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Complexity of Increasing the Secure
Connectivity in Wireless Ad Hoc Networks

Seyit A. Camtepe

Queensland University of Technology

Abstract. We consider the problem of maximizing the secure connec-
tivity in wireless ad hoc networks, and analyze complexity of the post-
deployment key establishment process constrained by physical layer prop-
erties such as connectivity, energy consumption and interference. Two
approaches, based on graph augmentation problems with nonlinear edge
costs, are formulated. The first one is based on establishing a secret key
using only the links that are already secured by shared keys. This prob-
lem is in NP-hard and does not accept polynomial time approximation
scheme PTAS since minimum cutsets to be augmented do not admit con-
stant costs. The second one extends the first problem by increasing the
power level between a pair of nodes that has a secret key to enable them
physically connect. This problem can be formulated as the optimal key
establishment problem with interference constraints with bi-objectives:
(i) maximizing the concurrent key establishment flow, (ii) minimizing the
cost. We prove that both problems are NP-hard and MAX-SNP (i.e., it
is NP-hard to approximate them within a factor of 1 + ϵ for ϵ > 0) with
a reduction to MAX3SAT problem.

1 Introduction

Efficient key management schemes are essential to ensure the integrity and confi-
dentiality in wireless ad hoc networks. An example of such networks are wireless
sensor networks operating in adversarial conditions. Many different key man-
agement schemes are proposed for the wireless sensor networks. Some solutions
assign (a.k.a. pre-distribute) each node a key-chain, a set of symmetric keys or
keying materials (e.g., ID, master keys, hash functions, pseudo random func-
tions, shared polynomials, key matrices and location information), to be shared
with some of its neighbors after deployment with high probability. Others are
based on trusted entities (e.g., base stations, trusted nodes and certificate au-
thorities) to establish symmetric or asymmetric keys between sensor nodes. The
unique key-chain assigned to each node creates a binding between the identity
of a node and its set of keys; thus, provides authentication which is limited by
the resilience of the underlying key distribution scheme. A detailed comparative
survey on wide range of key management schemes can be found in [1, 2].

We consider the problem of how to maximize the number of secure links in
a wireless sensor network in order to increase its secure connectivity after de-
ployment. In most deployment schemes, sensor nodes are randomly scattered



over a large application area which might be inaccessible or infeasible to access
after the deployment. Even with the controlled placement of sensor nodes, due
to environmental challenges and deployment errors, the post-deployment net-
work configuration might be unknown a priori. After the deployment, each node
discovers its neighbors and tries to find a key to secure its wireless links in key
discovery phase. Key management schemes are mostly blind to after deployment
properties [1, 2]; therefore, many physical links may be left unprotected (i.e.,
without a key on them) which may result in a suboptimal secure routing, or
even worse: secured links may not induce a connected network. What is needed
is to optimally increase the secure connectivity after deployment (Figure 1). In
the key establishment phase, each pair of neighboring nodes, which do not have
common keys, establish one or more keys. Key establishment between two nodes
can be achieved by exchanging messages directly over their insecure wireless link
or over one or more secure paths on which each link is secured with a symmetric
key as illustrated in Figure 1. Focus of this work is to understand complexity of
the key establishment process in distributed wireless sensor networks subject to
the physical layer properties such as connectivity, energy consumption and inter-
ference. In the broader sense, we would like to understand feasibility of existing
key management schemes which trust on post deployment key establishment
processes for secure connectivity.

Utilization of multi-hop wireless networks is investigated as the wireless
scheduling problem which assigns transmission power levels to the network nodes
and tries to schedule all the links in an arbitrary network topology. Scheduling
complexity of arbitrary topologies in wireless networks in the context of physi-
cal Signal-to-Interference-plus-Noise-Ratio (SINR) has been investigated in [3–5]
and shown to be NP-complete in various formulations. Secure capacity of a ran-
domly deployed network is analyzed in [6] where each node receives a key-chain
due to the random key pre-distribution scheme [7]. In [8], a framework is pro-
posed to improve existing key pre-distribution schemes by assuming that sensors
are deployed in groups and group members are located close to each other after
deployment. Hence, more research is required on analyzing the complexity of in-
creasing the secure connectivity and secure capacity in wireless ad hoc networks.

Contribution: Our contribution is theoretical as we formulate the different
variants of the problem and analyze their complexity. In particular, we present
two approaches: (i) establish new symmetric keys for the existing physical links
(problem P1), and (ii) establish new physical links by increasing transmission
power to connect the nodes that they do share a key (problem P2). Both of the
problems are variants of the graph augmentation problem which are in general
NP-hard for fixed cost functions and accept polynomial time constant approxi-
mation schemes (PTAS) [9].

