in a single epoch. That is, one object will trigger

at most one Enter or Exit event at an epoch. As for space, given the well-bounded

physical layout we target, it suffices to model the space as a discrete set of rooms, while

each room connecting to the hallway, as shown in Figure 5.2a.

Room state variables. In our problem setting (Section 5.2), a non-ID-ed event does

not carry an objection identification, but does carry its accurate location, in terms of

Room#, and timestamp ts. Intuitively, we can utilize the Room# and timestamp as a

5.3. PROPOSED GRAPHICAL MODEL 114

starting point to estimate the OID of the event. Casually speaking, suppose a non-ID-ed

Exit event ẽj occurs at the room Ri, we can figure that those who were in room Ri

previously have the possibility to exit the room now. So we will consider those objects

as candidates to associate with ẽj . Similarly, for a non-ID-ed Enter event, we will look

for those objects who were outside the room previously, as they are possible to enter the

room at this time. This intuitive observation suggests us to maintain the state of each

room, i.e., which objects are in the room at a certain time, so that later we can refer to this

information for object identification association.

Therefore, we define a room state variable for each room. Namely, for each Ri ∈ R,

let random variable sti present which objects are in Ri at a given time t. Ideally we wish

to express a room state variable sti as a set of objects. But because of the uncertainty

of OID of an event, a room state could be uncertain as well. In this case each object in

the room state will be associated with a confidence value. For example, s12
1 = ¡O1:0.3,

O2:0.7¿ represents that for Room R1 at time 12, object O1 has 30% possibility to be in

that room while O2 has 70% possibility. A room state could also be an empty set when

no healthcare worker is spotted in the room. In addition, in our representative ICU layout

(shown in Figure 5.2a), every patient room has a door connecting to the hallway. In

our model we treat the hallway as a special kind of room, with a corresponding random

variable called hallway state, denoted as sH .

Object association variables. Since our goal is to infer object identification associ-

ations for non-ID-ed events, we next define an object association variable for each non-

ID-ed event ẽj , denoted as ψj . ψj expresses the probability of an object being associated

with ẽj . It is important to note that the association can be changed over time, because

when obtaining additional information from new events, we may revise the association

to a more accurate probability. Therefore, ψj is a temporal random variable, meaning its

value evolves over time. Specifically, ψtj represents the object identification association

5.3. PROPOSED GRAPHICAL MODEL 115

for event ẽj at time t, where t is different from and regardless of ẽj’s timestamp ẽj.ts. For

example, given a non-ID-ed event enter(122,12,R1,?), where 122 is the nonce, 12

is its timestamp and “?” means its OID is unknown, then an association variable is first

created at time 12, ψ12
122. Assume ψ12

122= {O1:0.5,O2:0.5}, representing that at time 12 we

reckon objects O1 and O2 have equal chances to be associated with this event. Later at

time 14, suppose we are able to improve this association, we set ψ14
122 = {O1:0.9,O2:0.1},

meaning at time 14 we reckon O1 has 90% probability to associate with this event while

O2 has only 10%.

Event information variables. The input event stream is the source of run-time infor-

mation that we use to infer object associations. We thus abstract the information conveyed

by an input event, ei, as an event information variable, denoted as εi. Specifically, given

an ID-ed event, its information variable presents an object’s action (via its event type,

Enter or Exit) and location (via its Room# attribute) at time t. In comparison, given

a non-ID-ed event, we need to first infer its probable OID and then extract its informa-

tion variable. Consequently, a non-ID-ed event with inferred object association presents

one or more objects’ probable actions and locations. To discriminate between these two

scenarios, let ε̂k denote an information variable for an ID-ed event êk, and ε̃j denote an

information variable for a non-ID-ed event ẽj .

5.3.2 Dependencies for Object Association

Next we introduce the conditional dependencies that describe how each component in our

model interacts with the other ones, which is used later to compute the probabilities of the

object associations. Graphically, the random variables stated previously are represented

using nodes, and the conditional dependencies presented in this section are represented

using edges, as depicted in Figure 5.1.

Room state evolution. This conditional dependency describes how a room state vari-

5.3. PROPOSED GRAPHICAL MODEL 116

Figure 5.1: Graphical model for FISS

able, si, evolves as new events continuously arrive. Intuitively, at each epoch, the new

state is the old state plus objects that are just entering the room, and minus objects that

are just exiting the room. In other words, a room state at time t depends on its previous

state of time t-1 and all objects’ movements at time t. Given that objects’ movements are

provided by newly arrived events, which are modeled as event information variables, it

is intuitive that sti conditionally depends on st−1
i and all event information variables at t.

Formally, let Êt = {ε̂k|∀ε̂k.ts = t} be the vector of all information variables for ID-ed

events at t, Ẽt = {ε̃k|∀ε̃k.ts = t} be the vector of all information variables for non-ID-

ed events at t, then this conditional dependency can be expressed as p(sti|st−1
i , Êt, Ẽt).

Note that the special hallway state sH is maintained as follows: an Enter event at any

ordinary room will be considered as an Exit event for the hallway, and vice versa.

Object association for non-ID-ed events. Suppose a new non-ID-ed event ẽj occurs

at room Ri. Intuitively we know that if ẽj is an Exit event, then those who were in room

Ri at time t-1, i.e., objects expressed in st−1
i , will be alternative objects to be associated

with ẽj . In addition, if there are other ID-ed events simultaneously occurring at t, we

can safely exclude those objects from being alternatives of ẽj (because we have assumed

that one object can conduct at most one action at an epoch). Formally, this conditional

dependency can be expressed as p(ψtj|st−1
i , Êt). Symmetrically, if ẽj is an Enter event,

5.4. INFERRING IDS OVER STREAMS: INITIAL EFFORT 117

then those who were outside Ri at time t-1, i.e., in the hallway, should be the alternate

objects associated with ẽj . Such objects are listed in the hallway state st−1
H . So this

conditional dependency can be represented as p(ψtj|st−1
H , Êt).

Formal joint model. Now we are ready to state the formal description of our model.

To make the notations compact, let St = {sti|∀Ri ∈ R} be the vector of all the room

states at time t, ψt = {aj|∀ẽj.ts = t} be the vector of all object identification association

variables at time t. Assume the initial room states S0 are known. We combine the above

conditional dependencies to define a joint model over the entire domain:

p(Ψ,S, Ẽ|Ê, Ẽ) = p(S0)
∏

t

∏
ẽtj
p(ψtj|St−1, Êt)∏

i∈R p(s
t
i|st−1

i , Êt, Ẽt)

where Ψ is the vector of all object identification associations over all times, similarly S

is the vector for all room states over all times; Ê is the vector for information of ID-ed

events over all times and Ẽ is the vector for the information of non-ID-ed events over

all times. Our model can be viewed as a particular case of a Dynamic Bayesian Network

(DBN) [74] but with conditional probability functions specially designed for our problem,

which is depicted graphically in Figure 5.1.

5.4 Inferring IDs Over Streams: Initial Effort

As the raw stream is mixed with ID-ed and non-ID-ed events, the task of translating it

into a probabilistic stream is treated as an inference process in our work. Inference is

essentially to estimate the true object association for non-ID-ed events. Formally speak-

ing, our inference task is, from the joint distribution p(Ψ,S, Ẽ|Ê, Ẽ), to compute the

posterior distribution of all object association variables, given a sequence of information

Ê1:T = {Ê1, ..., ÊT} and Ẽ1:T = {Ẽ1, ..., ẼT}. Namely, to compute, for each association

5.4. INFERRING IDS OVER STREAMS: INITIAL EFFORT 118

variable ψtj ∈ {Ψ1, ...,ΨT}, the distribution p(ψtj|Ê1:T , Ẽ1:T).

5.4.1 Inference using FB Algorithm

We first set out to adapt the classical Forward-backward (FB) inference algorithm [74,82].

In this section, we describe the main intuition of how and why the FB inference algorithm

tackles our problem. This provides a technical context for our later optimizations in

Section 5.5.

To find the posterior distributions, i.e., the most likely states for random variables, the

FB algorithm involves three steps [74, 82]: (1) computing a set of forward probabilities,

(2) computing a set of backward probabilities, and (3) computing smoothed values. Steps

(2) and (3) are typically performed simultaneously, called “backward and smoothing”,

which look backward at any past distributions while accounting for the current informa-

tion, and then obtain more accurate results when possible.

Extension for FB algorithm. The FB algorithm has originally been designed for

static data set, we now extend it to the streaming context: all arrived events are stored;

whenever a new event arrives, the above three steps are performed over all events received

so far; the new event is output with (inferred) object identification. Updated values during

smoothing may be optionally output as revisions if the user chooses to. In the rest of this

paper, we use the term “FB algorithm” to refer to this extended version of FB.

Given that our target applications are real-time systems, typically only the relatively

recent events are of interest. Though a revision of a historical event can increase the

overall inference correctness, it may not be practically useful at the current time. For ex-

ample, the HyReminder system would monitor HCW’s hygiene behaviors in the last one

hour [93]. So a revision for an event more than one hour ago would be assumed not to

affect the monitoring results. Therefore, FISS allows user to set an application-specified

temporal boundary, call smoothing window [54], that restricts the scope of backward revi-

5.4. INFERRING IDS OVER STREAMS: INITIAL EFFORT 119

sion. The FB algorithm then will only smooth events within this temporal sliding window.

Estimating object associations. Given the conditional dependencies of object as-

sociation specified in Section 5.3.2, for a newly arrived event that is non-ID-ed, say ẽj ,

the FB algorithm performs the following in the “forward” step: compute the conditional

distribution p(ψtj|st−1
i , Êt) (for an Exit event) or p(ψtj|st−1

H , Êt) (for an Enter event).

Then the resulting distribution is the estimate of OID for ẽj . Once all non-ID-ed events

are associated with probable OIDs at time t, the FB algorithm keeps room states up to

date by computing the conditional distribution p(sti|st−1
i , Êt, Ẽt).

