2,508 research outputs found

    A note on constructions of bent functions from involutions

    Get PDF
    Bent functions are maximally nonlinear Boolean functions. They are important functions introduced by Rothaus and studied rstly by Dillon and next by many researchers for four decades. Since the complete classication of bent functions seems elusive, many researchers turn to design constructions of bent functions. In this note, we show that linear involutions (which are an important class of permutations) over nite elds give rise to bent functions in bivariate representations. In particular, we exhibit new constructions of bent functions involving binomial linear involutions whose dual functions are directly obtained without computation

    Algebraic normal form of a bent function: properties and restrictions

    Get PDF
    Maximally nonlinear Boolean functions in nn variables, where n is even, are called bent functions. There are several ways to represent Boolean functions. One of the most useful is via algebraic normal form (ANF). What can we say about ANF of a bent function? We try to collect all known and new facts related to ANF of a bent function. A new problem in bent functions is stated and studied: is it true that a linear, quadratic, cubic, etc. part of ANF of a bent function can be arbitrary? The case of linear part is well studied before. In this paper we prove that a quadratic part of a bent function can be arbitrary too

    On the Fourier Spectra of the Infinite Families of Quadratic APN Functions

    Get PDF
    It is well known that a quadratic function defined on a finite field of odd degree is almost bent (AB) if and only if it is almost perfect nonlinear (APN). For the even degree case there is no apparent relationship between the values in the Fourier spectrum of a function and the APN property. In this article we compute the Fourier spectrum of the new quadranomial family of APN functions. With this result, all known infinite families of APN functions now have their Fourier spectra and hence their nonlinearities computed.Comment: 12 pages, submitted to Adavances in the Mathematics of communicatio

    Doubly Perfect Nonlinear Boolean Permutations

    Full text link
    Due to implementation constraints the XOR operation is widely used in order to combine plaintext and key bit-strings in secret-key block ciphers. This choice directly induces the classical version of the differential attack by the use of XOR-kind differences. While very natural, there are many alternatives to the XOR. Each of them inducing a new form for its corresponding differential attack (using the appropriate notion of difference) and therefore block-ciphers need to use S-boxes that are resistant against these nonstandard differential cryptanalysis. In this contribution we study the functions that offer the best resistance against a differential attack based on a finite field multiplication. We also show that in some particular cases, there are robust permutations which offers the best resistant against both multiplication and exponentiation base differential attacks. We call them doubly perfect nonlinear permutations

    A Highly Nonlinear Differentially 4 Uniform Power Mapping That Permutes Fields of Even Degree

    Get PDF
    Functions with low differential uniformity can be used as the s-boxes of symmetric cryptosystems as they have good resistance to differential attacks. The AES (Advanced Encryption Standard) uses a differentially-4 uniform function called the inverse function. Any function used in a symmetric cryptosystem should be a permutation. Also, it is required that the function is highly nonlinear so that it is resistant to Matsui's linear attack. In this article we demonstrate that a highly nonlinear permutation discovered by Hans Dobbertin has differential uniformity of four and hence, with respect to differential and linear cryptanalysis, is just as suitable for use in a symmetric cryptosystem as the inverse function.Comment: 10 pages, submitted to Finite Fields and Their Application

    Cold collisions of OH and Rb. I: the free collision

    Get PDF
    We have calculated elastic and state-resolved inelastic cross sections for cold and ultracold collisions in the Rb(1S^1 S) + OH(2Π3/2^2 \Pi_{3/2}) system, including fine-structure and hyperfine effects. We have developed a new set of five potential energy surfaces for Rb-OH(2Π^2 \Pi) from high-level {\em ab initio} electronic structure calculations, which exhibit conical intersections between covalent and ion-pair states. The surfaces are transformed to a quasidiabatic representation. The collision problem is expanded in a set of channels suitable for handling the system in the presence of electric and/or magnetic fields, although we consider the zero-field limit in this work. Because of the large number of scattering channels involved, we propose and make use of suitable approximations. To account for the hyperfine structure of both collision partners in the short-range region we develop a frame-transformation procedure which includes most of the hyperfine Hamiltonian. Scattering cross sections on the order of 101310^{-13} cm2^2 are predicted for temperatures typical of Stark decelerators. We also conclude that spin orientation of the partners is completely disrupted during the collision. Implications for both sympathetic cooling of OH molecules in an environment of ultracold Rb atoms and experimental observability of the collisions are discussed.Comment: 20 pages, 16 figure
    corecore