Problem P1 is a variant of the optimal graph (edge) augmentation problem
on key graph GK (Figure 1). However, instead of a fixed cost assignment, it
defines a nonlinear cost function on the links since the order of augmentation
changes the cost assignment. In problem P2, new physical links can be created
by increasing the power levels to reach a node with a shared secret key. Al-



though this problem can also be formulated as an optimal graph augmentation
problem on the physical graph GP (Figure 1), it has two main differences. First,
increasing power levels induce interference on the nodes and may have an adverse
effect on the overall network capacity. Thus, there are interference constraints on
the nodes in P2 to ensure an acceptable signal to interference plus noise ratio
(SINR). Second, the cost of each link has two parameters: (i) energy cost for
establishing this link, and (ii) amount of interference this link induces on the
other nodes. We prove that neither P1 nor P2 accepts PTAS.
Organization: Rest of the paper is organized as follows: in Section 2, we de-
scribe the network model and basic notations. We break the problem of opti-
mally increasing secure connectivity into three optimization problems. In Section
3, we formulate the first problem P1 as an instance of edge augmentation prob-
lem on the key graph. In Section 4, we formulate the second problem P2 as a
constrained optimization problem with interference constraints on the physical
graph. Finally, in Section 5, we conclude.

2 Network Model and Problem Definition

2.1 Network Model and Notations

We model a wireless sensor network as a set of nodes WN = { n1, n2, . . . , nN}
distributed over an Euclidean plane. The Euclidean distance between two nodes
ns (sender) and nr (receiver, 1 ≤ s, r ≤ N) is represented by d(ns, nr). In this
work, we assume that each node ns has discrete power levels (1, 2, 3, . . . , limax

where 1 ≤ i ≤ N). Each node may have different maximum power level lmax due
to its battery condition. By changing their power levels (P l

s: node ns transmitting

at power level l), nodes can control the received signal strength
P l

s

d(ns,nr)α
(α is

a constant that depends on the medium) on the intended recipient r. We use
the Signal-to-Interference-plus-Noise-Ratio (SINR) model because the graph-
theoretic modeling of interference ignores the fact that interference coming from
different transmitters accumulate and can not be limited to a specific border.
SINR model considers that a message is successfully received by a receiver if
the ratio between received signal strength and noise plus interference from other
nodes exceeds a threshold β (Equation 1) which is defined by the hardware.

P l
s

d(ns,nr)α

Noise+
∑

nk∈WN\ns

P l
k

d(nk,nr)α

≥ β (1)

Wireless networks are generally represented with undirected graphs where
the uniform transmission range and symmetric links are assumed. Physical
Graph GP = (V,EP ) represents a network where each node is represented
with a vertex, and there is an edge between two vertices if the corresponding
nodes are within each others transmission range. For the same vertex set V ,
Key Graph GK = (V,EK) represents the key connectivity where there is an
edge in between two vertices if the corresponding nodes share or can establish



one or more symmetric keys to secure their communication. In Secure Graph
GS = (V,ES), there is an edge in between two vertices if they have an edge both
in GP and GK . In other words, ES = EP

∩
EK as illustrated in Figure 1.

Fig. 1. Physical graph GP = (V,EP ), Key graph GK = (V,EK) and Secure graph
GS = (V,ES) where ES = EP

∩
EK .

Notations: Nodes which are within each other’s radio range are called neigh-
boring nodes. A wireless link between two neighboring nodes is called a phys-
ical link. A physical link between two neighboring nodes that share a key is
called a secure link. If the nodes don’t share a key, then it is an insecure
link. A secure path is a path on which each physical link is a secure link. A
key path is a secure path which is used to exchange a shared-key (i.e. with a
mechanism similar to Diffie-Hellman). Table 1 lists notations used throughout
this paper.

Table 1. Abbreviations

WN Network with N nodes {n1, . . . , nN} F Set of flows (s, t)
T , Set of transmitters (ni,l) R Set of receivers (ni)
T (i) Transmitters of node ni R(j) Receiver of the transmitter j ∈ T

P l
i Transmission power of ni,l at level l f

s,t Flow (s, t), fs,t ∈ {0, 1}
fs,t
i,j Flow on edge (i, j) due to flow fs,t ni,l ith node transmitting at level l

limax Maximum power level of node ni Ki,j Shared key between nodes ni and nj

KCi Key-chain of node ni ER Receive cost of a unit flow
ET Transmission cost of a unit flow GP Physical graph GP (V,EP )
GK Key graph GK(V,EK) GS Secure graph GS(V,ES)
GA Auxiliary graph GA(VA, EA)

2.2 Problem Definition

Upon deployment of a wireless sensor network, the induced secure graph may
be under-utilized because, although GS = GK ∩GP is connected many physical
links may not be secured by a key resulting in inefficient routing as shown in
Figure 2-C. It may be even disconnected as depicted in Figure 2-E.



In this paper we consider the problem of optimally increasing secure con-
nectivity either by establishing new keys using the secure paths (we rule out
executing Diffie-Hellman (DH) or similar techniques over an insecure wireless
link due to lack of authentication that makes man-in-the-middle attacks possi-
ble), or by adding new physical links (i.e., increasing the transmission power)
between nodes that share a key. We consider two optimization problems:

– P1 (GK → GS): Find order of shared key establishment for unsecured phys-
ical links. Find optimal secure paths to establish shared keys (Approach:
graph augmentation on GK).

– P2 (GP → GS): Find optimal set of new physical links to be established
between the nodes with shared keys (Approach: graph augmentation on GP ).

