European Journal
of Combinatorics

Codes, graphs, and schemes from nonlinear functions

E.R. van Dam ${ }^{\text {a }}$, D. Fon-Der-Flaass ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Econometrics and O.R., Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands
${ }^{\mathrm{b}}$ Institute of Mathematics, Novosibirsk, 90, 630090, Russia
Received 18 February 2001; received in revised form 15 August 2002; accepted 24 August 2002
Dedicated to the memory of Dom de Caen

Abstract

We consider functions on binary vector spaces which are far from linear functions in different senses. We compare three existing notions: almost perfect nonlinear functions, almost bent (AB) functions, and crooked (CR) functions. Such functions are of importance in cryptography because of their resistance to linear and differential attacks on certain cryptosystems. We give a new combinatorial characterization of AB functions in terms of the number of solutions to a certain system of equations, and a characterization of CF in terms of the Fourier transform. We also show how these functions can be used to construct several combinatorial structures; such as semi-biplanes, difference sets, distance regular graphs, symmetric association schemes, and uniformly packed (BCH and Preparata) codes. © 2003 Elsevier Science Ltd. All rights reserved.

MSC: 05E30; 05B20; 94B05; 94A60

1. Almost perfect nonlinear, almost bent, and crooked functions

We consider functions on binary vector spaces which are far from linear functions in different senses. We compare three existing notions: almost perfect nonlinear (APN) functions, almost bent functions, and crooked functions. Such functions are of importance in cryptography because of their resistance to linear and differential attacks on certain cryptosystems (cf. [8-10, p. 1037]). Furthermore they are of interest in the study of linear feedback shift register sequences with low crosscorrelation (cf. [15, pp. 1795-1810]). Also in the construction of certain combinatorial structures they have proven to be useful; we will give an overview and update on this in Section 2. Furthermore we give a new combinatorial characterization of almost bent functions in terms of the number of solutions

[^0]to a certain system of equations (similar to such a characterization of APN functions), and a new characterization of crooked functions in terms of the Fourier transform.

First we introduce some notation which will be used throughout the paper. Let V be an n-dimensional space over the field $G F(2)$; and let $N=2^{n}$. By $\langle\cdot, \cdot\rangle$ we shall denote the standard inner product on V. By $|X|$ we denote the size of a finite set X. Let $f: V \rightarrow V$ be any function. For $a \in V \backslash\{0\}$, we denote by $H_{a}(f)$, or simply H_{a}, the set

$$
H_{a}=\{f(x)+f(x+a) \mid x \in V\} .
$$

The Fourier transform (also called Walsh transform) $\mu_{f}: V \times V \rightarrow \mathbb{R}$ of f is defined by the formula

$$
\mu_{f}(a, b)=\sum_{x \in V}(-1)^{\langle a, x\rangle}(-1)^{\langle b, f(x)\rangle} .
$$

Now we introduce the three different classes of "extremely nonlinear" functions which we shall consider in this paper.

Definition 1. A function $f: V \rightarrow V$ is called:
(i) APN (almost perfect nonlinear) if $\left|H_{a}(f)\right|=1 / 2 N$ for all $a \in V \backslash\{0\}$;
(ii) $\mathbf{A B}$ (almost bent) if $\mu_{f}(a, b) \in\{0, \pm \sqrt{2 N}\}$ for all $(a, b) \neq(0,0)$;
(iii) $\mathbf{C R}$ (crooked) if $f(0)=0$ and every set $H_{a}(f), a \neq 0$, is the complement of a hyperplane.
We shall denote the class of $\mathrm{APN}(\mathrm{AB}, \mathrm{CR})$ functions by $\mathcal{A P N}(\mathcal{A B}, \mathcal{C R})$.
The first definition can be motivated as follows. For any function f, the set $H_{a}(f)$ has size at most $1 / 2 N$ (see proof of Lemma 1); and if equality is attained for all $a \neq 0$, then (in cryptography) such a function has optimal resistance against a so-called differential attack.

The second definition is motivated by the fact that for any function f, the maximal value of $\left|\mu_{f}(a, b)\right|$ for $(a, b) \neq(0,0)$ is at least $\sqrt{2 N}$; and equality is attained if and only if f is AB (as defined; cf. [9]). Such a function has optimal resistance against a so-called linear attack. Note that as a consequence of the above, an $A B$ function can only exist if the dimension n is odd.