Then in the “backward and smoothing” step, the FB algorithm revisits past distri-

butions while accounting for the fresh information gained at the current time t. Still

considering the conditional dependency p(sti|st−1
i , Êt, Ẽt), but now FB interprets the de-

pendencies in a retrospective manner: if an object, say Ox, exits Room Ri at time t, then

Ox would have to have stayed in Room Ri at time t-1. Suppose previously the room

state st−1
i was uncertain about Ox’s staying, then the FB algorithm is now able to en-

sure that Ox must have been in st−1
i with 100% confidence. As a result, FB amends the

previous value of st−1
i . And then this updated information is carried by FB to compute

backward probabilities for other older variables. Since the object association depends on

room states, as expressed by p(ψtj|st−1
i , Êt), the revision of a room state may trigger the

revision of an object association in turn. Suppose a historic Exit event ẽ at time t de-

pended on the room state st−1
i , and now st−1

i is revised. Then FB will revise the OID of

ẽ by computing the backward probability of p(ψtj|st−1
i , Êt). The backward and smooth-

ing computation continues going back, one epoch at a time, until reaches the smoothing

window boundary.

Next in Example 5.1, we illustrate how the FB algorithm infers object identifications

for non-ID-ed events using the conditional dependencies defined in Section 5.3.2.

Example 5.1 We make use of a representative layout of an ICU, as shown in Figure 5.2a.

5.4. INFERRING IDS OVER STREAMS: INITIAL EFFORT 120

(a) Example ICU floor plan

(b) Inference results at time 12 and 13

(c) Inference results at time 14

Figure 5.2: Forward-Backward inference example

Figures 5.2b and 5.2c depict Room R1’s state s1 and Hallway’s state sH , while Room R2

to R7’s states are not shown due to space constraints. We assume there are only three

healthcare workers in the ICU, i.e., O1, O2 and O3.

Figure 5.2b depicts Room R1’s state s1 and the hallway’s state sH’ starting from time

t=11. Namely, at time 11, there was no one in Room R1, and there were two workers, O1

and O2, in the hallway.

Suppose at time 12, a non-ID-ed event enter(122,R1,?) arrives, where 122

is the nonce, R1 is the room number and “?” means the OID is unknown. The FB

5.4. INFERRING IDS OVER STREAMS: INITIAL EFFORT 121

algorithm first performs the forward inference to assign possible object identifications

for this event. Based on conditional dependency p(ψtj|st−1
H , Êt), FB checks the hallway’s

status at time 11. Intuitively, those in the hallway at t=11 have the possibility to enter

Room R1 at t=12. So O1 and O2 both are alternatives for this event. To simplify our

discussion, we assume O1 and O2 have equal chances of entering R1. So FB assigns

an equal confidence for them, i.e., 50% vs. 50%. Consequently, a probabilistic event

enter(122,R1,<O1:0.5,O2:0.5>) is output. And then FB computes room states

s12
1 and s12

H based on the conditional probability p(sti|st−1
i , Êt, Ẽt). Since the enter

event is uncertain, room states s1 and sH at time 12 are uncertain too. Namely, s12
1 is set

to ¡O1:0.5,O2:0.5¿, saying that either worker O1 or O2 is at Room R1 at t=12, each with

50% probability. Symmetrically, the hallway state s12
H is set to ¡O1:0.5,O2:0.5¿. And

then FB goes back in time, namely from t=12 to the beginning of the smoothing window

(say t=1), to compute backward probabilities for all random variables (not shown in

Fig. 5.2).

Next at time 13, event exit(124,R2,O3) arrives, expressing that worker O3 exits

Room R2 at t=13. This is an ID-ed event, so no identification association is performed.

The FB algorithm then computes Room R3’s state and hallway’s state at t=13. Next FB

performs backward smoothing over all random variables. Note that Room R1’s historic

states are computed for backward probability, however, none of them is changed given

exit(124,R2,O3). Actually, after the backward probabilistic computation, s12
1 is left

as it was. That is, we are still not sure which one of O1 and O2 was in Room R1 at t=12

and t=13.

Next at time 14, as shown in Figure 5.2c, event exit(127,R1,O1) arrives. This

ID-ed event conveys that worker O1 exited room R1 at t=14. Intuitively we now figure

that O1 must have entered Room R1 previously. By computing the backward probability

of p(ψtj|st−1
H , Êt), FB is able to amend Room R1’s historic states (s13

1 and s12
1) and the

5.4. INFERRING IDS OVER STREAMS: INITIAL EFFORT 122

hallway’s historic states (s13
H and s12

H) to reflect this finding. Namely, s12
1 and s13

1 are

both changed to < O1:1.0>, meaning it is assured that worker O1 was in room R1 at

time 12 and 13. Symmetrically, s12
H and s13

H are revised to present that worker O2 were

in the hallway at time 12 to 13. If the user sets to output revision events, then a revision

Rev(122, < O1 : 1.0 >) is produced. This revision event conveys that the historical

event with nonce 122 should be associated with O1 with probability 1.0.

5.4.2 Discussion of Deficiencies of FB Algorithm

The conventional implementation of the FB algorithm described in Section 5.4.1 is straight-

forward and easy accessible (by extending an off-the-shelf AI software). However, it is

not able to achieve near-real-time responsiveness, nor to scale to a large volume stream,

as we will explain below and also demonstrate by experiments in Section 5.6.4.

In the conventional implementation of FB, the backward and smoothing step is very

computation-intensive. This is because this step computes backward probabilities for

every random variable one epoch at a time. Suppose a smoothing window contains n

epochs, then for each random variable, the smoothing step needs to check relevant condi-

tional probabilities n times [74].

In fact, we observe that many of these computations are unnecessary. For example, in

Figure 5.2b, the event exit(124,R2,O3) occurring at time 13 will not change room

state s1 nor the object association for enter(122,R1,?). But unfortunately the FB

algorithm would nonetheless run the backward computation for all random variables. Our

intuition is that if the distribution of a historic event’s OID is not affected by the newly

added event, the smoothing will produce an “empty” computational result. If we are able

to skip probabilistic computations for those “unaffected” events, then the cost of FB can

be reduced − henceforth its efficiency can be improved.

5.5. INFERENCE SPEEDUP: OPTIMIZATION STRATEGIES 123

5.5 Inference Speedup: Optimization Strategies

To overcome the above deficiencies suffered by the FB algorithm, we now devise three ad-

vanced techniques, namely, pruning unaffected variables, early termination of smoothing

and selective smoothing, to optimize the backward and smoothing step. These techniques

lead to a solution that keeps up with high-volume streams while offering the equally high

precision of inference as the classical FB algorithm.

Our intuition is, in order to chase down the random variables that need to be computed

during the backward and smoothing, we wish to find out which kind of random variables

could ever be affected by the newly updated information.

Definition 5.1 Affected random variable: a random variable that will be set a different

value from its current value by the backward probability computation during the infer-

ence.

5.5.1 Pruning Unaffected Variables

We first show an important property of random variables in our model, which tells us

which random variables are definitely not affected. The merit of knowing that a random

variable is not affected is that the backward computation can thus safely skip this random

variable while guaranteeing to offer the same inference result.

Theorem 5.1 If an alternative of a random variable is associated with 100% confidence,

then this alternative’s confidence will never be changed by the FB inference in future.

Proof: In our model, an alternative with 100% confidence of a random variable can be

produced by two ways: first, it is directly given as input by an ID-ed event; and second,

it is inferred by the FB algorithm. So we prove this theorem case by case. In the first

case, the information brought by an ID-ed event is considered as a ground truth which

5.5. INFERENCE SPEEDUP: OPTIMIZATION STRATEGIES 124

does not depend on any other random variable. Henceforth it will not be changed during

the inference process. In the second case, we prove by contradiction. If an alternative’s

confidence will be changed later, then that means it is still uncertain now. In that case, it

would not have had 100% confidence.2

Lemma 5.1 If all alternatives of a random variable are associated with 100% confi-

dence, then this random variable will not be an affected random variable.

Proof: This lemma is derived from Theorem 5.1 and Definition 5.1.2

Lemma 5.1 is intuitive. Let us consider the random variables in Figure 5.2b for

example. At the beginning, the hallway state at time 11, i.e., s11
H , is assured to be

< O1:1.0,O2:1.0>. This implies s11
H will never be changed by any smoothing afterwards,

because we are already 100% sure who were in the hallway at time 11.

Therefore the first optimization we propose is to skip the backward computation for

those “unaffected” random variables, i.e., those whose alternatives are associated with

100% confidence. Though simple, this optimization is especially appealing in our target

environment where the input stream is mixed with ID-ed and non-ID-ed events. Based

on our model, an ID-ed event provides relevant random variables with accurate states.

Thus there are potentially a large number of random variables with accurate values in our

system. Skipping backward computations for those variables will henceforth significantly

reduce processing cost .

5.5.2 Early Termination Using Finish-Flags

Next, we introduce a second optimization strategy that improves performance by early

terminating unnecessary computations in the backward and smoothing process, yet with-

out sacrificing inference precision. We start by presenting the intuition of this mechanism

using the following example.

5.5. INFERENCE SPEEDUP: OPTIMIZATION STRATEGIES 125

Example 5.2 Let us consider the random variables in Figure 5.2b again. Based on

Lemma 5.1, we know that the hallway state variable s11
H is unaffected. We further ob-

serve that all hallway states earlier than s11
H will also never be changed. The intuition

is, since the state at time 11 is assured, the smoothing performed at time 11 must have

completed all necessary computations for sH with the accurate information already. Thus

any smoothing process after time 11 will never change those historical states afterwards.

Consequently, it is safe to skip backward computations for all hallway states earlier than

time 11.

Example 5.2 suggests that for a room state variable, the backward step should be able

to skip the computations for all historic states before an accurate state. The justification

for this strategy is given in Lemma 5.2.

Lemma 5.2 For a room state random variable si, if its state at time t, i.e., sti, has all

alternatives associated with a 100% confidence, then previous states of si that are earlier

than t will not be affected by any inference occurring later than t.

Proof: This feature is due to the Markov property of our model and the construction

of the Forward-backward algorithm [74, 82]. When computing backward probabilities

for si upon the arrival of an event etj , the information carried by etj , i.e., εj , is passed

through a sequence of states of si, from the current time t to the beginning of the smooth-

ing window, say t0. The passing is from one epoch to its contiguously earlier epoch.

