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Abstract

The goal of classic influence maximization in Online Social Networks (OSNs)

is to maximize the spread of influence with a fixed budget constraint, e.g. the

size of seed nodes is pre-determined. However, most existing works on influ-

ence maximization overlooked the information timeliness. That is, these works

assume the influence will not decay with time and the influence could be ac-

cepted immediately, which are not practical. Secondly, even the influence could

be passed to a specific node in time, whether the influence could be delivered

(influence take effect) or not is still an unknown question. Furthermore, if let

the number of users who are influenced as the depth of influence and the area

covered by influenced users as the breadth, most of research results are only

focus on the influence depth instead of the influence breadth. Timeliness, ac-

ceptance ratio and breadth are three important factors neglected but strong

affect the real result of influence maximization. In order to fill the gap, a novel

algorithm that incorporates time delay for timeliness, opportunistic selection for

acceptance ratio and broad diffusion for influence breadth has been investigated

in this paper. In our model, the breadth of influence is measured by the number

of communities, and the tradeoff between depth and breadth of influence could

be balanced by a parameter ϕ. Empirical studies on different large real-world
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social networks show that our model demonstrates that high depth influence

does not necessarily imply broad information diffusion. Our model, together

with its solutions, not only provides better practicality but also gives a regula-

tory mechanism for influence maximization as well as outperforms most of the

existing classical algorithms.

Keywords: Social Networks, Influence Maximization, Algorithm, Data Mining
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1. Introduction

Each month, more than 1.3 billion users are active on Facebook, and 190

million unique visitors are active on Twitter. Furthermore, 48% of 18-34 year

old Facebook users check their online personal web pages when they wake up,

and 98% of 18-24 year old people are involved in at least one kind of social5

media1. Since customers are the most important foundation of business, Online

Social Networks (OSNs) have become one of the most effective and efficient

solutions for marketing and advertising. But there is still no specific answer for

how to handle and utilize data from OSNs. The development of OSNs and the

resultant of a huge volume of data bring both opportunities and computation10

challenges.

Influence maximization, as one of the most popular topics in OSNs, attracts

a lot of interest recently. Several models have been proposed in the literatures [4,

5] to model influence diffusion. However, because of the complexity and diversity

of social phenomenons, many important features have been ignored, resulting15

the practical influence diffusion is still not well modeled. We are facing a lot

of challenges such as timeliness, acceptance ratio and breadth while analyzing

and maximizing influence in OSNs. Timeliness refers to the phenomena that

the effect of influence would decay with time; acceptance ratio measures the

percentage of influence which gets response; and influence breadth is aims at20

1http://www.statisticbrain.com/facebook-statistics/
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maximizing influence not only by having more users, but also by achieving a

broader user distribution in reality.

In the viral marketing and media domain, it is very common that many

limited-time promotions and immediacy news exist where the influence and

spreading of them decay with time. During the process of advertisement pro-25

motion or marketing strategies, the fact that a message could be passed on to

someone never means the message could be accepted by the receivers (accep-

tance means the receivers take actions or response to the message). Therefore,

receiving and accepting would be two procedures of influence. From this point

of view, takeing the acceptance ratio into account for influence would make the30

model more practical than the traditional naive way. The expectation of the

influence model traditionally formulated is considered as the depth of influence.

Another important issue is how broad area the influence could be from the s-

elected source seeds: the breadth of influence. Breadth relies not only on the

number of influenced nodes, but also on the size of the area that could be cov-35

ered by the influenced nodes. Surprisingly, although most researchers consider

the path or routing of influence spreading based on network structure, as far as

we know, there is not any existing work considering the range (breadth) of the

influence yet. Therefore, the question appears: which one is more important for

influence maximization? influence more users in depth 2 or in breadth?40

Let us take a conventional social network activity as an example to discuss

influence diffusion in daily life. Assume there is one user on Facebook sharing a

new song or movie. This action results in an influence diffusion process. That

is, friends or followers of the action initiator will have similar behaviors - be in-

fluenced. Considering one instance, user Mike posts a new status “I got a new45

iPhone 6 plus from Apple Store with student promotion. It is awesome!” with

pictures on Facebook. All of Mike’s friends and followers will get this informa-

tion from their Facebook’s news feed or related search results. For timeliness,

2depth might result in “rendezvous problem”, which is a term from mathematics to state

the overcrowded of seeds selection
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the effect of this influence will be weakened as time goes on. For acceptance

ratio, obviously not all the neighbors who see the post will forward it, although50