3 Problem P1: Augmenting the Key Graph GK

Problem P1 assumes both key graph GK and physical graph GP are connected
and it adds edges to GK to increase key connectivity of an under-utilized wireless
sensor network to obtain κ− connected secure graph where κ ≥ 2

In problem P1, adding an edge between the nodes ni and nj in GK means
establishing keys between nodes ni and nj through a secure path by using Diffie-
Hellman (DH) or similar key establishment algorithms. Recall that DH itself
does not provide authentication, thus it should be applied through a secure path
where each pair of neighboring nodes on the path shares a key.

Consider Figure 2-(A,B) as an example where secure graph is connected.
Although each node pairs (n1, n2), (n3, n4) and (n2, n7) has a physical link, they
do not share a key to secure their links. These node pairs have to communicate
through secure paths, rather than using their direct link, yielding an under-
utilized network. In this problem, our challenge is three-fold. First, a pair of
nodes should be identified to establish a key between them. Second, a minimum
cost (e.g., shortest hop count) secure path for each node pair should be found
through which DH key establishment can be executed. Third, the order in which
DH key establishment is executed should be identified. In the secure graph of
Figure 2-(A,B), establishing a key first for (n1, n2) results in a shorter secure
path for the nodes (n3, n4).

Problem P1 is a variant of graph augmentation problem on the keying graph
GK . Given a graph G = (V,E) with n nodes and m edges where each edge (u, v)
has an arbitrary non-negative weight c(u,v), let G′ = (V,E′) be its subgraph
where E′ ⊆ E. The edge augmentation problem is to find minimum-weight set
of edges from the edge set E \E′ whose addition makes G′ κ−edge−connected.
The node connectivity augmentation version is slightly different. Given a graph
G = (V,E) and a set of vertices V ′ ⊆ V , problem is to find a set of edges
with minimum-weight whose addition provides connectivity between every pair
of vertices in V ′.

The augmentation problem is NP-Hard when κ− edge or κ− vertex disjoint
paths are required between every pair of nodes in V ′ for κ ≥ 2. However, for fixed



Fig. 2. (A) Under-utilized secure graph GS = (V,ES). (B) Order of Diffie-Hellman key
establishment for the minimized cost (e.g., establishing key for (n1, n2) first results in
shorter secure path for (n3, n4)). (C) Secure graph is connected. Nodes n1,1 and n2,1

have a physical link but don’t share a key. They can communicate through a secure
path of 3 hops to establish a key. (D) Nodes n2, n3 or n6 can establish new secure links
at the power level 2 to provide shorter secure paths for nodes n1 and n2. (E) Secure
graph is disconnected. Nodes n1 and n2 have a link but they do not share a key, and
they can not find a secure path to establish key. (F) Nodes n2 and n6 share a key, and
they can establish a new link at the power level 3 to provide the secure connectivity.

cost assignment on the edges it has an approximation (PTAS) which achieves
a factor of 2 for κ = 2 [9]. There is a rich literature of previous work for such
tractable variants of P1 that offer both deterministic [10, 11] and randomized
[12] approaches.

However, the cost function to be minimized in P1 is different from classical
graph augmentation since the cost of each edge-to-be-inserted (call this a new-
edge) to GS may change as the new edges are added to GK . For example, suppose
the cost or weight of a new-edge (i, j) is the length of the shortest path between
i and j in GS , then this cost will change depending on the order of insertion.
This dependency presents a non-linear cost function on the links and makes the
order of augmentation important. Thus, optimality depends upon the ordering
of the set of node pairs (EW ⊆ EP \EK) as illustrated in Figure 2-(A,B). This
problem is not only NP-Hard but also it does not admit a PTAS since minimum
cutsets to be augmented do not admit constant costs.

4 Problem P2: Augmenting the Physical Graph GP

In this problem, we consider adjusting power levels to create a (new) physical link
between a pair of nodes that share a symmetric key. The optimization problem



here is to determine which nodes should increase their power levels to provide
the secure connectivity at a minimum cost (Figures 2-E,F). Increasing power
levels decreases the number of hops in a secure path as illustrated in Figures
2-(C,D). However, increasing transmission power generates more interference on
surrounding nodes. Enforcing a bound on instantaneous interference to ensure
acceptable SINR for wireless communications yields to a mixed integer non-linear
optimization problem [13]. Thus, problem P2 has two parts: (i) identification of
optimal number of edges to augment GP , and (ii) interference constrained power
selection for materializing these edges. We use an auxiliary graph representation
similar to [13] for representing the power levels and formulating the interference
constraints.

We note that problem P2 can be formulated also as an instance of the edge
augmentation problem. However, there are two complications: (i) interference
constraints on the nodes, and (ii) a complex cost function on the edge set that
must capture not only the energy cost but also the interference induced on the
other nodes. Thus, P2 is optimal augmentation of GP subject to interference
constraints with a nontrivial cost function.

We formulate edge augmentation problem with the interference constraints
on nodes and transmission costs on edges as a flow problem using an auxiliary
graph GA = (VA, EA) similar to [13].