The backward distribution p(stki |εj, s
tk+1
i , ..., sti) computed at every epoch tk provides the

probability of being in the state of stki given event etj and all future states. Noting that

our model (defined in Section 5.3) exhibits the Markov property, namely the conditional

probability distribution of future states of the process depends only upon the present state,

not on the sequence of events that preceded it. So the backward distribution is equal to

5.5. INFERENCE SPEEDUP: OPTIMIZATION STRATEGIES 126

p(stki |εj, s
tk+1
i). If the value of εj and stk+1

i does not change, p(stki) will not change nei-

ther. Now that sti is assumed to be unaffected, its contiguously previous state st−1
i will be

unaffected too. Then it can be deduced that all previous states of sti will be unaffected. 2

Lemma 5.2 gives a basis for our early termination mechanism, namely to stop the

backward and smoothing when a room state with 100% probability is reached. To effi-

ciently implement this mechanism, a mark for room state random variables, called finish-

flag, is created. A finish-flag is attached to a state when the state is certain. The smoothing

process for this random variable stops once a finish-flag is encountered. Suppose there

are thousands of historical states before the finish flag, which is realistic in our stream-

ing environment, using the finish-flag then can save thousands of backward probability

computations. An example of placing and utilizing finish-flags is described below.

Example 5.3 Figure 5.3 shows our optimization techniques applied to the same event

stream as in Example 5.1. Room R1’s states and hallway’s states are listed at the bottom

of Fig. 5.3. From Example 5.1 we know that s11
1 and s11

H have all alternatives with 100%

confidences. Hence two finish-flags are created for s11
1 and s11

H respectively at time 11.

Therefore the backward and smoothing computation for s1 or sH will not check any states

earlier than time 11. In comparison, in Example 5.1, the backward computation goes all

the way back until the starting point of the smoothing window, which potentially involves

hundreds of historic states.

Furthermore, when creating finish-flags, we can also dynamically purge the states

of random variables by removing those states prior to finish-flags, because those states

will never be affected afterwards. Purging by finish-flags is a complementary policy to

purging by the smoothing window in FISS. Purging by finish-flags is more aggressive and

henceforth saves more space. This is important in stream processing where runtime data

structures need to be purged to avoid memory depletion [15, 98].

5.5. INFERENCE SPEEDUP: OPTIMIZATION STRATEGIES 127

Figure 5.3: Example of optimized smoothing when exit(127,R1,O1) just arrives. Upper:
partitions of probabilistic events. Bottom: random variables with finishing-flags. Dashed
lines: hyper-links from events to random variables.

5.5.3 Selective Smoothing via Pattern Matching

Our proposed pruning (Section 5.5.1) and early termination (Section 5.5.2) strategies sift

out random variables that are definitely unaffected, which serves as a preliminary round of

seeking affected random variables. In this section, we propose a method that declaratively

detects affected events.

Motivation of pattern matching based method

We first introduce the notion of affected events, and then present an important observation

regarding affected events in our model.

Definition 5.2 Affected event is an event whose object association will be changed by

the backward probability computation during the inference.

Lemma 5.3 An affected random variable depends on at least one affected event.

Proof: Prove by contradiction. If a random variable depends only on events that are

unaffected, then based on the definition of DBN [74], this random variable will not be

5.5. INFERENCE SPEEDUP: OPTIMIZATION STRATEGIES 128

affected either. This is a contradiction of the assumption that the variable is affected. 2

Motivated by Lemma 5.3, we propose to detect affected events and then follow the

conditional dependencies to locate affected random variables, instead of searching through

all random variables. There are two main benefits of such event detection based strategy:

First, the total number of events in our system is much less than the number of random

variables, as can be seen from our graphic model defined in Section 5.3 and depicted

in Figure 5.1; Second, detecting affected events is more intuitive than detecting random

variables, because events are observed by human beings, while random variables are ab-

stractions.

Therefore we now rephrase conditional dependencies p(ψtj|st−1
H , Ê) and p(sti|st−1

i , Êt, Ẽt)

from events’ perspective. We found that these dependencies essentially specify the corre-

lations between events, as described below.

Observation 5.1 The backward probability of p(sti|st−1
i , Êt, Ẽt) tells that if there is an

Exit event for object Ox at room Ri, then there must be a previous Enter event for Ox

at room Ri. 2

This observation raises an interesting challenge: can we declaratively specify which

event will be affected by a given event? The answer is yes. Intuitively, it appears that an

affected event should satisfy the temporal constraint, the event type constraint, as well as

the value constraints on OID, as presented in Observation 5.1. Specifically, our proposed

solution is to declaratively specify affected events by using Complex Event Processing

(CEP) pattern queries.

The reason of choosing CEP pattern queries is two-fold. First, for the sake of expres-

siveness, a CEP pattern query specifies how individual events are filtered and multiple

2Symmetrically, the backward probability also tells that if there is an Enter event for object
Oi at room Rj , then there must be a previous Exit event for Oi at a certain room. However, in
our model, entering a room is equal to exiting the hallway, and vice versa. So it is unnecessary to
repeat the symmetrical logic in Observation 5.1.

5.5. INFERENCE SPEEDUP: OPTIMIZATION STRATEGIES 129

events are correlated via time-based and value-based constraints. This fits our specific

problem well. Second, for the sake of performance, CEP engines are known for their

sophisticated capabilities for detecting temporal correlated patterns of events in huge vol-

ume event streams [6, 13, 70, 98]. Thus if we can specify affected events via CEP pattern

queries, then the CEP technology can help FISS to detect affected events effectively and

efficiently.

Conditional dependency as pattern queries

Next we describe how to declaratively specify affected events using CEP pattern queries

based on the conditional dependencies in our model. As a preparation, we describe the

properties of an affected event in further depth by extending Observation 5.1.

Lemma 5.4 Given an event e, suppose event e′ is affected by e, then e′ should satisfy

the following conditions: (1) e′.ts ¡ e.ts; (2) e′.OID is uncertain; (3) e′.OID and e.OID

contain at least one common alternative; (4) if e’s event type is Exit, then e′’s event type

is Enter, and vice versa.

Proof: Conditions (1) and (2) can be directly derived from Theorem 5.1. We prove con-

dition (3) by contradiction. Suppose the alternative objects for e are {Oj1 ,...Ojn}. If none

of them is an alternative object of e′, then that means we are 100% sure e′ is not asso-

ciated with any of {Oj1 ,...Ojn}. Based on our assumption of “disjoint tracks constraint”

presented in Section 5.2, then we can figure that the association of e does not affect e′.

This contradicts the definition of our affected event (Def. 5.2). For condition (4), this is

derived from Observation 5.1.2

Our key idea is to compose a pattern query, using the commonly used CEP pattern

query syntax, by imposing every conditions in Lemma 5.4 with proper clauses.

5.5. INFERENCE SPEEDUP: OPTIMIZATION STRATEGIES 130

Figure 5.4: Pattern query Q1 specifying affected event

Since the conditions in Lemma 5.4 require comparisons of probabilistic OIDs, we

need to extend the CEP pattern query semantics to support equivalence tests on a proba-

bilistic attribute.

Definition 5.3 The equivalence test over two OIDs, denoted as ∼=, returns true if the two

OID contain at least one common alternative object, otherwise returns false.

For example, <A:0.5, B:0.5, C:0> ∼= <A:0.7, B:0, C:0.3> returns true, while <A:0.5,

B:0.5, C:0> ∼= <A:0, B:0, C:1.0> returns false.

Next we create the pattern query named Q1 (shown in Figure 5.4) to express the

conditions of affected events as specified in Lemma 5.4. Q1 exhibits three unique features.

• Q1 utilizes the sequence pattern SEQ to specify the temporal order in which the events

must occur. Namely, when a new Exit event arrives we search for an Enter that

occurs previously and satisfies all the predicates in Q1.

• Q1 is defined using the appropriate event selection strategy that addresses how to select

the relevant events from a large volume of events. Namely, Q1 uses the skip-till-next-

match selection strategy to impose that irrelevant events are skipped until an Enter

event matching all constraints is encountered. If multiple events in the event history

can match the constraints, only the first one, i.e., the most recent one, is considered.

• In the WHERE clause Q1 specifies predicates on the probabilistic OID attribute, which

requires the two events to contain at least one common object alternative (Def. 5.3).

5.5. INFERENCE SPEEDUP: OPTIMIZATION STRATEGIES 131

We have thus shown the successful declarative specification of affected events. This

is a transformation from the formal conditional dependencies to practical CEP pattern

queries. It is worth noting that not all conditional dependencies can be transformed into

pattern queries. CEP pattern queries put great emphasis on specifying sequence patterns

of events. We thus take this feature to represent temporal conditional dependencies in

DBNs, i.e., temporal arcs crossing different epochs [74]. For other conditional depen-

dencies that are not temporal, we will use the conventional presentation.

Runtime affected variable detection

Next we describe our proposed algorithm for efficiently detecting affected events and ran-

dom variables by leveraging CEP pattern matching technology. Specifically, we devise

an advanced data structure called hyper-linked Queue, or hyQ in short, to manage events

and random variables in an integrated manner. hyQ maintains partitioned queues of prob-

abilistic events in order to speed up event pattern matching. It also builds hyper-links

between events and relevant random variables to help efficiently trace the conditional

dependencies.

Initialization. At the initialization stage, suppose all pattern queries created for the

model (using the technique presented in Sec. 5.5.3) are registered in FISS. The set of

queries is denoted as Q. Following the well-established NFA (Non-deterministic Finite

Automata) based event pattern detection mechanism [70, 98], an NFA is created for each

pattern query Q ∈ Q to represent the sequence of event types. For example, the NFA for

Q1 contains event types Enter and Exit, as depicted in Figure 5.3 by two black ovals.

The arrow from Enter to Exit imposes the temporal order between them, namely an

Enter event should be ahead of an Exit event, as specified in Q1.