We use here the terminology from the papers [8] and [1]; other authors sometimes use the terms semiplanar for APN ([11]), and maximally nonlinear for AB functions ([7, 21]). The definition of CR functions given here is different from, but equivalent to, the one used in [1, 12]:

Definition 1'. A function $f: V \rightarrow V$ is called CR if it satisfies the following three properties:
(i) $f(0)=0$;
(ii) $f(x)+f(y)+f(z)+f(x+y+z) \neq 0$ when x, y, z are distinct;
(iii) $f(x)+f(y)+f(z)+f(x+a)+f(y+a)+f(z+a) \neq 0$ when $a \neq 0$.

It is also shown in [1] that, for a CR function f, all sets $H_{a}(f)$ are distinct, that is, every complement of a hyperplane occurs among them exactly once.

Let us recall some more properties of APN, AB , and CR functions. Most of them are taken from the papers [1, 8].

A function remains APN, AB, or CR after applying any nondegenerate affine transformations to the argument and/or the value of the function (for a CR function, it is additionally required that the resulting function maps 0 to 0).

If a function f is APN or AB , and bijective, then so is its inverse function f^{-1}. In contrast to this, the inverse of a $C R$ function need not be $C R$. Also, a function remains APN (AB) after adding any linear function to it. Again, this is not true for CR functions.

There are proper inclusions between the three classes:

$$
\mathcal{C R} \subset \mathcal{A B} \subset \mathcal{A P N}
$$

In the next section we shall prove both inclusions (note that $\mathcal{C R} \subseteq \mathcal{A P \mathcal { N }}$ follows from the definition).

Not too many constructions of APN, AB, or CR functions are known; all known such functions are equivalent under the above transformations to certain functions $f: G F\left(2^{n}\right)$ $\rightarrow G F\left(2^{n}\right)$ of the form $f(x)=x^{k}$. In Section 3 we give a complete list of all currently known APN, AB, and CR functions.

1.1. Alternative descriptions of $\mathcal{A P} \mathcal{N}, \mathcal{A B}$, and $\mathcal{C} \mathcal{R}$

As is well-known, the definition of APN functions given above can easily be re-formulated in terms of the number of solutions of a certain system of equations.

Lemma 1. A function f is APN if and only if the system of equations

$$
\left\{\begin{array}{l}
x+y=a \tag{1}\\
f(x)+f(y)=b
\end{array}\right.
$$

has zero or two solutions (x, y) for every $(a, b) \neq(0,0)$. If so, then the system has two solutions precisely when $b \in H_{a}(f)$.

Proof. For any function f, if the system (1) has a solution then it has at least two of them (interchange x and y). Therefore, for every $a \neq 0$ the set $H_{a}(f)$ has at most $1 / 2 N$ elements, and equality is achieved if and only if the system (1) has zero or two solutions for each b.

It turns out that AB functions can be characterized in a similar way.
Theorem 1. A function f is $A B$ if and only if the system of equations

$$
\left\{\begin{array}{l}
x+y+z=a \tag{2}\\
f(x)+f(y)+f(z)=b
\end{array}\right.
$$

has $N-2$ or $3 N-2$ solutions (x, y, z) for every (a, b). If so, then the system has $3 N-2$ solutions if $b=f(a)$, and $N-2$ solutions otherwise.

The proof presented below is a typical application of the Fourier transform. We shall present it in the language of matrices.

Proof. First we define several $N \times N$ matrices with real entries whose rows and columns are indexed by vectors from V. Let I be the identity matrix, J the all-one matrix, E the matrix with a single nonzero entry $E_{00}=1, E_{i j}=0$ for $(i, j) \neq(0,0)$. The entries of the matrices $X, M, M^{(3)}, F, S$ are as follows:

$$
\begin{aligned}
X_{a b} & =(-1)^{\langle a, b\rangle} ; \quad M_{a b}=\mu_{f}(a, b) ; \quad M_{a b}^{(3)}=\mu_{f}(a, b)^{3} ; \\
S_{a b} & =|\{(x, y, z) \mid x+y+z=a ; f(x)+f(y)+f(z)=b\}| ; \\
F_{a b} & =1 \quad \text { if } b=f(a) ; \quad \text { otherwise } F_{a b}=0 .
\end{aligned}
$$