some of Mike’s friends might have already be influenced and begun to take next

step to purchase an iPhone, but some of his friends might have simply ignored

this post. We consider the receiving of that post as the first step of influence,

and all the users having a friend relationship with Mike have a probability to re-

ceive this influence. But only the neighbors who comment, forward this status,55

or take response action regarding this post could be considered as accepting the

influence, which is the second step of the influence. For the breadth of influence,

one possibility is a lot of Mike’s friends are studying in the same department

of the same university. If we evaluate the influence ability of Mike in the whole

social network, he might not be as good as another user Michael who has fewer60

friends studying in many different universities. Compared with Mike, Michael

has a good chance to pass the influence much more broader than Mike. Thus,

all the three aforementioned factors we mentioned above should be taken into

account.

Additionally, how to evaluate influence in OSNs is still an open problem.65

Although several models have been proposed to evaluate, influence by analyzing

the history logs [9] or learning users’ behaviors [20], there is still few literatures

considering the impact between users in a timeliness model with respect to the

influence decaying process and the optimistic selection for a better acceptance

ratio. Therefore, different from the most traditional influence models which only70

focus on the simple traditional influence expectation result or the efficiency of

the algorithm [6, 7, 8], we deal with influence maximization from a much more

practical and comprehensive perspective.

In this paper, we address the problem of identifying the node set which max-

imizes influence in practical social networks. Our model incorporates influence75

decay function, opportunistic selection and broader maximization accommodat-

ing to three factors: timeliness, acceptance ratio and breadth. More specifically,

our contributions are summarized as follows:
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1. We formulate the problem of influence maximization with opportunistic

selection in a timeliness model ICOT. The model incorporates the timeli-80

ness feature and considers the decaying of influence diffusion.

2. We propose opportunistic selection to deal with the acceptance ratio which

represents the real reception of influence transmission in practice.

3. We show the NP-hardness of the problem together with the monotone and

submodular properties of the object function. Our model is generalizable85

to other influence maximization problem by using a different influence

diffusion model. The analysis result shows that the classical models (e.g.

IC ) are special cases of our model.

4. Considering the coverage of influence diffusion, we take the first step to

explore the relationship between the breadth and depth of influence and90

propose the model BICOT. Specifically, in the extended version of our

model, we use the number of communities to measure the breadth of the

influence, which is novel.

5. The experiment results on several real data sets show that our solution

can significantly improve the practicability and accuracy against several95

baseline methods. Especially on the aspect of influence spreading range.

The rest of the paper is organized as follows. Section 2 reviews the related

works. Section 3 presents the preliminaries and problem definition, then we in-

troduce our model with analysis and the algorithm in Section 4. The evaluation

results based on real and synthetic data sets are shown in Section 5. Section 6100

concludes the paper.

2. Related Work

To maximize influence in OSNs, the IC model [4] and another threshold

model LT together with their extensions set the foundation for most of the

existing cascading algorithms. Since Kempe et al. [4] formulated the influ-105

ence maximization problem as an optimization problem, a series of empirical

studies have been performed on influence learning [9, 10], algorithm optimizing
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[8, 11, 12], scalability promoting [13, 15], and influence of group conformity [16].

Leskovec et al. [5] modeled the outbreak detection problem and proved that the

influence maximization problem is a special case of their new problem. A Cost-110

Effective Lazy Forward (CELF ) scheme is proposed which uses the submodular

property achieving 700 times speedup in selecting seed vertices compared with

the basic greedy algorithm [4]. As indicated in [15], CELF still faces the serious

scalability problem. Therefore, Chen et al. proposed some new heuristics al-

gorithms based on the arborescence structure which could handle million-sized115

graphs. The proposed algorithm spreads influence as the greedy algorithm while

is more than six orders of magnitude faster than the greedy one. In [25], the

authors proposed algorithm IRIE where IR is for influence ranking and IE is for

influence maximization in both the classical IC model and the extension IC-N

model considering negative opinions [14]. They claimed that their algorithms120

scale better than PMIA [15] with up to two orders of magnitude speedup and

significant savings on memory usage, while maintaining the same or even better

influence.

Besides the fundamental influence maximization problem and several vari-

ants mentioned above, there are two kinds of previous works related to ours:125

dynamic network models and structural analysis for influence diffusion. The

phenomena of time delay in influence diffusion has been explored in statistics.

Timeliness concerned by us, different from time decay, emphasize more on de-

livery time of influence. The observation in [22] shows that the heterogeneity

of human activities has important effect on influence diffusion. Thang et al.130

[23] modeled influence maximization by limiting the influence of nodes that are

within d hops from the seeding for some constant d ≥ 1. The authors proposed

algorithm VirAds which guarantees a relative error bound of O(1) when the

network follows power-law. They also provided theoretical analysis to show the

hardness of the model. They further extended the previous algorithm to ob-135

tain a near optimal solution within a ratio better than O(log n). Chen et al.