A hyper-linked queue, i.e., hyQ, is created for each event type to store events of the

same type in time order. In order to expedite the equivalent test on OIDs of events,

5.5. INFERENCE SPEEDUP: OPTIMIZATION STRATEGIES 132

every hyQ is partitioned on the probabilistic OID attribute. The conventional partitioning

mechanism in CEP engines [64, 98] dispatches events based on the discrete values of

an attribute. However, in our context, OIDs are uncertain. We thus propose to build

partitions based on the alternatives of an uncertain OID, while recording the confidence

of each alternative in the partitioned event. This special partitioning mechanism allows

an uncertain event to belong to multiple partitions (when its OID has more than one

alternative). Figure 5.3 shows two hyQs for query Q1, namely, the gray block is the

hyQ for event type Exit, while the pink block is the hyQ for event type Enter. Since

we assume there are totally three objects in the example application, events in hyQs are

partitioned on these three alternatives. Note that event enter(122,R1,?) falls into

two partitions, O1 and O2, because it could be associated with either of these two objects.

For a room state variable, in order to provide efficient ordered access, we index its

states by timestamp. Figure 5.3 illustrates such an arrangement. In the bottom of Fig-

ure 5.3, for example, the state variable for room R1, s1, has its states organized in time

order. Also note that the finish-flags have been established for all historic states where

applicable.

Furthermore, to keep track of the probabilistic dependencies, a hyper-link is main-

tained for each event, connecting to all random variables that depend on this event. As

illustrated in Figure 5.3, the hyper-link for event enter(122,R1,?) points to room

R1’s state s12
1 and the hallway’s state s12

H , because the distributions of s12
1 and s12

H depend

on this event.

Selectively Backward Smoothing. Next we describe the customized backward and

smoothing process of FISS. When a new event e arrives, FISS first performs forward

inference, same as Step 1 of the classical FB algorithm (Section 5.4.1). However, FISS

then performs the backward computation in a dramatically different way. Specifically,

FISS first evaluates all pattern queries inQ to locate affected events. Suppose the inferred

5.5. INFERENCE SPEEDUP: OPTIMIZATION STRATEGIES 133

OID of e is ¡Ox1 : p1, ...Oxk : pk¿, where pk denotes the confidence, and the event type

of e is Exit. During the query evaluation, FISS only checks those Enter events that

fall into at least one partition of {Ox1 , ..., Oxk}. This evaluation makes heavy use of

partitioned hyQs. Namely, for a pattern query Q, its NFA helps to restrict the event type

and the temporal order between events. Also its partitioned hyQs enable the equivalence

test on probabilistic OID to be efficient. The query evaluation returns historic events that

are potentially affected by the new event e, while other events will not be considered

for further backward computation (because they are guaranteed to be unaffected by our

technology). Example 5.4 illustrates such query evaluation process.

Example 5.4 In Figure 5.3, at time t=14, event exit(127,R1, O1) arrives. FISS

follows the NFA to search Enter events that occurred before time 14. As we can see, all

historic Enter events are stored in hyQs and partitioned by objects. So FISS only needs

to check those events falling into the partition of objectO1, because exit(127,R1,O1)

is associated with O1. Event enter(122, R1,?) is quickly detected, which is then

determined to be an affected event. And then the evaluation for this particular query

stops, because the “skip-till-next-match” clause of Q1 imposes that only the first matched

event is returned, as explained in Sec. 5.5.3.

Next, given an affected event, FISS utilizes the hyper-links to locate affected random

variables immediately. Moreover, the pruning (Sec. 5.5.1) and finish-flag (Sec. 5.5.2)

strategies are incorporated during the selection of affected random variables, so that those

random variables that are definitely unaffected will be sifted out on the way. Finally, the

backward probability computation will account for those affected random variables only.

Example 5.5 In Figure 5.3, the backward and smoothing at time t=14 only considers

Room R1’s state s1 and hallway state sH , because they are affected variables of exit(127,R1,O1).

All other room state variables are not ever accounted for backward computation.

5.6. EXPERIMENTAL EVALUATION 134

In summary, our proposed selective smoothing strategy achieves scalability by re-

stricting the backward probability computations to a small scope of affected random vari-

ables. Most importantly, we do so in a timely fashion by leveraging the CEP technology.

This enables FISS to offer the most likely association for non-ID-events in near real-time,

even over a large volume stream.

5.6 Experimental Evaluation

We have implemented all proposed inference techniques in FISS using Java and we take

the Active CEP framework [92] as our back-end CEP engine. In this section, we present a

detailed evaluation of FISS using event streams modeled based on the real-world health-

care system HyReminder [93]. All measurements were obtained from a 1.3Ghz Intel

Due-core processor with 4GB RAM running JRE 1.6.

Our experimental results demonstrate that our system (1) produces a probabilistic

event stream with probabilistic object identifications for all events; (2) offers significant

error reduction over the MHT [81] model, a state-of-the-art alternative model; (3) re-

sponds to high-volume streaming events within near-real-time on a moderate hardware

platform; (4) provides on average 15 times faster processing time than the basic FB algo-

rithm.

5.6.1 Experimental Setup

Motion tracing event streams. We make use of the data simulator for a hospital ICU

scenario that produces sensor reading streams according to the real-world observations

obtained in the HyReminder system [93]. Specifically, the simulator has a subroutine

that generates a single healthcare worker’s trace in the ICU, which consists of a sequence

of pairs of Enter and Exit events. Based on our analysis of the real data from the

5.6. EXPERIMENTAL EVALUATION 135

HyReminder system, the time interval of a worker staying at a patient room follows a

Gaussian distribution. This subroutine is first executed for each worker separately. Then

the simulator merges all workers’ traces into one stream ordered in time.

Also, to obtain insight into key factors on accuracy and performance, we control sev-

eral properties of the event stream. One crucial property is the “non-ID-ed ratio” of the

input stream, meaning the percentile of events that do not have associated object iden-

tities. We implement this by randomly selecting a number of events in the stream, for

which their OIDs are hidden. E.g., if the non-ID-ed ratio is set to 20%, then 20% events

in the stream will have their OID missing. In this way, FISS cannot see the real OIDs

of non-ID-ed events, while the simulator keeps a copy of all OIDs for later inference

precision evaluation.

When we use the simulator to generate healthcare workers’ traces, the experimental

results below are the average over 20 runs of the stream per each particular setting.

Metrics. Typically, the accuracy of inference results is measured using the precision

metric, i.e., the ratio of inferred values over the ground truth [20, 54, 89]. In our context,

the precision of our inference algorithms can be measured as the ratio of the inferred

OID over the real OID of a non-ID-ed event. For example, suppose the inferred OID is

< O1=0.75, O2=0.25>, and the ground truth is < O1=1.0>, then the precision is 0.75/1.0

= 75%. Note that we do not calculate precisions for ID-ed events, simply because no

object association inference is done for ID-ed events.

The performance metrics are the processing time and the throughput of our system.

The throughput is measured as the average number of events that our system takes to

process in one unit time. Namely, given a batch of input events of size numIn (numIn is

set to be much larger than the maximum window size of all queries), suppose the system

time span taken to process the batch is Tproc, then the throughput = numIn/Tproc.

5.6. EXPERIMENTAL EVALUATION 136

5.6.2 Alternative Approaches Compared

MHT. In order to demonstrate our proposed time-varying graphical model provides the

desired inference precision, we compare with one of the most widely used approaches for

the data association problem, namely the multiple hypothesis tracking (MHT) model [81].

MHT model maintains multiple possible tracks for each object, and updates every possi-

ble existing track when processing a new event. Over time, a track can branch into many

possible directions. MHT calculates the probability of each potential track. Typically it

only reports the most probable tracks because reporting all is too prohibitive [37]. The

main difference between MHT and our proposed model is that MHT does not revise the

previously inferred object associations in a track.

In the experiments we adopt an open-source Java implementation [1] of MHT based

on the Murty best-k assignment algorithm [37]. The real-world constraints specified in

the MHT implementation (in the form of ambiguity matrix and observed features [1]) are

equivalent to the conditional probabilities aforementioned in Section 5.3.2. The MHT im-

plementation is based on the best-k assignment which returns the k most probable tracks

for an object at each epoch [37]. We have enumerated k from 100 to 5 and found that a

reasonable k in our setting is k=12, which ensures to return results within an affordable

time.

Basic FB Algorithm. We compare the performance of our proposed optimization

techniques with the off-the-shelf Forward-backward algorithm. We make use of an open-

source implementation of FB algorithm in Java [2], and extend the implementation to

enable it to work with streaming data, as described in Section 5.4.1.

5.6. EXPERIMENTAL EVALUATION 137

5.6.3 Experiments on Inference Accuracy

We first evaluate the accuracy of our inference method. Since our optimized inference

algorithm and the basic FB algorithm implement the same model, i.e., use the same con-

ditional dependencies specified in Section 5.3.2, they offer the same inference precision.

Thus we only compare our proposed inference technique (marked as “FISS”) versus MHT

(marked as “MHT”) below.

Non-ID-ed ratio vs. precision. We first test the sensitivity to the non-ID-ed ratio

of the input stream. As Figure 5.5a shows, while both FISS and MHT produce worse

inference accuracy as the non-ID-ed ratio increases, FISS outperforms MHT by 45% on

average. Especially when the non-ID-ed ratio is low, i.e., 5% to 45%, FISS achieves 60%

higher precision than MHT. This is mainly because the MHT model does not conduct

smoothing over historical object identification associations, even when more information

could be gained as new events arrive (especially ID-ed events).

Number of objects vs. precision. Next we vary the number of objects contained in

the simulated stream for a fixed non-ID-ed ratio of 25%. Figure 5.5b reports the average

precision results as the object count increases exponentially. We can see that neither of the

models degrades significantly. The primary reason is the conditional probabilities speci-

fied for object association treat each object independent of each other, which is known as

the “disjoint tracks constraint” commonly adopted in the PDA problem [20]. However,

MHT scales less gracefully than our FISS approach, especially when the object number is

larger than 32. Recall that the MHT implementation is an approximation based on best-k

assignment [37], so when the number of objects increases, an non-ID-ed event naturally

has more alternate objects that can be assigned to it, yet in MHT only a subset (with the

fixed k size) of all possible assignments will be obtained. Such pruning consequently

reduces the inference precision of MHT.