One can easily check the following equalities:

$$
\begin{equation*}
X^{2}=N I ; \quad M=X F X ; \quad X J X=N^{2} E . \tag{3}
\end{equation*}
$$

In particular, it follows that the matrix X is nonsingular.
The condition that the system (2) has $N-2$ or $3 N-2$ solutions follows from the identity

$$
\begin{equation*}
S=(N-2) J+2 N F . \tag{4}
\end{equation*}
$$

Moreover, also the converse is true. Indeed, when $b=f(a)$, the system (2) has $3 N-2$ "trivial" solutions with one variable equal to a, and the two other variables equal to each other. So, from counting all (x, y, z, a, b) satisfying (2) in two ways it follows that the system has $3 N-2$ solutions when $b=f(a)$, and $N-2$ solutions otherwise.

The property that f is AB can also be stated in matrix terms. It is equivalent to the identity

$$
\begin{equation*}
M^{(3)}-2 N M=\left(N^{3}-2 N^{2}\right) E . \tag{5}
\end{equation*}
$$

Indeed, all values $\mu_{f}(a, b)$ except $\mu_{f}(0,0)=N$ are roots of the cubic equation $x^{3}-2$ $N x=0$.

Finally, we have the identity

$$
\begin{equation*}
M^{(3)}=X S X \tag{6}
\end{equation*}
$$

Let us prove it. We have

$$
\begin{aligned}
\mu_{f}(a, b)^{3} & =\sum_{x, y, z \in V}(-1)^{\langle a, x+y+z\rangle}(-1)^{\langle b, f(x)+f(y)+f(z)\rangle} \\
& =\sum_{p \in V}(-1)^{\langle a, p\rangle} \sum_{x+y+z=p}(-1)^{\langle b, f(x)+f(y)+f(z)\rangle} .
\end{aligned}
$$

In the inner summation, collect all terms with the same value $q=f(x)+f(y)+f(z)$; for each q there will be $S_{p q}$ of them. So,

$$
\mu_{f}(a, b)^{3}=\sum_{p \in V}(-1)^{\langle a, p\rangle} \sum_{q \in V} S_{p q}(-1)^{\langle b, q\rangle}=\sum_{p, q \in V} X_{a p} S_{p q} X_{q b}=(X S X)_{a b}
$$

Combining the identities (3) and (6) we get:

$$
X(S-2 N F-(N-2) J) X=M^{(3)}-2 N M-\left(N^{3}-2 N^{2}\right) E
$$

As X is nonsingular, it follows that the identities (4) and (5) hold simultaneously, and the theorem is proved.

Remark. The identities $M=X F X$ and $M^{(3)}=X S X$ from the proof represent a special case of the general fact that the Fourier image of the convolution of several functions is the product of their Fourier images.

The characterizations of APN and AB functions given in Lemma 1 and Theorem 1 allow us to give simple proofs of the inclusions $\mathcal{C} \mathcal{R} \subseteq \mathcal{A B} \subseteq \mathcal{A} \mathcal{P} \mathcal{N}$.

Proposition 1. Any $C R$ function is $A B$, and any $A B$ function is $A P N$.
Proof. For the second assertion, it is enough to notice that if for some $q \neq 0, a \neq p \neq$ $a+q$, the equality $f(p)+f(p+q)=f(a)+f(a+q)$ holds (that is, f is not APN), then the system

$$
\left\{\begin{array}{l}
x+y+z=a \\
f(x)+f(y)+f(z)=f(a)
\end{array}\right.
$$

apart from trivial solutions, has the solution $x=p, y=p+q, z=a+q$, and so f is not AB.

To prove the first assertion, take any CR function f. It is enough to show that, for every a and every $b \neq 0$, the system

$$
\left\{\begin{array}{l}
x+y+z=a \\
f(x)+f(y)+f(z)=f(a)+b
\end{array}\right.
$$

has $N-2$ solutions (when b does equal 0 , it follows from Definition 1^{\prime} that the system only has $(3 N-2)$ trivial solutions). Obviously, every such solution (x, y, z) satisfies $z \neq a$. Let $p=z+a=x+y$. Then $f(x)+f(y) \in H_{p}, f(z)+f(a) \in H_{p}$, and therefore $b \in V \backslash H_{p}$, since H_{p} is the complement of a hyperplane (and $\langle\cdot, \cdot\rangle \in G F(2)$). Every nonzero vector b belongs to $1 / 2 N-1$ hyperplanes, which gives $1 / 2 N-1$ choices for p, and hence for z. Once z is determined the system in x and y has precisely two solutions, because of Lemma 1. Hence we get $2(1 / 2 N-1)=N-2$ solutions in all.