4.1 Auxiliary Graph Representation

In this representation, for each node ni, auxiliary GA includes a receiver ver-
tex ni and limax transmitter vertices (ni,1, ni,2, . . . , ni,limax

) corresponding to the
each discrete power level. Receivers from all nodes form the receiver set R =
{n1, n2, . . . , ni}, and transmitters form the transmitter set T = { n1,1, . . . , n1,l1max

,
n2,1, . . . , n2,l2max

, . . . , ni,1, . . . , ni,limax
} where VA = R

∪
T . T (i) represents all

transmitters {ni,1, ni,2, . . . , ni,limax
} of the receiver ni, and R(j) represents re-

ceiver nj of the transmitter nj,l. Edge set EA includes edges (i, j) of types: (1)
i ∈ R and j ∈ T (i), and (2) i ∈ T and j ∈ R where there is a shared-key
between nodes ni and nj (i.e. (i, j) ∈ EK). First rule states that there are edges
from the receiver of each node to all of its transmitters (dashed edges in Figure
3-A). Second rule states that there is an edge from each transmitter to each
receiver located within the transmission range required that both nodes share
a key (solid edges in Figure 3-A). These edges have cost associated with them
as the amount of energy consumed to transfer one unit of flow. For simplicity,
all edges considered to have unlimited capacities but the network is capacitated
due to interference. There is a limit on the amount of interference a receiver can
handle meaning that not all transmitters can transmit at the same time.

We force a limit on the amount of interference-plus-noise that a node can tol-
erate as the Reception Quality constraint. This constraint requires that a message
is received by a receiver if the ratio between the received signal strength and the
interference-plus-noise due to surrounding transmitters do not exceed a thresh-
old as specified in Equation 1. Then, our optimization problem becomes finding
a minimum cost set of edges on the auxiliary graph subject to the interference



Fig. 3. (A) Auxiliary graph GA = (VA, EA) corresponding to the secure graph
GS = (V,ES) of Figure 1. Black vertices are receivers R = {n1, n2, n3, n4, n5, n6}.
Each node has two transmit power levels which are the white transmitter vertices
T = {n1,1, n1,2, n2,1, n2,2, . . . , n6,1, n6,2}. Each solid edge has a cost associated which
is the total energy used by the system to pass one unit of flow and/or the energy
consumption due to interference created on the surrounding receivers. Dashed edges
have no cost. All edges have unlimited capacities but the network is capacitated due
to the interference because there is a limit on the amount of interference a receiver
can handle due to SINR model. (B) Receiver flow conservation for Equation 2, (C)
Transmitter flow conservation for Equation 3, (D) Receiver utilization for Equation 5,
and (E) Transmitter utilization for Equation 6.

constraint where cost of an edge is E = ET +ER so that resulting secure graph
is κ− connected.

The optimization problem P2 has bi-objectives: (1) maximizing the number
of concurrent flows -this is the augmentation part, and (2) minimizing the cost
which is defined w.r.t. power consumption (since we handle the interference in
constraints). Thus, we break the problem into two subproblems and formulate
two integer programs. In maximum key establishment flow problem P2.1, we
seek for the maximum amount of flow FMax ⊆ F that we can grant subject to
interference constraints. In minimum cost key establishment flow problem P2.2,
we seek for minimum cost flow assignment on the auxiliary graph edges while
keeping |FMax| and the interference as constraints.

Having formulated the problem as an auxiliary graph, it can be shown that
both problems P2.1 and P2.2 are NP −Hard and MAX−SNP −Hard based
on a reduction from MAX3SAT (see the appendix for formal proofs). Thus, they
are intractable and it is NP-Hard to approximate them within a factor 1 + ϵ for
some fixed ϵ > 0.



4.2 Problem P2.1: Mathematical Programming Formulation

We formulate P2.1 as a constrained optimization problem. The optimization
problem aims to maximize the number of source-destination pairs (s, t) ∈ F be
granted on the auxiliary graph concurrently subject to interference thresholds
on each vertex.

Definition 1 (MaxKeyEstabFlow Problem P2.1). Given GA = (VA, EA)
the auxiliary graph representation of a deployment, euclidian distances d(ni, nj)
between nodes for all node pairs (ni, nj), SINR constants β and α, power lev-
els (1, 2, 3, . . . , limax) for all nodes ni and set of flows F for the key establish-
ment traffic, P2.1 is the problem of maximizing the number X (X = |F ′| where
F ′ ⊆ F) of source-destination pairs that can exchange key establishment mes-
sages concurrently on the auxiliary graph GA subject to interference constraints.
Solution to the problem is the subset F ′ of source-destination pairs, and flows of
source-destination pairs (s, t) ∈ F ′ assigned to a subset of edges E′

A ⊆ EA.

Problem is similar to integer multiflow optimization problem [14] because
flows belonging to multiple source-destination pairs (s, t) ∈ F is assigned to
edges of the auxiliary graph. Vertices of the edges having non-zero flow in the
auxiliary graph will correspond to power level of the corresponding pairwise
communication.

