3,802 research outputs found

    Complexity of increasing the secure connectivity in wireless ad hoc networks

    Get PDF
    We consider the problem of maximizing the secure connectivity in wireless ad hoc networks, and analyze complexity of the post-deployment key establishment process constrained by physical layer properties such as connectivity, energy consumption and interference. Two approaches, based on graph augmentation problems with nonlinear edge costs, are formulated. The first one is based on establishing a secret key using only the links that are already secured by shared keys. This problem is in NP-hard and does not accept polynomial time approximation scheme PTAS since minimum cutsets to be augmented do not admit constant costs. The second one extends the first problem by increasing the power level between a pair of nodes that has a secret key to enable them physically connect. This problem can be formulated as the optimal key establishment problem with interference constraints with bi-objectives: (i) maximizing the concurrent key establishment flow, (ii) minimizing the cost. We prove that both problems are NP-hard and MAX-SNP with a reduction to MAX3SAT problem

    Sum of squares lower bounds for refuting any CSP

    Full text link
    Let P:{0,1}k{0,1}P:\{0,1\}^k \to \{0,1\} be a nontrivial kk-ary predicate. Consider a random instance of the constraint satisfaction problem CSP(P)\mathrm{CSP}(P) on nn variables with Δn\Delta n constraints, each being PP applied to kk randomly chosen literals. Provided the constraint density satisfies Δ1\Delta \gg 1, such an instance is unsatisfiable with high probability. The \emph{refutation} problem is to efficiently find a proof of unsatisfiability. We show that whenever the predicate PP supports a tt-\emph{wise uniform} probability distribution on its satisfying assignments, the sum of squares (SOS) algorithm of degree d=Θ(nΔ2/(t1)logΔ)d = \Theta(\frac{n}{\Delta^{2/(t-1)} \log \Delta}) (which runs in time nO(d)n^{O(d)}) \emph{cannot} refute a random instance of CSP(P)\mathrm{CSP}(P). In particular, the polynomial-time SOS algorithm requires Ω~(n(t+1)/2)\widetilde{\Omega}(n^{(t+1)/2}) constraints to refute random instances of CSP(P)(P) when PP supports a tt-wise uniform distribution on its satisfying assignments. Together with recent work of Lee et al. [LRS15], our result also implies that \emph{any} polynomial-size semidefinite programming relaxation for refutation requires at least Ω~(n(t+1)/2)\widetilde{\Omega}(n^{(t+1)/2}) constraints. Our results (which also extend with no change to CSPs over larger alphabets) subsume all previously known lower bounds for semialgebraic refutation of random CSPs. For every constraint predicate~PP, they give a three-way hardness tradeoff between the density of constraints, the SOS degree (hence running time), and the strength of the refutation. By recent algorithmic results of Allen et al. [AOW15] and Raghavendra et al. [RRS16], this full three-way tradeoff is \emph{tight}, up to lower-order factors.Comment: 39 pages, 1 figur

    Extremes of the internal energy of the Potts model on cubic graphs

    Get PDF
    We prove tight upper and lower bounds on the internal energy per particle (expected number of monochromatic edges per vertex) in the anti-ferromagnetic Potts model on cubic graphs at every temperature and for all q2q \ge 2. This immediately implies corresponding tight bounds on the anti-ferromagnetic Potts partition function. Taking the zero-temperature limit gives new results in extremal combinatorics: the number of qq-colorings of a 33-regular graph, for any q2q \ge 2, is maximized by a union of K3,3K_{3,3}'s. This proves the d=3d=3 case of a conjecture of Galvin and Tetali

    Nonlinear Integer Programming

    Full text link
    Research efforts of the past fifty years have led to a development of linear integer programming as a mature discipline of mathematical optimization. Such a level of maturity has not been reached when one considers nonlinear systems subject to integrality requirements for the variables. This chapter is dedicated to this topic. The primary goal is a study of a simple version of general nonlinear integer problems, where all constraints are still linear. Our focus is on the computational complexity of the problem, which varies significantly with the type of nonlinear objective function in combination with the underlying combinatorial structure. Numerous boundary cases of complexity emerge, which sometimes surprisingly lead even to polynomial time algorithms. We also cover recent successful approaches for more general classes of problems. Though no positive theoretical efficiency results are available, nor are they likely to ever be available, these seem to be the currently most successful and interesting approaches for solving practical problems. It is our belief that the study of algorithms motivated by theoretical considerations and those motivated by our desire to solve practical instances should and do inform one another. So it is with this viewpoint that we present the subject, and it is in this direction that we hope to spark further research.Comment: 57 pages. To appear in: M. J\"unger, T. Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi, and L. Wolsey (eds.), 50 Years of Integer Programming 1958--2008: The Early Years and State-of-the-Art Surveys, Springer-Verlag, 2009, ISBN 354068274
    corecore