In Theorem 1 we characterized AB functions (which are defined in terms of the Fourier transform) in terms of the number of solutions of a certain system of equations. Next, we shall give characterizations of APN functions and CR functions in terms of the Fourier transform. In the case of APN functions this characterization is due to Chabaud and Vaudenay [9]; in fact they used it to prove the inclusion $\mathcal{A B} \subseteq \mathcal{A P} \mathcal{N}$.

Theorem 2. Let f be an $A B$ function such that $f(0)=0$. Then f is $C R$ if and only if the set $\left\{a \mid \mu_{f}(a, b)=0\right\}$ is a hyperplane for every $b \neq 0$. If so, then all these hyperplanes are distinct and $\left\{a \mid \mu_{f}(a, b)=0\right\}=\{a \mid\langle a, c\rangle=0\}$, where c is such that $H_{c}(f)=\{x \mid\langle b, x\rangle=1\}$.

Proof. This proof will have a similar flavor as the proof of the characterization of AB functions in Theorem 1. We will make use of the same matrices X and E introduced there. Moreover we introduce the matrices $M^{(2)}$ and T of which the entries are given by $M_{a b}^{(2)}=\mu_{f}(a, b)^{2}$ and $T_{a b}=|\{(x, y) \mid x+y=a ; f(x)+f(y)=b\}|$. It follows
that $M^{(2)}=X T X$, which can be proven just like the identity $M^{(3)}=X S X$ was proven in Theorem 1.

The stated assertion that the set $\left\{a \mid \mu_{f}(a, b)=0\right\}$ is a hyperplane for every $b \neq 0$ is equivalent to the existence of a function $c: V \rightarrow V$ such that $\left\{a \mid \mu_{f}(a, b)=0\right\}=\{a \mid$ $\langle a, c(b)\rangle=0\}$ for every $b \neq 0$. Without loss of generality we complete the definition of c by taking $c(0)=0$.

Since f is an AB function the stated assertion is equivalent to $\mu_{f}(a, b)^{2}=N-$ $N(-1)^{\langle a, c(b)\rangle}$ for all a and $b \neq 0$, hence to $M^{(2)}=N(J-X C)+N^{2} E$, where C is the matrix given by $C_{a b}=1$ if $a=c(b)$; 0 otherwise. After multiplying both sides of the matrix equation from the left and right by the nonsingular matrix X it follows that the stated assertion is equivalent to the equation $T=E-C X+J$.

Now we use that f is APN: $T_{a x}=2$ if $x \in H_{a}(f), T_{00}=N$, and $T_{a x}=0$ otherwise. Finally, we may conclude that the stated assertion is equivalent to the existence of a function $c: V \rightarrow V, c(0)=0$ such that

$$
\sum_{b: a=c(b)}(-1)^{\langle b, x\rangle}=\left\{\begin{aligned}
-1 & \text { if } x \in H_{a}(f) \\
1 & \text { otherwise }
\end{aligned}\right.
$$

for all $a \neq 0$.
Now suppose that the stated assertion is true, and the above equations hold. By considering $x=0$ it follows that for every $a \neq 0$ the number of b such that $a=c(b)$ must be equal to one, hence c is a bijection. Now the equations reduce to $\left\langle c^{-1}(a), b\right\rangle=1$ if and only if $b \in H_{a}(f)$ for all b and $a \neq 0$. Hence $H_{a}(f)$ is the complement of a hyperplane for every $a \neq 0$, and we may conclude that f is CR.

On the other hand, if f is CR then the function given by $c(b)=a$ where a is the unique vector such that $H_{a}(f)=\{x \mid\langle b, x\rangle=1\}$ satisfies the required equations. Note that in this case c is a bijective function so the sets $\left\{a \mid \mu_{f}(a, b)=0\right\}, b \neq 0$ comprise all hyperplanes.