[24] proposed the Independent Cascade model with meeting events (IC-M ) to

capture time-delay. Differently, our model not only considers the time decay
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and acceptance ratio of influence in dynamic networks, but also take structural

breadth of a network into account. Zhuang et al. [26] consider the structure140

changing over a network, aiming at probing a subset of nodes in social network

to estimate the actual influence diffusion process.

Wang et al. [17] tried to reduce the computation cost by dividing a network

into many communities. They first run the greedy algorithm in each community

and calculate the expected influence increase of each community. A dynamic145

programming algorithm is proposed to select the optimal community first, then

the most influential nodes from each community are chosen. This process runs

iteratively until the top-k influential nodes are obtained. Different from our

work, they do not consider timeliness in their model. Besides, they partition a

network into disjoint communities only for the purpose of reducing computation150

cost.

To the best of our knowledge, none of the existing approaches considers the

time sensitivity of influence, acceptance ratio and both the influence spreading

breadth and depth together.

3. Preliminaries and Problem Definition155

Kempe et al. [4] formulated the influence maximization problem as a dis-

crete optimization problem: given a network with a node influence probability

(weight) on each edge, a node set with a fixed size is initially activated as seed-

s and these seeds begin to influence other nodes under a certain model. The

objective is to find the optimal node set which could maximize the expected

number of final active nodes. Formally, we can model a network as a directed

graph N = (V,E,W ) where V , E, W represents the vertices, edges, and weight-

s, respectively. Let function δ(·) be the expected number of active nodes at the

end of the influence process. Out purpose is to identify a seed set S of size up

to k which devote such S which can maximize δ(S). Denote such S as:

S? = arg max
S⊆V,|S|≤k

δIC(S) (1)
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Table 1: Notations adopted in sections

Notation Description

G A weighted directed graph

V The vertices set

E The edge set

W The weights set on edges

O The opportunistic acceptance ratio set

k The number of influential nodes to be mined

S The set of influential nodes

τ The influence decaying ratio

dτ (t) The decrease ratio of influence at time t

fo(·) The information diffusion ratio for current step

T̃o Threshold of opportunistic selection ratio

δICOT(·) The objective function for ICOT model

δBICOT(·) The objective function for BICOT model

PC(v) The percentage of communities node v influenced

i(v) The initialize PageRank score for node v

ϕ Tradeoff parameter for depth and breadth
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Figure 1: Models of Social Influence. (shaded circle represents an activated

node, a blank circle represents an inactivated node, solid line represents an

influence attempt with probability w(u, v)fo(u, v), and a dash line changes to

a solid line only when the start node becomes active.)

The diffusion process under the Independent Cascade (IC ) model works in dis-

crete time t0, t1, t2, . . . . Initially, all the seeds in set S are activated at t0, while

all the other nodes are inactive. As the process continues to time ti (i > 0),

any active u in the prior time ti−1 is given a single chance to active any of its

currently inactivate neighbors with independent probability w(u, v) ∈W . Once160

a node is activated, it stays and will not change status any more. The stochastic

process iteratively continues until no new activated node appears.

The general idea behind IC is to measure influence ability by the number of

activated nodes. It targets at finding the optimal seed set which can maximize

the global influence in the network. As mentioned in Section 1, in practice, the165

influence diffusion process has to face opportunistic selection and time decay.

Thus, function δ(·) should also be improved to adapt to the reality.

We first extend the IC model to a dynamic network with time decay and

opportunistic selection, then we propose a utility function to measure influence

breadth.170

Formally, we introduce our ICOT (IC model with Opportunistic selection

and Time decay) model. We define δICOT : 2V → R as the objective function

such that δICOT(S) with S ⊆ V is the final expected number of activated nodes
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under ICOT model.

S† = arg max
S⊆V,|S|≤k

δICOT(S, o, τ) (2)

where o is the opportunistic acceptance ratio set controlling the acceptance of

influence, and τ is the influence decaying ratio controlling the decaying process

as time goes on.

The influence maximization problem with opportunistic selection under the

ICOT model is the problem of finding the optimal seed set S with at most k175

seeds such that the expected number of activated nodes is maximized.

The extended version of ICOT is BICOT (Broadly influence maximization

problem under the ICOT model). Different from IC which only maximizes the

influence expectation in depth, BICOT considers both depth and breadth of

influence. We will provide more properties and details of this model in the next

section.