Let GA be the auxiliary graph corresponding to a deployment with N nodes.
Also, F is the set of node pairs (s, t) representing neighboring nodes which don’t
share a key, and which need to exchange key establishment messages. We assume
that the key establishment is done by exchanging two units of messages between
s and t, thus the demand for (s, t) and (t, s) are both one. Then, the problem is to
find largest routable subset of F in GA subject to: (i) flow conservation (receiver
and transmitter), (ii) flow symmetry, (iii) utilization (receiver and transmitter),
and (iv) reception quality:
(i.a) Receiver flow conservation constraint requires that the difference be-
tween flows coming and leaving a receiver (as in Figure 3-B) due to a flow
between (s, t) should be: (i) zero if the node is not the source or the destination,
(ii) fs,t ∈ {0, 1} if the node is destination, and (iii) (−fs,t) ∈ {−1, 0} if the node
is source. Thus, for each j ∈ R and ∀(s, t) ∈ F :

∑
i∈T

fs,t
i,j −

∑
i∈T (j)

fs,t
j,i = x s. t.

x = fs,t, j=t;
x = −fs,t, j=s;
x = 0, o/w.

(2)

(i.b) Transmitter flow conservation constraint requires that all flows coming
and leaving a transmitter (as in Figure 3-C) due to a flow between (s, t) should
be equivalent. Thus, for each j ∈ T and ∀(s, t) ∈ F :∑

i∈R(j)

fs,t
i,j −

∑
i∈R

fs,t
j,i = 0. (3)

(ii) Flow symmetry constraint requires that when there is a flow on link
(ni,l, nj) (1 ≤ l ≤ limax) due to the flow between (s, t) ∈ F , there should be a



flow on link (nj,l′ , ni) (1 ≤ l′ ≤ ljmax) due to the flow between (t, s) ∈ F . In other
words, key exchange request and response messages between two nodes use the
same path in the secure graph. This assumption helps in that whenever one of
the transmitters ni,l or nj,l′ can not be activated due to the interference, the
other one should not be. Thus, for each node pair ni and nj , and ∀(s, t) ∈ F :

limax∑
l=1

fs,t
ni,l,nj

−
ljmax∑
l′=1

f t,s
nj,l′ ,ni

= 0. (4)

(iii.a) Receiver utilization constraint requires that the receiver utilization (as
in Figure 3-D) due to a flow should not exceed the unity. Thus, for each j ∈ R
and ∀(s, t) ∈ F : ∑

i∈T

fs,t
i,j ∈ {0, 1}. (5)

(iii.b) Transmitter utilization constraint requires that the transmitter uti-
lization (as in Figure 3-E) due to a flow should not exceed unity. Thus, for each
j ∈ R and ∀(s, t) ∈ F : ∑

i∈T (j)

fs,t
j,i ∈ {0, 1}. (6)

(iv) Reception Quality constraint states that flow fs,t
i,j (flow on edge (i, j) due

to flow fs,t) exists (non-zero) if the ratio between the received signal strength
and the interference-plus-noise, due to surrounding transmitters, do not exceed
a threshold as specified in Equation 1. This threshold is applicable to a receiver
if there exists a flow on this receiver. Thus, given δk and fs,t

i,j which are the
indicator of a flow on each transmitter k and on the receiver j respectively:

∀k ∈ T, δk =

{
1,

∑
(s,t)∈F

∑
m∈R fs,t

k,m > 0;

0, o/w.

For each j ∈ R:

P l
i

d(ni,nj)α

Noise+
∑

k∈T\{i}
P l

k
×δk

d(nk,nj)α

≥ β × fs,t
i,j (7)

Our mathematical program then becomes:

Maximize X =
∑

(s,t)∈F

fs,t Subject to (2), (3), (4), (5), (6), (7).

Proof sketch: We prove that MaxKeyEstabFlow is NP-hard by using a re-
duction from MAX3SAT problem, which is a truth assignment to the variables,
to find maximum number of clauses that can be satisfied in a boolean formula
in the 3CNF form. We define a reduction from MAX3SAT to MaxKeyEstab-
Flow in two steps. First, given a boolean formula in the 3CNF form with n



variables and m clauses, we create a WSN deployment in an Euclidian plane.
We create sensor nodes Ci and Di for ith clause, and sensor nodes xj and xj

for jth variable where only the sensor nodes xj and xj create interference on
each other (a.k.a. both variables can not be set as TRUE). We define set of
flows F = {(Ci, Di), (Di, Ci)|1 ≤ i ≤ m}. Second, using this WSN deployment
we create an auxiliary graph representation as described in Section 4.1. Thus,
the objective of finding a truth assignment to the variables so that maximum
number of clauses that can be satisfied becomes finding maximum number of
source-destination pairs in F which can be granted concurrently both on the
WSN and on the auxiliary graph GA subject to interference constraints. Inap-
proximability results for P2.1 comes from the interference created by the links
and the interference threshold constraint. We show that for every ϵ > 0, there is
a gap preserving reduction from the MAX3SAT to MaxKeyEstabFlow that has
parameters (c, 1+ϵ, c|F|/2, 1+ϵ) where F is the set of flows. We show that the
MAX3SAT (φ) = c ⇔ MaxKeyEstabFlow (τ(φ)) = c.m. (see the appendix for
formal proofs).