5.6. EXPERIMENTAL EVALUATION 138

(a) Vary stream non-ID-ed ratio (b) Vary number of objects

Figure 5.5: Comparison on Inference Accuracy

5.6.4 Experiments on Inference Efficiency

Though our optimized inference algorithm and the basic FB algorithm provide the same

inference precision, their performances are significantly different. Next we compare the

processing time of these two algorithms for consuming the same chunk of the input stream

(of 2000 events). The following three experiments (Figures 5.6 (a), (b) and (c)) convey

that our optimized inference algorithm (denoted by “FISS”) results in a dramatically less

processing time than the basic FB algorithm (denoted by “FB”) – while FISS only needs

several thousands of milliseconds to process, the basic FB approach requires several mil-

lions, i.e., 15-fold faster.

Number of objects vs. processing time. In this experiment we vary the number of

objects observed in the input stream. The non-ID-ed ratio of the input stream is 25% and

number of rooms is 10, with a smoothing window of 60 minutes. As can be seen from

Figure 5.6a, FISS offers a significantly better processing time than the basic FB. Namely,

FISS processes the input stream on average 15 times faster. Moreover, we observe that

FISS is not very sensitive to the number of objects. The main reason is FISS partitions

events on object ID. Even though the total number of objects increases, only the related

5.6. EXPERIMENTAL EVALUATION 139

(a) Vary number of objects (b) Vary number of rooms

(c) Vary non-ID-ed ratio

Figure 5.6: Processing Time on Stream of 2000 Events

objects to an event, which typically is fairly stable within a given time period, need to be

considered for computation. On the other hand, as explained in Section 5.4.2, the basic

FB algorithm is linear in the number of possible states of a random variable [74], which

in our context is exponential in the number of objects.

Number of rooms vs. processing time. Next we observe the processing time of FISS

and basic FB while varying the number of rooms in the environment. Figure 5.6b demon-

strates that FISS achieves a stable performance when the room number increases. The

key reason is FISS only computes backward probability for affected random variables, as

stated in Lemma 5.4. This limits the scope of random variables that must be accounted for

computation, which usually relates to one particular room and the hallway. On the other

5.6. EXPERIMENTAL EVALUATION 140

Figure 5.7: Smoothing window size vs. throughput

hand, the basic FB algorithm is linear in the room number, as it always revisits every

random variables during the backward step and more rooms means more variables.

Non-ID-ed ratio vs. processing time. Figure 5.6c shows the processing time for

increasing non-ID-ratios. FISS needs more processing time when the number of non-

ID-ed events in the stream increases for three reasons: First, more non-ID-ed events ask

for more forward inference computations; Second, an uncertain event will lead to more

affected historical events compared to an ID-ed event; Three, as the number of accurate

events decreases, fewer finish-flags can be placed. In contrast, the basic FB algorithm

does not perform selective smoothing nor early termination. Its processing time is just

slightly affected by the non-ID-ed ratio simply because it performs more forward infer-

ence computations to estimate missing OIDs.

Smoothing window vs. throughput. Next we investigate how FISS and basic FB

perform under various smoothing window sizes. In this experiment, the smoothing win-

dow varies from 30 minutes to 180 minutes. We set the non-ID-ed ratio to be 25%, the

number of objects to be 32, which is realistic for an ICU. Figure 5.7 demonstrates that

both FISS and basic FB degrade in terms of throughput as the smoothing window be-

comes larger. Because a larger smoothing window means more events must be processed

during backward smoothing. But FISS is capable to scale even when the window size is

5.6. EXPERIMENTAL EVALUATION 141

Figure 5.8: Output strategy vs. num. of output events

180 minutes, mainly thanks to the finish-flag technique. As explained in Section 5.5.2, the

optimized backward computation terminates when either a finish-flag is reached or in the

worst case, when events are out of the window. This experiment shows that even when the

non-ID-ed ratio is relatively large, 25% in this experiment, many backward computations

take advantage of finish-flags, thus resulting in much less processing time. In contrast,

the FB algorithm conducts each backward revision until the window threshold. That is,

its time complexity is polynomial in the number of events [74].

Output strategy vs. number of output events. In this experiment we test three

commonly-used output strategies introduced in Section 5.2, namely reporting any change

(denoted as “Any”), reporting when the object association is certain (denoted as “Cer-

tain”) and reporting when the revision differs by more than 50% (denoted as “50%”). The

input stream in this experiment contains 2000 events with 32 objects and the non-ID ratio

is 25%. Figure 5.8 depicts the number of output events, including both ordinary events

and revisions, for the three strategies. As we can see, among all changes made during

smoothing, shown by the bar of “Any”, only a small portion (namely 30%) of them are

significant, shown by the bar of “Certain”. We also observe that an input event could be

modified more than once, resulting in multiple revisions.

5.7. RELATED WORK 142

5.7 Related Work

Probabilistic data association (PDA). Techniques for PDA determine the correspondence

between measured observations and objects [20] when the association between them is

uncertain. In typical PDA applications, like radar based object tracking and person track-

ing in videos, the input observations never carry any object identification. This is the key

difference from our target application, where the observations are mixed with ID-ed and

non-ID-ed events. Consequently, models and methods from this research area do not work

very well for our problem. Our experiments demonstrate that if we adapt the widely-used

PDA approach, MHT [81], to our problem, the association results are less accurate than

those produced using our proposed FISS solution. Besides, existing work [20, 81, 88] of

PDA largely focused on modeling, while the efficiency of processing has been overlooked

- which is a key objective of our work.

RFID stream processing. Recent research has addressed the RFID location infer-

ence [28, 32, 89] and RFID data cleaning problems [45, 54]. In these problem settings,

object identities are reliably given by RFID readings, i.e., no inference on object iden-

tification is needed. Instead, they focus on challenges like cleaning redundant readings

and inferring objects’ precise locations. Therefore they fundamentally tackle a different

problem from us.

Furthermore, in their context, observations of an object are likely redundant, lossy or

erroneous. Hence they chose approximate inference methods such as particle filtering [28,

32, 45, 54, 89], which maintains weighted samples about the true location of each object.

In contrast, in our problem setting (described in Section 5.2), the information brought by

input events are precise, in the sense that even though the identification of an event may

be missing, all attributes (including time and location) of an event are accurate. Namely

we do not need to handle redundant, lossy or erroneous event streams. We thus chose

5.8. CONCLUSION 143

an exact inference method, the Forward-backward algorithm, that fits our problem well.

In spite of different models and inference methods, technically we have been inspired by

several ideas of efficient inference over streaming data from their techniques, like limiting

the scope of smoothing [54,89] and customizing data structures to speed up the inference

process [28, 89].

5.8 Conclusion

In this chapter we present a probabilistic approach to translate a stream consisting of ID-

ed and non-ID-ed sensor readings into a probabilistic event stream, thus enabling object-

based event analytics in real-time. We design a set of optimization strategies for inferring

streaming events using the extended Forward-backward algorithm. The proposed strate-

gies scale the backward probability computation while offering the most likely object

association. Our experiments show that our proposed solution offers on average 45% bet-

ter precision over the state-of-the-art PDA approach. Our optimized inference strategies

achieve on average 15 times higher throughput than the basic Forward-backward imple-

mentation.

We are the first to adopt CEP techniques for probabilistic inference over event streams.

We not only provide the methodology of transforming temporal dependencies involved in

the inference problem into pattern queries (Section 5.5.3), but also experimentally show

the dramatic performance gain offered by our CEP-aided optimizations (Section 5.6.4).

Our proposed optimization techniques, namely leveraging pattern queries for selec-

tively smoothing and using finish-flags to early terminate backward computations, are

general mechanisms for the Forward-backward algorithm. Even though these techniques

were demonstrated in the context of our object identification inference problem, they

could be applied to other problems wherever the Forward- backward inference is adopted.

5.8. CONCLUSION 144

Improving the performance of probabilistic inference algorithms with database principles

is of independent interest to the probabilistic database community [26, 56, 78]. The gen-

erality of our techniques strengthens the contributions and warrants future studies.

145

Chapter 6

Conclusions and Future Work

6.1 Summary

The main goal of this dissertation is to introduce advanced services of Complex Event

Processing (CEP) systems that are becoming increasingly important for many emerg-

ing stream-based applications. Specifically, we tackle the problems of the transactional

processing and the privacy preservation inside CEP, and the problem of probabilistic in-

ference powered by the CEP technology. The three highlights of this dissertation can be

summarized as follows.

First, we identify the problem of concurrency control in stream execution, and our in-

novation of stream-transactions is the first attempt of introducing transactional concepts

into stream environments. We further design three stream-transaction scheduling algo-

rithms that achieve high responsiveness without compromising correctness. Our work

has been implemented within a commercial CEP engine and utilized to support a real-

world health care application. Based on our stream-transaction model, we also develop

failure recovery strategies for transactional stream systems, which dynamically combines

stream data backup and transaction logging.

6.1. SUMMARY 146

Second, we are the first to study the problem of utility-maximizing event stream sup-

pression with privacy preference. We formally prove that this problem is in general NP-

Hard. We then design the Hybrid online event suppression algorithm, which tweaks the

event type level decisions based on run-time context of the event stream. Our experiments

using real-world and synthetic data show that our proposed approaches can preserve util-

ity effectively and efficiently. We also develop novel algorithms to address the subprob-

lem of pattern match cardinality estimation. We demonstrate that the periodicity-based

approach is needed for accurate cardinality estimation in real world sensor reading data

sets.

Third, we have built the FISS framework that efficiently transforms the raw stream

of ID-ed and non-ID-ed events into a probabilistic stream of events with inferred object

identifications. The key technical contribution of FISS is a suite of strategies for opti-

mizing the performance of the Forward-backward inference algorithm. Most notable, we

adopt CEP techniques for probabilistic inference over event streams. We not only provide

the methodology of transforming temporal dependencies involved in the inference prob-

lem into pattern queries, but also experimentally show the significant performance gain

offered by our CEP-aided optimizations.

6.1.1 Interrelationship of Proposed Techniques

Now let us consider the inter-relationships among the three proposed techniques. As

depicted in Figure 6.1, we are capable to deal with two kinds of input: the ordinary event

stream and the uncertain event stream (with non-ID-ed events). All of our techniques are

implemented as optional components to a CEP engine.

