642 research outputs found

    Low complexity subcarrier and power allocation algorithm for uplink OFDMA systems

    Get PDF
    In this article, we consider the joint subcarrier and power allocation problem for uplink orthogonal frequency division multiple access system with the objective of weighted sum-rate maximization. Since the resource allocation problem is not convex due to the discrete nature of subcarrier allocation, the complexity of finding the optimal solution is extremely high. We use the optimality conditions for this problem to propose a suboptimal allocation algorithm. A simplified implementation of the proposed algorithm has been provided, which significantly reduced the algorithm complexity. Numerical results show that the presented algorithm outperforms the existing algorithms and achieves performance very close to the optimal solution

    Radio resource allocation for multicarrier-low density spreading multiple access

    Get PDF
    Multicarrier-low density spreading multiple access (MC-LDSMA) is a promising multiple access technique that enables near optimum multiuser detection. In MC-LDSMA, each user’s symbol spread on a small set of subcarriers, and each subcarrier is shared by multiple users. The unique structure of MC-LDSMA makes the radio resource allocation more challenging comparing to some well-known multiple access techniques. In this paper, we study the radio resource allocation for single-cell MC-LDSMA system. Firstly, we consider the single-user case, and derive the optimal power allocation and subcarriers partitioning schemes. Then, by capitalizing on the optimal power allocation of the Gaussian multiple access channel, we provide an optimal solution for MC-LDSMA that maximizes the users’ weighted sum-rate under relaxed constraints. Due to the prohibitive complexity of the optimal solution, suboptimal algorithms are proposed based on the guidelines inferred by the optimal solution. The performance of the proposed algorithms and the effect of subcarrier loading and spreading are evaluated through Monte Carlo simulations. Numerical results show that the proposed algorithms significantly outperform conventional static resource allocation, and MC-LDSMA can improve the system performance in terms of spectral efficiency and fairness in comparison with OFDMA

    Power and Channel Allocation for Non-orthogonal Multiple Access in 5G Systems: Tractability and Computation

    Full text link
    Network capacity calls for significant increase for 5G cellular systems. A promising multi-user access scheme, non-orthogonal multiple access (NOMA) with successive interference cancellation (SIC), is currently under consideration. In NOMA, spectrum efficiency is improved by allowing more than one user to simultaneously access the same frequency-time resource and separating multi-user signals by SIC at the receiver. These render resource allocation and optimization in NOMA different from orthogonal multiple access in 4G. In this paper, we provide theoretical insights and algorithmic solutions to jointly optimize power and channel allocation in NOMA. For utility maximization, we mathematically formulate NOMA resource allocation problems. We characterize and analyze the problems' tractability under a range of constraints and utility functions. For tractable cases, we provide polynomial-time solutions for global optimality. For intractable cases, we prove the NP-hardness and propose an algorithmic framework combining Lagrangian duality and dynamic programming (LDDP) to deliver near-optimal solutions. To gauge the performance of the obtained solutions, we also provide optimality bounds on the global optimum. Numerical results demonstrate that the proposed algorithmic solution can significantly improve the system performance in both throughput and fairness over orthogonal multiple access as well as over a previous NOMA resource allocation scheme.Comment: IEEE Transactions on Wireless Communications, revisio

    Weighted Max-Min Resource Allocation for Frequency Selective Channels

    Full text link
    In this paper, we discuss the computation of weighted max-min rate allocation using joint TDM/FDM strategies under a PSD mask constraint. We show that the weighted max-min solution allocates the rates according to a predetermined rate ratio defined by the weights, a fact that is very valuable for telecommunication service providers. Furthermore, we show that the problem can be efficiently solved using linear programming. We also discuss the resource allocation problem in the mixed services scenario where certain users have a required rate, while the others have flexible rate requirements. The solution is relevant to many communication systems that are limited by a power spectral density mask constraint such as WiMax, Wi-Fi and UWB

    Spectral Efficiency of Multi-User Adaptive Cognitive Radio Networks

    Full text link
    In this correspondence, the comprehensive problem of joint power, rate, and subcarrier allocation have been investigated for enhancing the spectral efficiency of multi-user orthogonal frequency-division multiple access (OFDMA) cognitive radio (CR) networks subject to satisfying total average transmission power and aggregate interference constraints. We propose novel optimal radio resource allocation (RRA) algorithms under different scenarios with deterministic and probabilistic interference violation limits based on a perfect and imperfect availability of cross-link channel state information (CSI). In particular, we propose a probabilistic approach to mitigate the total imposed interference on the primary service under imperfect cross-link CSI. A closed-form mathematical formulation of the cumulative density function (cdf) for the received signal-to-interference-plus-noise ratio (SINR) is formulated to evaluate the resultant average spectral efficiency (ASE). Dual decomposition is utilized to obtain sub-optimal solutions for the non-convex optimization problems. Through simulation results, we investigate the achievable performance and the impact of parameters uncertainty on the overall system performance. Furthermore, we present that the developed RRA algorithms can considerably improve the cognitive performance whilst abide the imposed power constraints. In particular, the performance under imperfect cross-link CSI knowledge for the proposed `probabilistic case' is compared to the conventional scenarios to show the potential gain in employing this scheme
    corecore