S‡ = arg max
S⊆V,|S|≤k

δBICOT(S, o, τ, ϕ) (3)

where ϕ is the parameter leveraging depth and breadth of influence.

As a summary, the two proposed models could be formolized as follows. Let M

be the influence model. Our purpose is to find the optimal node set such that:

S§ = arg max
S⊆V,|S|≤k

δM (·) (4)

Problem Statement:

Input: Directed graph G, parameters (τ and T̃o for ICOT or α, β, ε, τ , T̃o,

and ϕ for BICOT ), influence model type M (ICOT or BICOT ).

Output: Optimal seed set S§ which maximizes influence in G under M .180

4. Model Analysis and Algorithm

This section introduces the details and properties of the ICOT model and

the BICOT model.
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4.1. Model Analysis

We model a social network as a directed graph G = (V,E,W,O). We may

learn the influence probability weight w(u, v) ∈ W on each edge from practice

initially. O denotes the set of opportunistic acceptance ratio functions where

fo(u, v) ∈ O represents an independent probability indicating whether the target

could accept the influence or not (in this paper we use the same weight w(u, v)

as an example, fo(u, v) could also be learned according to further information

related to real data). dτ (t) is a decaying function representing the decrease of

influence, where t is the beginning time when only the selected seeds turn active,

tcurrent is the current time, and τ is the decaying coefficient.

dτ (t) =
tcurrent − t

τ
(5)

In ICOT, due to time decay and influence decrease, for each step of influence

diffusion, an opportunistic acceptance function fo(·) is designed to model the

latest step of the information diffusion with continues time decaying.

fo(u, v) = w(u, v)dτ (t) (6)

The acceptance ratio between nodes u and v denoted by fo(u, v) is an inde-185

pendent probability different from w(u, v). In ICOT, the probability that u’s

influence reaches v is measured by w(u, v), the opportunity whether v accepts

this influence or not is decided by both w(u, v) and fo(u, v). Furthermore, the

final objective function is also improved to δICOT(·) which includes the weight

all the active nodes try to influence their neighbors at the end (all the neighbors190

of the active nodes in the last step) with acceptance ratio greater or equal to

threshold T̃o. Those nodes will also be marked as activated according to our

case study in Section 1.

Fig. 1 shows an example of influence diffusion under the ICOT model.

Node va,td denotes the status of va in the diffusion time slot td. As shown in the195

example, at the beginning time ti, only node u is active and all the links from u

to its neighbors indicate the chance (attempt) of influence (solid line) from u to

other nodes (e.g. v1, v2, and v3). If v1, v2, and v3 could be influenced (received
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(w(u, v)) and accepted (fo(u, v)) the influence) successfully, their status will

change to activate and they continue influence others in the next step as shown200

by the dashed link from them. At time ti+1, nodes v1 and v2 are influenced

successfully by u, but node v3 is not. Because link (u, v3) is the only link

between u and v3, and v3 does not receive the influence from u by w(u, v3)

successfully. u will not try to influence v3 by w(u, v3) anymore but will attempt

to influence v3 by fo(u, v3) again at the end of the diffusion.205

Several possibilities could be considered in mapping the decay and oppor-

tunistic selection into ICOT in practice. As mentioned above, user Mike’s

promotion on Facebook for his new iPhone 6 will diffuse to all his followers, but

whether and when they can be influenced and when and whether they would

continue to pass this information to others are uncertain events. The decay210

and the opportunistic receiving selection phenomenon are very common in our

daily life. Therefore, the model considers influence from both the receiving and

accepting aspects is very important to capture the natural characteristics of

influence diffusion in practice.

Theorem 1:. The Influence Maximization Problem under the ICOT model is215

NP-hard.

Proof:. The original influence maximization problem for the IC model is NP-

hard. The IC model is a special case of the ICOT model with opportunistic

acceptance ratio being constant 1 (without the effect of decaying function), and

the threshold of opportunistic selection for the final step being constant 0. This220

leads to the hardness result of Theorem 1.

There are two choices: designing a heuristic algorithm which has no the-

oretical performance guarantee or an approximation algorithm with nice ap-

proximation ratio which can guarantee the solution results. Since influence

maximization has been widely employed in OSNs, a solution results in real cost.225

Thus, a better accuracy leads to a better profit for a company entity. In this pa-

per, we try to find a solution with theoretical guarantee and incorporate various

optimization strategies to improve efficiency.
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Figure 2: An instance of possible world sematic.