4.3 Problem P2.2 Mathematical Programming Formulation

Definition 2 (MinCostKeyEstabFlow Problem P2.2). Given the auxil-
iary graph representation GA = (VA, EA) of a deployment, euclidian distances
d(ni, nj) between nodes for all node pairs (ni, nj), SINR constants β and α,
power levels (1, 2, 3, . . . , limax) for all nodes ni, set of flows F for the key es-
tablishment traffic and the maximum number X of concurrent key establishment
flow, it is the problem of finding at least X source-destination pairs which can
exchange key establishment messages on the auxiliary graph GA at a minimum
cost subject to interference constraints. Solution to the problem is the subset F ′

of source-destination pairs, flows of source-destination pairs (s, t) ∈ F ′ assigned
to a subset of edges E′

A ⊆ EA and the overall cost.

Our objective is to grant at least X flows through the auxiliary graph GA

with a minimum cost. Result of the program is the flow assigned to each link on
the auxiliary graph GA. This result will also imply the power level assignment
to each sensor node so to grant at least X flows between source-destination
pairs. Our formulation has the same constraints as the maximization problem: (i)
flow conservation (receiver and transmitter), (ii) flow symmetry, (iii) utilization
(receiver and transmitter), and (iv) reception quality. Flow bound is additional
constraint which requires total flow granted by the flow assignment should be at
least X . Thus: ∑

(s,t)∈F

fs,t ≥ X . (8)

Our mathematical program becomes:

Minimize
∑

(s,t)∈F

∑
i∈T, j∈R

fs,t
i,j Ci,j Subject to (2), (3), (4), (5), (6), (7), (8).



Ci,j = ET + ER is the energy cost of a unit flow on the edge (i, j) where i ∈ T
and j ∈ R. All other edges have zero costs.
Proof sketch: We prove that MinCostKeyEstabFlow is NP-hard by using a
reduction from theWeighted MAX3SAT problem where each clause has a weight,
and the problem is to maximize the sum of the weights of satisfied clauses. The
Weighted MAX3SAT is both NP-hard and MAX-SNP [15] problem. We use
similar approach as in MaxKeyEstabFlow to show that MinCostKeyEstabFlow
problem is both NP-hard and MAX-SNP (see the appendix for formal proofs).

5 Conclusion and Discussions

Focus of this work is first to formulate the key establishment problem in wireless
sensor networks together with the physical layer properties, then to analyze its
complexity. We present mathematical programming formulations maximum key
establishment flow andminimum cost key establishment flow as variants of graph
augmentation problems. We prove that finding optimum solutions and finding
polynomial time approximations are both NP-hard. We place these problems in
inapproximability Class I [9] which is the richest class of all. Our results show
that post-deployment key establishment in distributed wireless sensor networks
is a hard problem. Most key management schemes trusting on post deployment
key establishment for secure connectivity may not be feasible and applicable to
practical solutions. Research should focus on making efficient use of deployment
knowledge, or on developing deterministic key management schemes (such as
[16–18]) which can ensure that any pair of nodes secure their communication
using symmetric or asymmetric keys without explicit key establishment flows.
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A Proofs

Proof. (P2.1 MaxKeyEstabFlow is in NP-hard) We prove that MaxKeyEstab-
Flow is NP-Hard using a reduction from the MAX3SAT problem which is a truth
assignment to the variables {x1, x2, . . . , xn} to find maximum number of clauses
that can be satisfied in a boolean formula φ in the 3CNF form with clauses {C1,
C2, . . . , Cm}. We define a reduction τ from MAX3SAT to MaxKeyEstabFlow
in two steps. The first step reduces a MAX3SAT problem instance into a WSN
problem instance, and the second step derives an auxiliary graph formulation.
Step 1: Given a boolean formula φ in the 3CNF form with n variables and m
clauses, create a WSN deployment in an Euclidian plane (for 1 ≤ i ≤ m and
1 ≤ j ≤ n):

1. Create sets of sensor nodes: C = {Ci|1 ≤ i ≤ m}, D = {Di|1 ≤ i ≤ m},
X = {xj |1 ≤ j ≤ n} and X = {xj |1 ≤ j ≤ n}. Namely, create sensor nodes
Ci and Di for i

th clause, and sensor nodes xj and xj for jth variable.
2. Sensor nodes xj and xj have a maximum power level of ljmax = 1. Sensor

nodes Ci and Di have a maximum power level of limax = Lmax which covers
whole WSN and can use the RTS/CTS signalling to check availability of the
channel at receivers.

3. Only the sensor nodes xj and xj create interference on each other (a.k.a.
boolean variables xj and xj can not be true at the same time).

4. Distribute a key-chain KC to each sensor node. KCCi and KCxj (a.k.a.,
KCxj

) should share a key if variable xj (a.k.a., xj) appears in ith clause.
Similarly, KCDi and KCxj (a.k.a., KCxj

) should share a key if variable xj

(a.k.a., xj) appears in ith clause. All other pairs of key-chains should not
share a key.



