857 research outputs found

    Energy-Efficient Resource Allocation in Wireless Networks: An Overview of Game-Theoretic Approaches

    Full text link
    An overview of game-theoretic approaches to energy-efficient resource allocation in wireless networks is presented. Focusing on multiple-access networks, it is demonstrated that game theory can be used as an effective tool to study resource allocation in wireless networks with quality-of-service (QoS) constraints. A family of non-cooperative (distributed) games is presented in which each user seeks to choose a strategy that maximizes its own utility while satisfying its QoS requirements. The utility function considered here measures the number of reliable bits that are transmitted per joule of energy consumed and, hence, is particulary suitable for energy-constrained networks. The actions available to each user in trying to maximize its own utility are at least the choice of the transmit power and, depending on the situation, the user may also be able to choose its transmission rate, modulation, packet size, multiuser receiver, multi-antenna processing algorithm, or carrier allocation strategy. The best-response strategy and Nash equilibrium for each game is presented. Using this game-theoretic framework, the effects of power control, rate control, modulation, temporal and spatial signal processing, carrier allocation strategy and delay QoS constraints on energy efficiency and network capacity are quantified.Comment: To appear in the IEEE Signal Processing Magazine: Special Issue on Resource-Constrained Signal Processing, Communications and Networking, May 200

    Energy-Efficient Resource Allocation in Multiuser OFDM Systems with Wireless Information and Power Transfer

    Full text link
    In this paper, we study the resource allocation algorithm design for multiuser orthogonal frequency division multiplexing (OFDM) downlink systems with simultaneous wireless information and power transfer. The algorithm design is formulated as a non-convex optimization problem for maximizing the energy efficiency of data transmission (bit/Joule delivered to the users). In particular, the problem formulation takes into account the minimum required system data rate, heterogeneous minimum required power transfers to the users, and the circuit power consumption. Subsequently, by exploiting the method of time-sharing and the properties of nonlinear fractional programming, the considered non-convex optimization problem is solved using an efficient iterative resource allocation algorithm. For each iteration, the optimal power allocation and user selection solution are derived based on Lagrange dual decomposition. Simulation results illustrate that the proposed iterative resource allocation algorithm achieves the maximum energy efficiency of the system and reveal how energy efficiency, system capacity, and wireless power transfer benefit from the presence of multiple users in the system.Comment: 6 pages. The paper has been accepted for publication at the IEEE Wireless Communications and Networking Conference (WCNC) 2013, Shanghai, China, Apr. 201

    Energy Efficient Communications in MIMO Wireless Channels: Information Theoretical Limits

    No full text
    ISBN : 978-1466501072This chapter is focused on defining and optimizing an energy-efficiency metric for MIMO systems. This metric, which expresses in bit per Joule, allows one to measure how much information is effectively transferred to the transmitter per unit cost of energy consumed at the transmitter. For a MIMO point-to-point communication (single user MIMO channels) this metric can be useful to determine what power level, precoding scheme, training length, or number of antennas have to be used for obtaining the maximum information that is effectively transferred per unit energy spent. Then, we move from a physical layer-type approach to a cross-layer design of energy-efficient power control by including the effects a queue with finite size at the transmitter. As a last step we study a distributed multiple user scenario (MIMO multiple access channels) where each user selfishly maximizes its energy-efficiency by choosing its best individual power allocation policy. Here, we present the most relevant results in this field in a concise and comprehensible manner

    A Survey on Energy-Efficient Communications

    No full text
    International audienceIn this paper, we review the literature on physical layer energy-efficient communications. The most relevant and recent works are mainly centered around two frameworks: the pragmatic and the information theoretical approaches. Both of them aim at finding the best transmit and/or receive policies which maximize the number of bits that can be reliably conveyed over the channel per unit of energy consumed. Taking into account both approaches, the analysis starts with the single user SISO (single-input single-output) channel, and is then extended to the MIMO (multiple-input multiple-output) and multi-user scenarios
    • …
    corecore