Given function δ(·) : 2V → R, the function is monotone iff δ(S1) ≤ δ(S2)

whenever S1 ⊆ S2. Also, function δ(·) is submodular iff δ(S1 + x) − δ(S1) ≥230

δ(S2 + x)− δ(S2) whenever S1 ⊆ S2 ⊂ V and x ∈ V \ S2 where V is the set of

the vertices.

As shown in [4], IC model is monotone and submodular which allows us to

develop a hill-climbing-style greedy algorithm to achieve (1−1/e−ε) approxima-

tion ratio. Since the IC model is a special case of our ICOT model, the objective235

function of ICOT can also satisfy both monotonicity and submodularity. �

Theorem 2:. Influence function δICOT(·) is monotone and submodular under

the ICOT model.

Proof:. We use the “possible worlds” semantic to prove the theorem. As shown

in Fig. 2, the top graph < v1, u, v2 > is a small fragment of the whole network

(we use G to denote this uncertain graph fragment) and the four graph instances

are possible world semantics generated from G. For each possible world instance,
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based on the weight on each edge, each instance with different generation proba-

bility could be presented as a corresponding determined graph. All the possible

world instances are generated by a cascade process. We could directly assume

that before the cascade process starts, the outcomes for all the opportunistic

selection and time decaying process have already been determined. For each

possible world Wx, the existing probability is

P (G ⇒Wx) =
∏

e∈E(Wx)

p(e)
∏

e∈E(G))\E(Wx)

(1− p(e)) (7)

Specifically, each cascade step could be viewed as an individual coin-flip

event with probability fo(u, v) which determines if u will influence v at the cor-240

responding time t successfully or not. Since all coin-flip events are independent,

a determined set of the coin-flip events could be mapped to a possible world Wx.

Assume there is an edge (u, v) in Wx, under the traditional IC model, without

opportunistic selection and time decaying, u could directly reach v via one hop

with probability 1. In the ICOT model, to be more practical and accurate, u245

has to pass through opportunistic selection and decaying process when it tries

to influence v. Since the time decaying process will not stop unless the distance

between two nodes approaches to 0, it would be a limited process for oppor-

tunistic selection. On the other hand, node v is reachable from a seed set S if

and only if there exists at least one path from S to v consisting of all active links250

(each node on the link is active). Let S1 and S2 be two arbitrary sets such that

S1 ⊆ S2 ⊆ V . Since δICOT(S) is the number of the nodes reachable from S in

possible world Wx, if there is any node reachable from S1, the active path will

also be included in S1’s super set S2. We can get the monotonicity of δICOT(S).

For submodularity, based on Eq. 7, let all the probabilities related to our

opportunistic selection and decaying process equal to 1. Different from IC,

to take the decaying and delaying phenomenon into account, ICOT tries to

influence all the neighbors of activated nodes by fo(·) for the last time (as

accepting step) even no new activated node appears. Consider one instance of

the accepting step of influence diffusion, the relationship between the number

of neighbors in the last step and the number of nodes could be activated is just

14



linear. If let the acceptance function fo(·) equal to 0 at this point, IC and

ICOT could be unified. Considering node u reachable from S2 ∪ {w} (w is

another active node not in S2) but not reachable from S2, which means u is not

reachable from S1 either. Thus, w has to be the source of the active path to u,

and u should be reachable from S1 ∪ {w}. For the margin increase for both S1

and S2, we have

δICOT(S1 ∪ {w})− δICOT(S1) ≥ δICOT(S2 ∪ {w})− δICOT(S2) (8)

Then consider the opportunistic selection and time decaying process, we

have

δICOT(S) =
∑
G⇒Wx

Pr(Wx)δWx

ICOT(S) (9)

Since δICOT(S) is a nonnegative linear combination of δWx

ICOT(S) which are mono-255

tone and submodular functions, δICOT(S) keeps the same property, that is,

submodular. �

Based on the result of Nemhauser et al. [29], function δ(·) suggests an

approximate greedy algorithm with factor 1 − 1/e. However, the hardness of

computing δ(·) for the IC model is #P -hard[15]. If we apply the proof result to260

the ICOT model, for a large scale network, even if a greedy approximate algo-

rithm is applied by using Monte-Carlo simulations, the computation cost is still

unacceptable. Considering the influence breadth, we apply a community detec-

tion algorithm [31] in the network to find different communities with overlap,

then calculate the best influential k nodes taking both individual influence and265

global influence into account by applying a dynamic programming algorithm.

Our goal of influence maximization is to influence more nodes and larger

area. In this case, besides the objective function δICOT(·), we take a further

step to make influence diffusion as broad as possible.