Proposition 2 ([9]). Let $f: V \rightarrow V$ be any function. Then

$$
\sum_{a, b} \mu_{f}(a, b)^{4} \geq 3 N^{4}-2 N^{2}
$$

with equality if and only if f is $A P N$.
Proof. Again, we use the matrix methods (and matroids) of Theorems 1 and 2. For the function f we have that

$$
\begin{aligned}
\sum_{a, b} \mu_{f}(a, b)^{4} & =\sum_{a, b}\left(M_{a b}^{(2)}\right)^{2}=\operatorname{tr}\left(M^{(2)} M^{(2) T}\right)=\operatorname{tr}\left(X T X X T^{T} X\right) \\
& =N \operatorname{tr}\left(X T T^{T} X\right)=N \operatorname{tr}\left(T T^{T} X X\right)=N^{2} \operatorname{tr}\left(T T^{T}\right)=N^{2} \sum_{a, b}\left(T_{a b}\right)^{2} \\
& =N^{4}+N^{2} \sum_{a \neq 0} \sum_{b}\left(T_{a b}\right)^{2}
\end{aligned}
$$

As is noticed in the proof of Lemma 1, $T_{a b}$ is equal to zero or at least two. This means that $\sum_{a \neq 0} \sum_{b}\left(T_{a b}\right)^{2} \geq \sum_{a \neq 0} \sum_{b} 2 T_{a b}$ with equality if and only if $T_{a b}$ equals 0 or 2 for all b and $a \neq 0$, i.e. if and only if f is APN. We finish our proof by observing that $\sum_{a \neq 0} \sum_{b} 2 T_{a b}=2\left(N^{2}-N\right)$.

To summarize things: APN functions can be defined in terms of the number of solutions of a certain system of equations, in terms of the Fourier transform, or in terms of the sets $H_{a}(f)$; AB functions-in terms of the Fourier transform, or in terms of the number of solutions of a certain system of equations; and CR functions-in terms of $H_{a}(f)$ or in terms of the Fourier transform. It would also be interesting to find a characterization of AB functions in terms of the sets $H_{a}(f)$.

1.2. Algebraic degree

First we recall the definition and some standard properties of the algebraic degree of a function. Consider our space V as the standard vector space of row vectors $\left(x_{1}, \ldots, x_{n}\right)$, $x_{i} \in G F(2)$. Any function $f: V \rightarrow V$ can be represented as a polynomial in the variables x_{1}, \ldots, x_{n} with coefficients in V. Further, all monomials of this polynomial can be chosen to have degree at most 1 in each variable, since the elements of $G F(2)$ satisfy the identity $x^{2}=x$. With such a choice of monomials, the polynomial representation of f becomes unique; and it can be found by expanding the representation

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{\left(a_{1}, \ldots, a_{n}\right) \in V} f\left(a_{1}, \ldots, a_{n}\right)\left(x_{1}+a_{1}+1\right) \ldots\left(x_{n}+a_{n}+1\right)
$$

The degree of the resulting polynomial is called the algebraic degree of f. The algebraic degree does not depend on the choice of a basis for V. This follows from the following characterization:

Lemma 2. The algebraic degree of f is equal to the maximum dimension k for which there is an affine k-subspace U of V such that $\sum_{u \in U} f(u) \neq 0$.
This lemma follows from standard properties of Reed-Muller codes (cf. for instance [6, Chapter 12], in particular (12.3) and (12.5)).

It is proved in [8] that the algebraic degree of an AB function does not exceed $1 / 2(n+1)$. We shall prove a better bound for CR functions.

Theorem 3. Let $f: V \rightarrow V$ be a CR function, $\operatorname{dim} V=n=2 m+1 \geq 5$. Then the algebraic degree of f is at most $m=1 / 2(n-1)$.

To prove it, we need the following easy combinatorial lemma.
Lemma 3. Let $X \subseteq V, l<n, k>0$. If for every affine l-subspace U of V the number $|X \cap U|$ is divisible by 2^{k} then for every affine $(l-1)$-subspace W of V the number $|X \cap W|$ is divisible by 2^{k-1}.

Proof. Let W_{1} be any affine $(l-1)$-subspace of V. Let W_{2}, W_{3} be two translates of W_{1} such that all the W_{i} are distinct. Let $x_{i}=\left|X \cap W_{i}\right|, i=1,2,3$.