5. Create set of flows F = {(Ci, Di), (Di, Ci)|1 ≤ i ≤ m}. These are the pairs
of nodes which have physical links but do not share keys to secure their
communication.

6. Place the sensor nodes on a unit disk area: (a) Draw v × v (v = ⌈
√
n⌉) grid

for n variables. (b) Each grid location should be a square of size 2αI × 2αI
where I is the distance below which SINR on receiving node due to other
nodes is less than the threshold based on Formula 1. αI (for a constant α) is
the distance over which interference is negligible. (c) For each sensor node xj ,
select a random empty grid coordinate and locate the node at the center of
the grid location. (d) Place each sensor node xj at a random location where
Euclidian distance between d(xj , xj) < I. Thus, SINR on xj as receiver can
be less than the threshold only due to xj .

Step 2: Given a WSN deployment which is reduced from a boolean formula φ
in the 3CNF form with n variables and m clauses, develop an auxiliary graph
formulation as described in Section 4.1 and as illustrated in Figure 4:

1. Create auxiliary graph GA = (VA, EA) (for 1 ≤ i ≤ m, 1 ≤ j ≤ n and
1 ≤ g ≤ Lmax):
(a) Receiver nodes are R = C

∪
D

∪
X

∪
X.

(b) Add transmitter nodes C
Tg

i , D
Tg

i , xT
j and xT

j .

(c) Add directed edges (CR
i , C

Tg

i ) and (DR
i , D

Tg

i ), (xR
j , x

T
j ) and (xR

j , x
T
j ).

(d) Add directed edges (C
Tg

i , xR
j ) (a.k.a., xR

j ) and (xT
j , C

R
i ) (a.k.a, xT

j ) if
xj (a.k.a, xj) shares a key with Ci.

(e) Add directed edges (D
Tg

i , xR
j ) (a.k.a., xR

j ) and (xT
j , D

R
i ) (a.k.a, xT

j ) if
xj (a.k.a, xj) shares a key with Di.

2. Set edge capacities as unlimited.
3. Create set of flows F = {(Ci, Di), (Di, Ci)|1 ≤ i ≤ m}.

This algorithm transforms a boolean formula φ in 3CNF form with n vari-
ables and m clauses first into a WSN deployment with 2(m + n) nodes, and
then formulates it as an auxiliary graph GA with (2m(Lmax + 1) + 4n) nodes
and O(m+ 2n) edges where |F| = 2m. Objective of finding a truth assignment
to the variables so that number of clauses that can be satisfied is maximized
becomes finding maximum number of flows in F which can be granted concur-
rently both on the WSN and on the auxiliary graph GA subject to interference
constraints. Thus, the transformation from MAX3SAT to MaxKeyEstabFlow
can be carried out in polynomial time.

A solution to the problem instance τ(ξ) of MaxKeyEstabFlow in auxiliary
graph representation can be converted to a solution of problem instance ξ of
MAX3SAT in two easy steps in linear time. First, if total flow on the transmitter
xT
j ≥ 1 (a.k.a. xT

j ≥ 1) then set boolean variables xj = True (a.k.a. xj = True)
and xj = False (a.k.a. xj = False) for 1 ≤ j ≤ n. Note that the interference
constraint does not permit both flows xT

j ≥ 1 and xT
j ≥ 1. Second, if total flow

on both transmitters are xT
j = 0 and xT

j = 0, then set either (xj = True and
xj = False) or (xj = False and xj = True) for 1 ≤ j ≤ n. This assignment



Fig. 4. Auxiliary graph GA = (VA, EA) reduced from sample boolean formula φ =
((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)). There is only one transmit power level for the nodes
corresponding to the boolean variables. Nodes C1, C2, D1, D2 have Lmax transmit
power levels. Set of receivers are R = {xR

1 , x
R
2 , x

R
3 , x

R
1 , x

R
2 , x

R
3 , C

R
1 , CR

2 , DR
1 , D

R
2 }, and

set of transmitters are T = {xT
1 , x

T
2 , x

T
3 , x

T
1 , x

T
2 , x

T
3 , C

Tg

1 , C
Tg

2 , D
Tg

1 , D
Tg

2 } for 1 ≤ g ≤
Lmax where VA = R

∪
T . All edges have unlimited capacities. Finally set of flow is

F = {(C1, D1), (C2, D2), (D1, C1), (D2, C2)}.

does not change the number of the satisfied clauses in ξ, but some satisfied
clauses may have more than one variable set to True. Very similar steps apply
for converting the solution to the problem instance τ(ξ) of MaxKeyEstabFlow
in WSN to solution to the problem instance ξ of MAX3SAT in linear time. The
flows on sensor nodes xj and xj should be considered instead of the flows on
transmitters xT

j and xT
j .