Fig. 3 shows an example of the breadth of influence. The two circles rep-270

resent two communities, and the influence is diffused according to the directed

links. Assume we measure the influence by the number of outgoing links. Node

v10 has the most outgoing links, and it should be selected in the next step based
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Figure 3: An example of social influence.

on the current measurement. Suppose that the algorithm has selected the best

k − 1 influential nodes including v10. If v2, v4, and v8 provide the same influ-275

ence increase, and v2, v4, and v8 all have 3 outgoing links, since v8 connects

two different communities, v8 has significant advantages than the other two,

considering the breadth of influence.

Next, we discuss the BICOT model. Suppose network G has m communities

C = {C1, C2, . . . , Cm}. The more communities the influence could cover, the280

broader influence this model could achieve. We borrow the similar idea in [28]

mining structural hole spanners in a network. Different from structural hole

spanners which only consider the minimal value of user’s importance scores in

different communities, we try to find the nodes that maximize the influence

globally and affect as more communities as possible. Formally, let Nc be the285

number of communities the algorithm could cover under ICOT.

Intuitively, we expect the node’s individual influence in its community to

be similar to its influence in the whole network. Although the gap between

local community and global influential node sets exists, as the monotone we

proved, the influence diffusion is built on unit node activities from local to290

global. The social network is strong community-based organization, and the

influential node set in local from a very large extent represents the global result.

We try to find the best k influential seeds in each community first, then by

comparing the difference between local and global, we iteratively fill the gap
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by further optimization algorithms. Let PC(v) be the number of communities295

node v influenced divided by the number of all communities, and S ⊆ C denotes

the subset containing more than one community, then a utility function Q(·) is

defined for each node to measure its contribution in maximizing the influence

breadth. Let A(v, S) be the structural score of v in S.

Q(v, Ci) = max
eu,v∈E,S⊆C∧Ci∈S

{PC(v)Q(v, Ci), αiQ(v) + βSA(v, S)} (10)

A(v, S) = min
Ci∈S
{Q(v, Ci)} (11)

In Eq. 10, αi and βS are two tunable parameters. The contribution function

Q(·) is computed as the combination of the importance score of v’s friends and

the structural score of v itself. Since Q(·) is the influence measurement of

individual node, we use the famous PageRank [30] to initialize score i(v) for

each node v in each community, then continue the iteration until the converge

based on the two reinforce Eq. 10 and Eq.11 stable. Same as [28], for all the

node v not belongs to community Ci, we set their influential score to 0, that is:

Q(v, Ci) =i(v), v ∈ Ci

Q(v, Ci) =0, v /∈ Ci
(12)

Theorem 3:. For αi and βS , the function scores of Q(v, Ci) and A(v, S) exist

for any graph if and only if,

max
Ci∈S
{αi + βS} ≤ PC(v) (13)

300

Proof:. Suppose community Ci ∈ C and Ci ∈ S such that αi + βS > PC(v).

Considering nodes v1 and v2 which connected to each other with the PageRank

score i(v1) = i(v2) = 1, where v1 ∈ ∩Cj∈SCj and v2 ∈ Ci. We have Q(v1, Ci) =

PC(v1). Then by Eq. 11, A(v1, S) = minCi∈S{Q(v1, Ci)} = PC(v1). According

to Eq. 10, PC(v1)Q(v2, Ci) ≥ αiQ(v1, Ci) + βSA(v1, S) = PC(v1)(αi + βS) >305
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PC(v1), which means product of two positive fraction is larger than one of the

fractions, which is impossible.

For the if direction, {αi + βS} ≤ PC(v). Suppose in the first iteration

Q0(v, Ci)PC(v) ≤ PC(v) and k-th iteration later Qk(v, Ci)PC(v) ≤ i(v)PC(v) ≤

PC(v). In the (k+1)-th iteration, for each Ci ∈ S, we have Qk+1(v, Ci)PC(v) ≤310

αiQ
k(u,Ci)+βSA

k(u, S) ≤ PC(v1). �

We narrow the bound of the result in [28] α and β from {αi + βS} ≤ 1 to

{αi + βS} ≤ PC(v). We also improve the performance of the ICOT model by

incorporating the number of communities which can be globally covered by one

node.315

As shown in Algorithm 1, through finite iterations we can get a rank of all the

nodes based on their own ability to influence others within their communities.

By the configuration of parameters α and β, we can control the balance of

influence depth and influence breadth. Let r(v, Ci) be the rank of node v in

community Ci, and Rank(v, Ci) be the rank of node v in the network.