We first consider the scenario of an ordinary event stream, and analyze the interrela-

tionship between ACEP and Privacy-Preserving suppression. Recall that ACEP and the

associated stream transaction technology functions directly in the kernel of a CEP query

6.1. SUMMARY 147

CEP Engine

Active CEP and
Stream Transaction

Component Probabilistic
Inference

Component

Privacy-
Preserving Event

Suppression
Component

Uncertain
event stream

4. Probabilistic
stream

1. Original event stream

2. Suppressed
stream

3. Suppressed
probabilistic

stream

Figure 6.1: Interrelationship of Proposed Techniques

engine. If our Privacy-Preserving suppression technique is utilized, it first drops events

and then the suppressed stream will be fed to the CEP engine. In other words, the sup-

pression algorithm takes action before the event stream is evaluated by any pattern query.

Hence the event suppression is transparent to ACEP. Even though ACEP may receive a

suppressed stream if the privacy-preserving service is turned on, our proposed active rule

and stream transaction techniques do not need to change at all to process a suppressed

stream. In summary, our ACEP and privacy-preserving techniques can co-exist in a sin-

gle CEP engine without further extension.

Next we analyze the scenario of an uncertain event stream. In this scenario we have

to first use the Probabilistic Inference technique to transform the uncertain stream into

a probabilistic stream. After gaining the probabilistic stream, we have three options de-

pending on how we turn on/off each component: (1) consuming the probabilistic stream

directly for CEP pattern matching; (2) feeding the probabilistic stream to ACEP; (3) us-

ing the probabilistic stream for privacy-preserving suppression and then feeding the sup-

pressed probabilistic stream to ACEP. These alternative input streams for a CEP system

is also illustrated in Figure 6.1. Therefore, we want to figure out the following questions.

6.1. SUMMARY 148

First, how an ACEP system deals with a probabilistic event stream? Second how to apply

the privacy-preserving technique to a probabilistic event stream?

For the first question, when the ACEP technique works on a probabilistic event stream,

we expect the following changes are needed: First, the shared store, i.e., a static rela-

tion, will contain uncertain tuples. Nowadays uncertain/probabilistic databases have been

widely studied in the community [38]. We would then adopt these well-established tech-

niques to maintain an uncertain table and support relational operations on it. Second,

pattern queries will produce probabilistic pattern matches. Namely, a pattern match is as-

sociated with a confidence value to denote the probability of its occurrence. Third, the rule

triggering condition will take probabilistic pattern matches into account. Specifically, the

rule triggering condition would also specify the threshold of the confidence of a pattern

match. In practice, if an active rule’s action will be visible by the outside word, we would

choose to set the threshold in a conservative fashion. For example, in the HyReminder

application, the active rule that may change a HCW’s status to “warning/violation” should

have a high confidence threshold. Because we want to avoid a false alarm which certainly

annoys the user. In summary, the above three changes essentially accord with the prob-

abilistic event model. But our notion of stream-transaction, execution correctness and

concurrency control algorithms will equally work.

For the second question, our utility-based suppression decision-making process does

not need to change, while the pattern match cardinality estimation does need to revise. In

particular, our arrival rates based estimation needs to collect the arrival rates on an event-

type basis, and our periodicity based estimation requires to mine the periodical patterns

over time. The new challenge is basically to gather the statistics on a probabilistic event

stream. This in general is a hard problem, which I would explore in future work. But

a quick-fix would be to use a hard-coded threshold to pre-process the sampled stream.

Namely, a probabilistic event with a confidence above the threshold will be treated as

6.2. FUTURE RESEARCH DIRECTIONS 149

a regular event, while the one with a confidence below the threshold will be discarded.

Apparently further research is needed to cope the stream statistics with a “possible world”

semantics, and then our cardinality estimation formulas should take such probabilistic

statistics into account and render most-likely estimates.

6.2 Future Research Directions

Next we describe the possible directions for future research based on the concepts pre-

sented in this dissertation.

6.2.1 On-line Sensor Anomaly Detection

During the construction of the HyReminder system at Univ. of Massachusetts Memorial

Hospital, we found that besides the requirements toward CEP’s functionalities that we

have addressed in this dissertation, the quality of sensor event data is also a critical issue

that needs to be carefully handled. For example, we observed that a sensor may generate

a large number of garbage readings when it is low in battery. In this case, if we directly

took these readings for hygiene compliance monitoring, the monitoring results would be

wrong or unreliable. Therefore, we have to detect and deal with sensor anomalies before

we feed the sensor data for real-time analytics.

Anomaly or outlier detection has been an active area of computer science research

(see [29, 76] for a recent survey). Popular anomaly detection approaches include classi-

fication based detection (using neural networks and SVM [31, 50, 60]), clustering based

detection (using distance based clustering [53]) and statistical detection (using stochastic

models [14]). Most of these machine learning based algorithms are computation-intensive

and function off-line. But our goal is to discover abnormal sensor behaviors over increas-

ingly high-volume event streams within an actionable time.

6.2. FUTURE RESEARCH DIRECTIONS 150

A natural idea is to resort to CEP for performance boosting, like we successfully

practiced in Chapter 5. Namely, we wish to improve the efficiency of the above out-

lier detection method(s) with streaming data customization and on-line pattern matching

techniques. Specifically, we expect to peruse the following directions.

• Early filtering. Similar to the “finish-flag” technique proposed in Section 5.5, it is

beneficial to quickly filter out some sensors which are definitely abnormal or def-

initely normal by applying proper intuitive judgments. One can think about such

heuristic filtering as a “weak leaner”, which represents an intuitive classification

rule that people acquire from the real-world application. For example, if a sensor

does not generate heartbeat events periodically, then this sensor is likely to have

some problems. We can report this sensor as an abnormal one even before conduct-

ing any complicated outlier detection algorithms as described above.

• Partition and parallel processing. Borrowing the idea of Partitioned Active Instance

Stack (PAIS) [98] from the modern CEP engines, we can partition sensor readings

on the qualification attribute of events. For example, we may want to partition on

sensor ID, physical location, sensor type, etc. And then the computation within

each partition can be executed in parallel.

• Exploring temporal relationship of events. In online anomaly detection tasks, a

common underlying logic is to explore the temporal correlations among events.

For example, once a door sensor generates an Enter-room event of a doctor, this

must be followed by an Exit-room event. We can also learn the distribution of

the time-span that a person spends in the room, so that if there is not a matched

Exit-room event is observed within a reasonable time, or there is more than one

such Exit-room event, then we can trigger an anomaly alarm. As we show in

Section 5.5, the CEP technology is good at tracking such temporal correlations

6.2. FUTURE RESEARCH DIRECTIONS 151

among events. Therefore we could leverage the CEP pattern matching technology

to speed up such anomaly detection tasks.

6.2.2 Revisiting Alternative Stream Transaction Models

Besides of our ACEP model, two alternative models for transaction support in stream

management systems are also available. First, many stream management systems use

feedback streams (also called internal streams) and punctuations to support the interac-

tion between queries [27,30,71]. We found that such mechanisms can be customized for

stream transaction execution, if we transform relations into internal streams. We hence-

forth call this transactional stream model as Stream-Oriented Model. Second, researchers

in [24] proposed the Unified Transaction Model as an alternative to our ACEP model

for stream transaction management. Below we briefly summarize these two alternative

models using the HyReminder application as a running example (Section 3.3). We will

explain how each model works in terms of data model, query model and transaction

management.

(1) Stream-Oriented Model.

Data Model. Stream-Oriented model transforms a relation into a stream. According

to the classical definition [15], a stream is an unbounded set of tuples ordered by time, on

which the only possible update operation is APPEND.

For illustration, in the HyReminder example (Section 3.3), we could define an internal

stream to represent the relation of HCWs’ hygiene compliance status, named S HCWstatus.

The schema of this stream is (HCW-ID, Timestamp, Status), which represents

a HCW’s status at a certain timestamp. Compared to the original relation, this stream has

an extra Timestamp attribute. The reason is that there is no relational “update” opera-

tion on a stream. Whenever a HCW’s status changes, a new event will be appended to this

internal stream. Hence we need to maintain the application timestamp for every event in

6.2. FUTURE RESEARCH DIRECTIONS 152

the stream. In summary, this is a straightforward transformation from the static relation

to a potentially infinite stream.

Query Model. In order to model that multiple queries will concurrently update the

internal stream, we extend a stream processing system with the following functionality:

allow multiple queries to publish their results into one single internal stream.

We now re-define query Q1 (specified in Section 3.3). In the Stream-Oriented model,

Q1 takes two input streams: the original input stream as well as the internal stream

S HCWstatus. Semantically, for every input event ei with a given HCW ID, Q1

checks whether the HCW is currently in green status. This checking is performed on the

internal stream S HCWstatus. Specifically, the latest status (i.e., with a largest time-

stamp) of the HCW is extracted from S HCWstatus. If the checking returns “true”, Q1

keeps ei for further evaluation – to detect the pattern SEQ(Exit, !Wash, Enter).

If eventually a match for a certainHCW ID is detected by Q1, this HCW’s status should

be updated to yellow. That is, Q1 will append a new event, (HCW ID, timestamp, Y ellow),

into the internal stream S HCWstatus.

Transaction Management. Special concurrency control has to be enforced to accesses

and updates on the internal stream, otherwise read-too-late and write-too-late anomalies

may arise. For example, when Q1 tries to read S HCWstatus for checking HCW007’s

status at time 15, the event (HCW007, 12, Green) should have been already inserted by

Q2. However, Q2 in fact inserted such event after Q1’s checking. In this case, Q1 should

have read the information that “HCW007 was on green status at time 15” but read some

other value instead.

For illustration, we assume that the correctness of execution can be interpreted as all

READ and APPEND operations are ordered according to the triggering events’ application

timestamp. To ensure the correctness, in the Stream-Oriented model, a concurrency con-

trol mechanism would be to utilize special punctuations [30] to synchronize the stream

6.2. FUTURE RESEARCH DIRECTIONS 153

processing. Basically a punctuation specifies that all operations corresponding to the

events with smaller timestamp than the punctuation have finished. In other words, if

Q1 wishes to check HCW007’s status at time 15, it has to wait till the punctuation on

S HCWstatus notifies that the current time of S HCWstatus has advanced to 15.