Optimal solution to the instance ξ of MAX3SAT has c satisfied clauses if and
only if the optimal solution to the instance τ(ξ) of MaxKeyEstabFlow on WSN
and auxiliary graph representations has c flows (C,D) (i.e. flows (C,D), (D,C) ∈
F) which are granted. (1)MAX3SAT → MaxKeyEstabF low: assume that τ(ξ)
has an optimal solution d > c. Then it would be possible to satisfy more than
c clauses by simply setting True value for the respective variables. This con-
tradicts the fact that ξ has an optimal solution c. (2) MaxKeyEstabF low →
MAX3SAT : assume that ξ has an optimal solution d > c. Then it would be
possible to grant flow for d source-destination pairs without contradicting the in-
terference constraint. This contradicts the fact that τ(ξ) has an optimal solution
c. ⊓⊔

Definition 3. [9, Definition 10.4] A maximization problem Π is MAX-SNP-
Hard if for every MAX-SNP problem Γ and every two constants c ≤ 1, ρ > 1,
there are two constants c′ ≤ 1, ρ′ > 1 such that there is a gap preserving reduction
from Γ to Π with parameters (c, ρ, c′, ρ′).

Proof. (P2.1 MaxKeyEstabFlow is in MAX-SNP) MAX3SAT is a MAX-SNP
problem [15] where its optimum c is a fraction equivalent to the maximum num-



ber of satisfiable clauses divided by the total number of clauses. It is NP-Hard
to approximate MAX3SAT within a fixed ratio ρ = 1 + ϵ for ϵ > 0. For proving
inapproximability results, we use gap preserving reduction as described in Def-
inition 3. For every ϵ > 0, there is a gap preserving reduction from MAX3SAT
to MaxKeyEstabFlow that has parameters (c, 1+ϵ, c|F|/2, 1+ϵ) where F is
the set of flows. We use the polynomial time reduction τ from MAX3SAT
to MaxKeyEstabFlow described in the NP-hard proof of MaxKeyEstabFlow.
Let φ be a boolean formula in 3CNF form with n variables and m clauses.
MAX3SAT(φ) represents the maximum number of satisfiable clauses divided by
the total number of clauses, and MaxKeyEstabFlow (τ(φ)) represents the max-
imum number of flows that can be granted. We will show that MAX3SAT (φ)
= c ⇔ MaxKeyEstabFlow (τ(φ)) = c.m. First, assume that MAX3SAT(φ)=c.
There must be c.m satisfied clauses. Each satisfied clause Ci must have at least
one satisfied variable where each of the corresponding transmitter nodes has
one unit of flow, meaning that corresponding flow (Ci, Di) can be granted.
Thus, MaxKeyEstabF low (τ(φ)) ≥ c.m. Second, assume that MaxKeyEstab-
Flow (τ(φ)) = c.m. There must be c.m flows granted. Each granted flow (Ci,
Di) means one satisfied clause Ci so that MAX3SAT(φ) ≥ c. Thus:

– MAX3SAT (φ) = c ⇒ MaxKeyEstabF low(τ(φ)) = c.m
– MAX3SAT (φ) < c

1+ϵ ⇒ MaxKeyEstabF low(τ(φ)) < c.m
1+ϵ .

This gap-preserving reduction from MAX3SAT shows that it is NP-Hard to
approximate MaxKeyEstabFlow within factor 1 + ϵ. Thus, MaxKeyEstabFlow
is MAX-SNP-Hard, meaning also that MaxKeyEstabFlow doesn’t have a poly-
nomial time approximation scheme (PTAS) unless P = NP . ⊓⊔
Proof. (P2.2 MinCostKeyEstabFlow is in both NP-hard and MAX-SNP-hard)
We use the Weighted MAX3SAT problem where each clause has a weight, and
the problem is to maximize the sum of the weights of satisfied clauses. Weighted
MAX3SAT is a both NP-Hard and MAX-SNP-Hard [15] problem. We can show
that MinCostKeyEstabFlow problem is both NP-Hard and MAX-SNP-Hard by
using a polynomial time reduction from Weighted MAX3SAT to MinCostKey-
EstabFlow which is obtained by adding two simple steps to reduction algorithm τ
of NP-hard proof of MaxKeyEstabFlow. Consider a boolean formula φ in 3CNF
form with n variables and m clauses with weights (i.e. weight wi for the clause
Ci). First, for 1 ≤ i ≤ m and 1 ≤ j ≤ n, set cost (−wi/2) for the edge (Ci, xj)
(a.k.a. (Ci, xj)) of WSN deployment where xj (a.k.a xj) appears in clause Ci

(set cost (−wi/2) for the edge (C
Tg

i , xR
j ) (a.k.a. (C

Tg

i , xR
j )) of auxiliary graph

representation where 1 ≤ g ≤ Lmax. All other edges have zero costs. Second, set
X = 1. Problem of maximizing the sum of the weights of the satisfied clauses
becomes problem of minimizing the cost of granting one or more flows subject to
interference constraint. The rest of the proof follows the discussions in NP-hard
and MAX-SNP proofs of MaxKeyEstabFlow. We conclude that MinCostKey-
EstabFlow problem is both NP-Hard and MAX-SNP-Hard, meaning also that
MinCostKeyEstabFlow doesn’t have a polynomial time approximation scheme
(PTAS) unless P = NP . ⊓⊔