Rank(v) =

∑ r(v,Ci)
|Ci|

Number of communities involving v
× 100% (14)

By Eq. 14, we assign a percentage value Rank(v) with a control parameter ϕ

to each node v, and calculate the influence spreading process on each edge by

ϕRank(v)w(·). Thus, we can conclude our BICOT shown in Eq. 3.

4.2. Algorithm

The difference between ICOT and BICOT is whether taking breadth as a320

measurement for influence. Besides breadth, we adopt heuristic strategies in [6]

in terms of a dynamic programming algorithm for both models. First, we detect

communities in a network allowing overlap between different communities. Sec-

ond, Algorithm 1 is applied to get the rank of each node. Through parameter

ϕ, we control the balance of breadth and depth. Then, consider the updated325

weight of each node. We incorporate the strategies in [6] to model to find the

seed set.
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Algorithm 1: Iteration algorithm

Input: Graph G, αi, βS , and convergence threshold ε

Output: Function convergence result Q(v, Ci), A(v, S)

1 Initialize Q(v, Ci) according to Eq. 12

2 while max |Q′(v, Ci)−Q(v, Ci)| ≥ ε do

3 for v ∈ V do

4 for Ci ∈ G do

5 t(v, Ci) = maxCi∈S{βSA(v, S) + αiQ(v)}

end

6 if u ∈ N(v) & t(u, ·) 6= t′(u, ·) then

/* t′ is the previous value of t which monitors the

change of v’s neighbors */

7 for v ∈ V do

8 for Ci ∈ G do

9 Q′(v, Ci) = maxCi∈S{PC(v)Q(v, Ci),max{t(v, Ci)}}

end

10 for Ci ∈ G do

11 A′(v, S) = minCi∈S{Q(v, Ci)}

end

end

end

end

12 Update Q = Q′ and A = A′

end
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In [6], Chen et al. designed a heuristic strategy which builds a tree-like

structure for influence. Then influence spreading path is maximized through

a greedy algorithm. We use the same idea, but our model considers the op-330

portunistic selection and influence ability decrease over time. When calculating

and finding the seeds which have the largest incremental result in ICOT and

BICOT, if the margin increases less than or equal to T̃o, we regard this path as

disconnected. The algorithm for BICOT is shown as follows:

Algorithm 2: Algorithm for model BICOT

Input: Graph G, αi, βS , ε, ϕ, τ and T̃o

Output: Seed set for maximizing influence S†

1 Do community detection by Algorithm 1 from;

2 Algorithm by 1(αi, βS , ε) to get the value of Rank(·) by Eq. 14 for each

node;

3 By parameter ϕ with Eq. 14 to control the tradeoff between influence

breadth and depth;

4 Calculate the influence maximization seed set based on the BICOT

model with parameters τ and T̃o ;

For model ICOT, we only consider the opportunistic selection and time335

delay, reducing the step for calculating the influence breadth for each node

(Lines 2, and 3 in Algorithm 2). Then the seed finding process does not need

to be incorporated with Eq. 14. The detailed algorithm is ignored due to space

limitation.

5. Empirical Evaluations340

We perform the experiments forwards the following data sets.
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Table 2: Amazon Dataset

Data Nodes Edges Diameter

Amazon0302 (A1) 262111 1234877 29

Amazon0312 (A2) 400727 3200440 18

Amazon0505 (A3) 410236 3356824 21

Amazon0601 (A4) 403394 3387388 21

5.1. Data and Observations

Epinions 3 is a Who-trust-whom network, where nodes are members of the

web site and a directed edge from user u to v means u has influence to v (v

trusts u). The network includes 75,879 nodes and 508,837 edges.345

Twitter 4 is one of most notable micro-blogging services. Twitters can

publish tweets. We use the dataset obtained from [18]. The subnetwork includes

112,044 nodes (users of Twitter), and 468,238 edges (following relationships) and

2,409,768 tweets posted by them.

Inventor is a network of inventors, obtained from [19] extracted from USP-350

TO5. The network consists of 2,445,351 nodes and 5,841,940 edges (co-inventing

relationships).

Amazon Dynamic Networks

Table 2 is derived from the Customers Who Bought This Item Also Bought

feature of the Amazon website. The four networks are from March to May in355

2003. Connection is established in a network from i to j if product i is frequently

co-purchased with product j [5].