(2) UTM Model.

Data Model. The UTM model treats all the data sources as sets of data items on which

READ and WRITE are executed. As a result, a relation is simply an unordered set of tuples

sharing the same schema. A stream is a possibly infinite partially ordered set of events,

where an event can be interpreted as a tuple with a special ordering on time attribute.

Each event arrival is converted to a WRITE operation on the input stream. In our running

example, the input stream is represented as a relation named T InputEvents.

Query Model. UTM has one-time queries only. Therefore a continuous query is repre-

sented as an infinite sequence of one-time queries which are fired as new event arrives. For

example, when an event Enter15(HCW007, RoomI) triggers the execution of Q1, Q1

reads all tuples in the relation T InputEvents within the time window, processes the

sequence pattern matching and then possibly updates the relation S HygieneStatus

with a new state for HCW007.

Transaction Management. The traditional definitions of transaction, conflict and se-

rializability can be reused in UTM without change [23]. Then SS2PL (Strong Strict

2-Phase Locking) protocol can be adopted for run-time transaction scheduling. Specifi-

cally, locks are added to T InputEvents. For example, when Q1 intends to read(write)

T InputEvents, it needs to request a read(write) lock first. When a transaction ends,

the locks held by this transaction are released.

Comparing Alternative Models.

A key selling point of the Stream-Oriented model and UTM is that they treat all data

and operations uniformly. The Stream-Oriented model can conduct pure streaming non-

6.2. FUTURE RESEARCH DIRECTIONS 154

blocking process, which has been demonstrated to be fast and suitable for applications

that need near real-time responsiveness. On the other hand, UTM utilizes the sole rela-

tional model so that all conventional transaction management techniques established for

RDBMS can be applied without any change. Also, when defining a transaction, keep-

ing a single data model with corresponding operations can straightforwardly resort to the

classical transaction definition – a partially ordered sequence of homogeneous operations.

However, such uniform processing sacrifices the nature of either a push-based or a

pull-based execution paradigm. Specifically, in the Stream-Oriented model, after trans-

forming a relation into a stream, the user cannot use the well-known SQL to access

or update the relation any more. Moreover, the punctuation based synchronization is

more ad-hoc compared to the well-established lock based concurrency control protocols

in RDBMS. On the other hand, in UTM a continuous query has to be transformed to a

set of one-time queries. This mitigates the key benefits of a continuous query: non-stop

monitoring and efficient one-pass analysis. Executing a huge number of one-time queries

inevitably increase the processing time.

In contrast, our ACEP model tries to keep the nature of push-based and pull-based

query processing by embracing both relations and streams into a single model. In ACEP,

a transaction may be composed by heterogeneous operations, i.e., an operation can be

either a READ/WRITE on a relation or a READ/APPEND on a stream. This sounds more

complicated than the classical definition of a transaction. But in fact, once we group

all operations triggered by an input event into such a transaction, many traditional con-

currency control algorithms (e.g., SS2PL) can be re-used. Another benefit of the ACEP

model is that a relation or a stream can keep using its original query and execution model,

which is just right for the particular data. In order words, there is no need to convert a

relation to a stream or transform a stream to a relation. Even better, the user can use CEP

language or CQL to define a continuous query, while freely embedding SQL sub-queries

6.2. FUTURE RESEARCH DIRECTIONS 155

to access static relations.

Furthermore, the Low-water-mark transaction scheduling algorithm in ACEP can be

viewed as a hybrid of using locks and punctuations. Specifically, the locks keep track of

the access on a relation, while the low-water-mark (which can be viewed as a punctuation)

maintains the time increment of the table and then grants locks.

In summary, it would be interesting and promising to conduct an experimental per-

formance comparison for these three alternative models. We hope the experimental eval-

uation can confirm our analytic results above. Eventually, future work in this direction

will provides a useful guidance of choosing the stream transaction model for real-world

applications.

156

Bibliography

[1] Implementation of the murty algorithm to obtain the best k assignments.
http://code.google.com/p/java-k-best/.

[2] Java implementation of algorithms from ”artificial intelligence - a modern ap-
proach 3rd edition”. http://code.google.com/p/aima-java/.

[3] Microsoft StreamInsight: http://www.microsoft.com/sqlserver/2008/en/us/r2-
complex-event.aspx.

[4] OptimJ, a java-based language for optimization: ateji.com/optimj.

[5] Streambase cep product. http://www.streambase.com/.

[6] Sybase coral 8 engine. http://www.sybase.com/products.

[7] U.s. centers for disease control and prevention.
http://www.cdc.gov/ncidod/dhqp/hai.html.

[8] Wavemark system: Clinical inventory management solution
www.wavemark.net/healthcare.action.

[9] S. Abiteboul, P. Kanellakis, and G. Grahne. On the representation and querying of
sets of possible worlds. SIGMOD, pages 34–48, 1987.

[10] O. Abul, F. Bonchi, and F. Giannotti. Hiding sequential and spatiotemporal pat-
terns. In IEEE Trans. Knowl. Data Eng., volume 22, pages 1709–1723, 2010.

[11] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. Efficient pattern matching
over event streams. In Proceedings of SIGMOD, 2008.

[12] A. Aiken, J. Widom, and J. M. Hellerstein. Behavior of database production rules:
termination, confluence, and observable determinism. SIGMOD Rec., pages 59–
68, 1992.

[13] M. Ali, C. Gerea, B. S. Raman, and et al. Microsoft cep server and online behav-
ioral targeting. VLDB Demo, pages 1558–1561, 2008.

[14] F. Anscombe and I. Guttman. Rejection of outliers. Technometrics, (2):123–147.

BIBLIOGRAPHY 157

[15] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, K. Ito, R. Motwani, U. Srivastava,
and J. Widom. Stream: The stanford data stream management system. In IEEE
Data Engineering Bulletin. Springer, 2003.

[16] R. Avnur and J. M. Hellerstein. Eddies: continuously adaptive query processing.
SIGMOD, pages 261–272, 2000.

[17] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in
data stream systems. In Proceedings of the twenty-first ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, PODS ’02, pages 1–16,
2002.

[18] B. Babcock, S. Babu, R. Motwani, and M. Datar. Chain: Operator scheduling for
memory minimization in data stream systems. In Proceedings of SIGMOD, 2003.

[19] S. Babu and J. Widom. Continuous queries over data streams. SIGMOD Rec.,
30:109–120, 2001.

[20] Y. Bar-Shalom, editor. Tracking and Data Association. Academic Press Profes-
sional, Inc., 1987.

[21] R. Barga, J. Goldstein, M. Ali, , and M. Hong. Consistent streaming through time:
A vision for event stream processing. CIDR, pages 363–374, 2007.

[22] O. Benjelloun, A. D. Sarma, A. Y. Halevy, and J. Widom. Uldbs: Databases with
uncertainty and lineage. VLDB, 2006.

[23] P. Bernstein and E. Newcomer. Principles of Transaction Processing. Elsevier,
second edition, 2009.

[24] I. Botan, P. Fischer, D. Kossmann, and N. Tatbul. Transactional stream process-
ing. In Proceedings of the 15th International Conference on Extending Database
Technology, pages 204–215. ACM, 2012.

[25] J. M. Boyce and D. Pittet. Guideline for hand hygiene in healthcare settings.
MMWR Recomm Rep., 51:1–45, 2002.

[26] H. C. Bravo and R. Ramakrishnan. Optimizing mpf queries: Decision support and
probabilistic inference. SIGMOD, 2007.

[27] L. Brenna, A. Demers, J. Gehrke, M. Hong, J. Ossher, B. Panda, M. Riedewald,
M. Thatte, and W. White. Cayuga: a high-performance event processing engine.
In ACM SIGMOD international conference on Management of data, pages 1100–
1102, 2007.

[28] Z. Cao, C. Sutton, Y. Diao, and P. J. Shenoy. Distributed inference and query
processing for rfid tracking and monitoring. PVLDB, 4:326–337, 2011.

BIBLIOGRAPHY 158

[29] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection. ACM Computing
Surveys, 41(3):1–58, 2009.

[30] B. Chandramouli, J.Goldstein, and D. Maier. On-the-fly progress detection in iter-
ative stream queries. VLDB, pages 241–252, 2009.

[31] C.-C. Chang and C.-J. Lin. Libsvm: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:1–27, 2011.

[32] H. Chen, W.-S. Ku, H. Wang, and M.-T. Sun. Leveraging spatio-temporal redun-
dancy for rfid data cleansing. SIGMOD, pages 51–62, 2010.

[33] M. Cherniack and et al. Scalable distributed stream processing. CIDR, 2003.

[34] D. Chu, A. Tavakoli, L. Popa, and J. Hellerstein. Entirely declarative sensor net-
work systems. In VLDB, 2006.

[35] G. Cormode and M. N. Garofalakis. Sketching probabilistic data streams. SIG-
MOD, pages 281–292, 2007.

[36] G. Cormode, S. Muthukrishnan, K. Yi, and Q. Zhang. Optimal sampling from
distributed streams. In Proceedings of PODS, 2010.

[37] I. Cox and S. Hingorani. An efficient implementation of reid’s multiple hypothesis
tracking algorithm and its evaluation for the purpose of visual tracking. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 18(2), 1996.

[38] N. N. Dalvi, C. Ré, and D. Suciu. Probabilistic databases: diamonds in the dirt.
Commun. ACM, 52(7):86–94, 2009.

[39] A. Das, J. Gehrke, and M. Riedewald. Approximate join processing over data
streams. In Proceedings of SIGMOD, 2003.

[40] U. Dayal, B. T. Blaustein, A. P. Buchmann, and et al. The hipac project: Combining
active databases and timing constraints. SIGMOD Rec., 17(1):51–70, 1988.

[41] N. Dindar, B. Guc, P. Lau, A. Ozal, M. Soner, and N. Tatbul. Dejavu: declarative
pattern matching over live and archived streams of events. SIGMOD, pages 1023–
1026, 2009.

