3,985 research outputs found

    Flow-based Influence Graph Visual Summarization

    Full text link
    Visually mining a large influence graph is appealing yet challenging. People are amazed by pictures of newscasting graph on Twitter, engaged by hidden citation networks in academics, nevertheless often troubled by the unpleasant readability of the underlying visualization. Existing summarization methods enhance the graph visualization with blocked views, but have adverse effect on the latent influence structure. How can we visually summarize a large graph to maximize influence flows? In particular, how can we illustrate the impact of an individual node through the summarization? Can we maintain the appealing graph metaphor while preserving both the overall influence pattern and fine readability? To answer these questions, we first formally define the influence graph summarization problem. Second, we propose an end-to-end framework to solve the new problem. Our method can not only highlight the flow-based influence patterns in the visual summarization, but also inherently support rich graph attributes. Last, we present a theoretic analysis and report our experiment results. Both evidences demonstrate that our framework can effectively approximate the proposed influence graph summarization objective while outperforming previous methods in a typical scenario of visually mining academic citation networks.Comment: to appear in IEEE International Conference on Data Mining (ICDM), Shen Zhen, China, December 201

    An Exploration of Broader Influence Maximization in Timeliness Networks with Opportunistic Selection

    Get PDF
    The goal of classic influence maximization in Online Social Networks (OSNs) is to maximize the spread of influence with a fix budget constraint, e.g. the size of seed nodes is pre-determined. However, most existing works on influence maximization overlooked the information timeliness. That is, these works assume the influence will not decay with time and the influence could be accepted immediately, which are not practical. Secondly, even the influence could be passed to a special node in time, whether the influence could be delivered (influence take effect) or not is still an unknown question. Furthermore, if let the number of users who are influenced as the depth of influence and the area covered by influenced users as the breadth, most of research results are only focus on the influence depth instead of the influence breadth. Timeliness, acceptance ratio and breadth are three important factors neglected but strong affect the real result of influence maximization. In order to fill the gap, a novel algorithm that incorporates time delay for timeliness, opportunistic selection for acceptance ratio and broad diffusion for influence breadth has been investigated in this paper. In our model, the breadth of influence is measured by the number of communities, and the tradeoff between depth and breadth of influence could be balanced by a parameter φ. Empirical studies on different large real-world social networks show that our model demonstrates that high depth influence does not necessarily imply broad information diffusion. Our model, together with its solutions, not only provides better practicality but also gives a regulatory mechanism for influence maximization as well as outperforms most of the existing classical algorithms

    Effectiveness of Diffusing Information through a Social Network in Multiple Phases

    Full text link
    We study the effectiveness of using multiple phases for maximizing the extent of information diffusion through a social network, and present insights while considering various aspects. In particular, we focus on the independent cascade model with the possibility of adaptively selecting seed nodes in multiple phases based on the observed diffusion in preceding phases, and conduct a detailed simulation study on real-world network datasets and various values of seeding budgets. We first present a negative result that more phases do not guarantee a better spread, however the adaptability advantage of more phases generally leads to a better spread in practice, as observed on real-world datasets. We study how diffusing in multiple phases affects the mean and standard deviation of the distribution representing the extent of diffusion. We then study how the number of phases impacts the effectiveness of multiphase diffusion, how the diffusion progresses phase-by-phase, and what is an optimal way to split the total seeding budget across phases. Our experiments suggest a significant gain when we move from single phase to two phases, and an appreciable gain when we further move to three phases, but the marginal gain thereafter is usually not very significant. Our main conclusion is that, given the number of phases, an optimal way to split the budget across phases is such that the number of nodes influenced in each phase is almost the same.Comment: This paper is under revie
    corecore