Fig. 4 shows the average degree of all the seven data sets. The probability

on each edge is learned from the networks in later time, which means the prob-

abilities of the first network come from the second one, and the probabilities of360

the last network come from the first three networks based on the linear predic-

3http://www.epinions.com/
4http://www.twitter.com
5http://www.uspto.gov/
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tion. The probability distribution of the four networks from Amazon is shown

in Fig. 5. As shown, the probability distribution of 4 Amazon networks are

mainly in range of 0.02-0.05. The reason of this range is the social characters

of the relationship based on co-purchased network. And this probability dis-365
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Figure 6: Effect of α for influence diffusion

tribution also shows that the Amazon co-purchased are overall loose networks.

Most research literatures assume that the probabilities or the weights on links

and the thresholds are given. However, as pointed out by Goyal et al.[9], learn-

ing those probabilities and thresholds is a non trivial problem. Therefore, we

use a learning algorithm on the raw input data [27] to get the balance between370

complexity and practicability. For the Amazon data set, since there are a series

of snapshots of the networks, we generate the real influence spreading trend by

comparing our model to the real learning algorithm [21] which initially treats

the data as a user log then solves the influence maximization problem.

All the codes are implemented in C++, and all the experiments are per-375

formed on a PC running Ubuntu 14.04 LTS with Intel(R)2 Quad CPU 2.83GHz

and 6GB memory.

We examine how the parameters affect influence spread in Algorithm 1. As

shown in Fig. 6 and Fig. 7, the performance of Algorithm 1 is insensitive to the

variation of α and β. Consider the difference between two networks Epinions380

and Twitters, the average degree is 6.7 for Epinions, and 4.17 for Twitter. Thus,

the main factor affect parameter α and β is the sparsity of the network.

We first evaluate the number of the influenced nodes under different models.
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Figure 7: Effect of β for influence diffusion

As shown in Fig. 8, Fig. 9, and Fig. 10, we compare the traditional IC model

[15] with our two models on the three static networks. From the three plots, we385

can see that the proposed model on the static network show very similar trend

like the traditional IC model. Our models consider the optimistic selection

and time decaying. We also proposed a method to calculate the final influence

expectation which include more nodes when the influence spread process ends.

We set the default value of τ = 0.5 giving the influence breadth and depth the390

same weights.

To show our contributions in a convincing way, we compare our model with

the up-to-date experiment based algorithm in [21] on the aspect of the real in-

fluence spread. We run our algorithm on the first Amazon co-purchase network,

and run Goyal’s algorithm called CD based on the four networks since their al-395

gorithm requires users’ log. Meanwhile, we compare with traditional IC model

towards on Amazon network 1 and network 4. As shown in Fig. 11, although all

the curves follow similar trends, for a larger k, CD which is based on learning

has slower increase which is more practical since it learns the knowledge from

four data sets. Apparently, our models are more approximate to model CD400
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Figure 9: IC VS ICOT VS BICOT in Twitter.
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Figure 10: IC VS ICOT VS BICOT in Inventor.
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Figure 11: Influence spread by different algorithms

which means that our models are closer to the influence spreading in practice.

Contrast to Fig. 11, Fig. 12 shows the number of the communities covered by

each algorithms. Obviously, our BICOT covers much more communities than

the IC and CD. The advantage of our model is as well as we have a similar
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Figure 12: Communities covered by different algorithms
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Figure 13: Influence performances for different ϕ

result of influence maximization follow the real diffusion, community-based al-405

gorithm give a much better efficiency to the influence maximization problem.

Further more, our model cover more communities indicating a broader influence

diffusion.

27



0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0
1 1 0
1 2 0

ϕ

nu
mb

er 
of 

se
ts 

inf
lue

nc
ed

 co
ve

red  E p i n i o n s
 T w i t t e r

Figure 14: Communities covered for different ϕ

To evaluate the relationship between influence depth and breadth, we change

parameter ϕ from 0.1 which cares more about influence depth to 0.9 which410

emphasizes more on the breadth.

Fig. 13 shows the influence spread for different ϕ. We can see that as

ϕ increases, the influence is decreased. This is because by the definition of

our objective function, we care more about breadth than depth. With the same

parameter setting, we can derive from Fig. 14 that although the influence spread415

has been reduced, the number of the communities covered by our algorithm is

increased.

6. Conclusion

In this work, based on the observations from real data and application, we

propose model ICOT which incorporates both diffusion decay and opportunis-420

tic acceptance selection for dynamic networks. In addition, we develop model

BICOT to control the balance between influence depth and breadth. We take

the first step to explore the potential of broad influence maximization. Through

comprehensive experiments results, we show that our model can achieve a com-

28



parable influence diffusion result like the learning-based algorithm which has a425

more strict input requirement, and our models have a broader influence cover-

age.
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