[42] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity
in private data analysis. In Lecture Notes in Computer Science, 2006.

[43] M. G. Elfeky, W. G. Aref, and A. K. Elmagarmid. Stagger: Periodicity mining of
data streams using expanding sliding windows. In Proceedings of ICDM, 2006.

[44] M. L. et al. E-cube: Multi-dimentional event sequence processing using concept
and pattern hierarchies. ICDE Demo, pages 1097–1100, 2010.

BIBLIOGRAPHY 159

[45] M. J. Franklin, S. R. Jeffery, and et al. Design considerations for high fan-in sys-
tems: The hifi approach. CIDR, pages 290–304, 2005.

[46] A. Gkoulalas-Divanis and G. Loukides. Revisiting sequential pattern hiding to
enhance utility. In ACM SIGKDD, pages 1316–1324, 2011.

[47] M. Goetz, S. Nath, and J. Gehrke. Maskit: Privately releasing user context streams
for personalized mobile applications. In Proceedings of SIGMOD, 2012.

[48] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, 1992.

[49] C. Gupta, S. Wang, I. Ari, M. Hao, U. Dayal, A. Mehta, M. Marwah, and
R. Sharma. Chaos: A data stream analysis architecture for enterprise applications.
CEC, pages 33–40, 2009.

[50] S. Hawkins, H. He, G. Williams, and R. Baxter. Outlier Detection Using Replicator
Neural Networks. Neural Networks, pages 170–180, 2002.

[51] Y. He, S. Barman, and J. Naughton. Preventing equivalence attacks in updated,
anonymized data. In Proceedings of ICDE, 2011.

[52] Y. He, S. Barman, D. Wang, and J. Naughton. On the complexity of privacy-
preserving complex event processing. In Proceedings of PODS, 2011.

[53] Z. He, X. Xu, and S. Deng. Discovering cluster-based local outliers. Pattern
Recognition Letters, 24(9-10):1641–1650, 2003.

[54] S. R. Jeffery, M. Franklin, and et al. An adaptive rfid middleware for supporting
metaphysical data independence. VLDB Journal, 2007.

[55] Q. Jiang and S. Chakravarthy. Queueing analysis of relational operators for con-
tinuous data streams. In Proceedings of CIKM, 2003.

[56] B. Kanagal and A. Deshpande. Online filtering, smoothing and probabilistic mod-
eling of streaming data. ICDE, 2008.

[57] K. Kenthapadi, N. Mishra, and K. Nissim. Simulatable auditing. Proceedings of
PODS, 2005.

[58] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik. Quantitative System
Performance. Prentice Hall, 1984.

[59] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito: efficient full-domain
k-anonymity. In Proceedings of SIGMOD, 2005.

BIBLIOGRAPHY 160

[60] K.-l. Li, H.-k. Huang, S.-f. Tian, I. Technology, C. Science, and I. Detection. Im-
proving one-class SVM for anomaly detection. Machine Learning, (November):2–
5, 2003.

[61] M. Li, M. Mani, E. A. Rundensteiner, D. Wang, and T. Lin. Interval event stream
processing. In Proceedings of the Third ACM International Conference on Dis-
tributed Event-Based Systems, DEBS ’09, pages 35:1–35:2, New York, NY, USA,
2009.

[62] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy beyond k-anonymity
and l-diversity. In Proceedings of ICDE, 2007.

[63] M. Liu, M. Li, D. Golovnya, E. A. Rundensteiner, and K. T. Claypool. Sequence
pattern query processing over out-of-order event streams. ICDE, pages 784–795,
2009.

[64] M. Liu, E. A. Rundensteiner, K. Greenfield, C. Gupta, S. Wang, I. Ari, and
A. Mehta. E-cube: multi-dimensional event sequence analysis using hierarchical
pattern query sharing. In SIGMOD Conference, pages 889–900, 2011.

[65] T. Liu, P. Bahl, and I. Chlamtac. Mobility modeling, location tracking, and tra-
jectory prediction in wireless atm networks. IEEE Journal on Selected Areas in
Communications, 1998.

[66] E. Lo, B. Kao, W. shing Ho, S. D. Lee, C. K. Chui, and D. W. Cheung. Olap on
sequence data. SIGMOD, pages 649–660, 2008.

[67] H. J. Loether and D. G. McTavish. Descriptive and inferential statistics, an intro-
duction. 1993.

[68] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam. l-diversity:
Privacy beyond k-anonymity. In Proceedings of ICDE, 2006.

[69] A. S. Maskey and M. Cherniack. Replay-based approaches to revision processing
in stream query engines. In Scalable Stream Processing System, pages 3–12, 2008.

[70] Y. Mei and S. Madden. Zstream: A cost-based query processor for adaptively
detecting composite events. SIGMOD, pages 193–206, 2009.

[71] R. F. Moctezuma, K. Tufte, and J. Li. Inter-operator feedback in data stream man-
agement systems via punctuation. CIDR, 2009.

[72] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. Aries: a trans-
action recovery method supporting fine-granularity locking and partial rollbacks
using write-ahead logging. ACM Trans. Database Syst., 17, 1992.

[73] R. Motwani, S. U. Nabar, and D. Thomas. Auditing SQL queries. In Proceedings
of ICDE, 2008.

BIBLIOGRAPHY 161

[74] K. P. Murphy. Dynamic bayesian networks: Representation, inference and learn-
ing. Doctor of Philosophy Dissertation, 2002.

[75] R. Nehme, E. Bertino, and E. A. Rundensteiner. A security punctuation framework
for enforcing access control on streaming data. In Proceedings of ICDE, 2008.

[76] K. Ni, N. Ramanathan, M. Chehade, L. Balzano, S. Nair, S. Zahedi, G. Pottie,
M. Hansen, and M. Srivastava. Sensor network data fault types. Transactions on
Sensor Networks, 5(3), 2009.

[77] D. Nicklas, M. Grossmann, and T. Schwarz. Nexusscout: An advanced location-
based application on a distributed, open mediation platform. In VLDB, 2003.

[78] F. Niu, C. Ré, A. Doan, and J. Shavlik. Tuffy: Scaling up statistical inference in
markov logic networks using an rdbms. VLDB, pages 373–384, 2011.

[79] N. W. Paton and O. Diaz. Active database systems. ACM Computing Surveys,
31(1):63–103, 1999.

[80] C. Ré, J. Letchner, M. Balazinksa, and D. Suciu. Event queries on correlated
probabilistic streams. SIGMOD, pages 715–728, 2008.

[81] D. B. Reid. An algorithm for tracking multiple targets. IEEE Trans. on Automatic
Control, pages 843–854, 1979.

[82] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, 2009.

[83] J. Singh, P. Brandao, and J. Bacon. Context-aware disclosure of health sensor data.
In Proceedings of Pervasive Computing Technologies for Healthcare, 2010.

[84] U. Srivastava and J. Widom. Flexible time management in data stream systems.
SIGMOD, pages 263–274, 2004.

[85] R. E. Steuer. Multiple Criteria Optimization: Theory, Computations, and Applica-
tion. 1986.

[86] L. Sweeney. k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzzi-
ness Knowl.-Based Syst., 10, 2002.

[87] J. Tan. Inapproximability of maximum weighted edge biclique and its applications.
In Proceedings of TAMC, 2008.

[88] M. A. Tinati and T. Y. Rezaii. Multi-target tracking in wireless sensor networks
using distributed joint probabilistic data association and average consensus filter.
In International Conference on Advanced Computer Control, pages 51–56, 2009.

BIBLIOGRAPHY 162

[89] T. Tran, C. Sutton, R. Cocci, Y. Nie, Y. Diao, and P. Shenoy. Probabilistic inference
over rfid streams in mobile environments. ICDE, pages 1096–1107, 2009.

[90] D. Wang, Y. He, E. Rundensteiner, and J. Naughton. Utility-maximizing event
stream suppression. SIGMOD, 2013.

[91] D. Wang, E. Rundensteiner, R. Ellison, and H. Wang. Active complex event pro-
cessing infrastructure: Monitoring and reacting to event streams. 2011 IEEE 27th
International Conference on Data Engineering (ICDE) Workshops, pages 249–
254, 2011.

[92] D. Wang, E. Rundensteiner, and R. Ellison III. Active complex event processing
over event streams. Proceedings of the VLDB Endowment, 4(10):634–645, 2011.

[93] D. Wang, E. Rundensteiner, H. Wang, and R. Ellison III. Active complex event
processing: applications in real-time health care. Proceedings of the VLDB En-
dowment, 3(1-2):1545–1548, 2010.

[94] D. Wang, E. A. Rundensteiner, R. T. Ellison, and H. Wang. Probabilistic inference
of object identifications for event stream analytics. EDBT, 2013.

[95] F. Wang, S. Liu, and P. Liu. Complex rfid event processing. VLDB Journal, pages
913–931, 2009.

[96] T. Wang and L. Liu. Butterfly: Protecting output privacy in stream mining. In
Proceedings of ICDE, 2008.

[97] J. Widom. The starburst rule system: Language design, implementation and appli-
cations. IEEE DE Bull., 15(4), 1992.

[98] E. Wu, Y. Diao, and S. Rizvi. High-performance complex event processing over
stream. SIGMOD, pages 401–418, 2006.

[99] X. Xiao and Y. Tao. m-invariance: Towards privacy preserving re-publication of
dynamic datasets. In Proceedings of SIGMOD, 2007.

[100] Y. Xing, J.-H. Hwang, U. etintemel, and S. Zdonik. Providing resiliency to load
variations in distributed stream processing. Proceedings of VLDB, 2006.

[101] T.-Y. Yeh and Y. N. Patt. Two-level adaptive training branch prediction. In Pro-
ceedings of MICRO, 1991.

[102] B. Zhou, Y. Han, J. Pei, B. Jiang, Y. Tao, and Y. Jia. Continuous privacy preserving
publishing of data streams. In Proceedings of EDBT, 2009.

	Worcester Polytechnic Institute
	Digital WPI
	2013-04-30

	Extending Complex Event Processing for Advanced Applications
	Di Wang
	Repository Citation

	tmp.1530275769.pdf.jQPmT