All sets $W_{i} \cup W_{j}$ are affine l-subspaces of V. Thus, we have the system of equations $x_{1}+x_{2}=a, x_{2}+x_{3}=b, x_{3}+x_{1}=c$, where a, b, c are multiples of 2^{k}. Solving this system, we find that every x_{i} is a multiple of 2^{k-1}, and the lemma is proved.

Proof of Theorem 3. Instead of f we shall consider Boolean functions $f_{h}: V \rightarrow G F(2)$, $f_{h}(v)=h(f(v))$, for arbitrary nonzero linear functionals $h: V \rightarrow G F(2)$. Let

$$
X_{h}=\{v \in V \mid h(f(v))=1\} .
$$

We only need to show that, for every affine ($m+1$)-subspace U of V, the number $\left|X_{h} \cap U\right|$ is even. Indeed, as h was arbitrary, this would imply that $\sum_{v \in U} f(v)=0$, and the theorem would then follow from Lemma 2.

The set $\{v \in V \mid h(v)=1\}$ is the complement of a hyperplane; therefore it coincides with the set $H_{a}(f)$ for some $a \in V$. It is proved in [1, Proposition 3] that, for any hyperplane $V^{\prime} \subset V$, the set $X_{h} \cap V^{\prime}=\left\{v \in V^{\prime} \mid h(f(v))=1\right\}$ is of size 2^{n-2} if $a \in V^{\prime}$, and of size $2^{n-2} \pm 2^{m-1}$ if $a \notin V^{\prime}$. Note also that $\left|X_{h}\right|=2^{n-1}$, since f is a bijection.

Take an arbitrary linear subspace $W_{0} \subset V$ of codimension 2; let W_{1}, W_{2}, W_{3} be the affine subspaces parallel to it.

The sets $W_{0} \cup W_{i}, i=1,2,3$, are the three hyperplanes containing W_{0}. So we can easily find the numbers $\left|X_{h} \cap W_{i}\right|$: if $a \in W_{0}$ then they all are equal to 2^{n-3}; otherwise two of them are equal to 2^{n-3}, and two others to $2^{n-3} \pm 2^{m-1}$. In any case, as $n \geq 5$, these numbers are divisible by 2^{m-1}.

Thus, $\left|X_{h} \cap W\right|$ is divisible by 2^{m-1} for every affine subspace $W \subset V$ of dimension $n-2$. Now Lemma 3 applied $m-2$ times gives the desired result.

In the class of functions of algebraic degree 2 (quadratic functions) the three classes $\mathcal{A P N}, \mathcal{A B}$, and $\mathcal{C R}$ essentially coincide. More precisely, it is proved in [8, Theorem 8] that every quadratic APN function of odd dimension is AB. Now we shall briefly demonstrate that every quadratic APN function which is bijective, and maps 0 to 0 , is CR. It is convenient to use Definition 1^{\prime}. The property (ii) there is equivalent to the function being APN. Take any $x, y, z \in V, 0 \neq a \in V$. We need to check that the sum

$$
s=f(x)+f(y)+f(z)+f(x+a)+f(y+a)+f(z+a)
$$

is not equal to 0 . If any two of the six terms coincide, this follows from the bijectivity of f. If not, then the set

$$
\{x, y, z, x+a, y+a, z+a, x+y+z, x+y+z+a\}
$$

is an affine 3 -subspace. As f is quadratic, the sum of its values over this subspace is equal to 0 , and therefore $s=f(x+y+z)+f(x+y+z+a)$, and $s \neq 0$, again by bijectivity.

We note finally that all known examples of CR functions have algebraic degree 2 .

2. Combinatorial structures

In this section we will construct several combinatorial structures, such as semibiplanes, difference sets, distance-regular graphs, association schemes, and uniformly
packed (BCH and Preparata) codes, all by using APN, AB, or CR functions. For some background on distance-regular graphs and association schemes we refer the reader to [2]; for background on codes to [18].

2.1. APN functions and semi-biplanes

A semi-biplane $\operatorname{sbp}(v, k)$ is a connected incidence structure of v points and v blocks, each incident with k points, such that any two points are incident with zero or two blocks, and any two blocks are incident with zero or two points. Coulter and Henderson [11] construct a semi-biplane from an APN function f in the following way.

Construction 1. Let f be an APN function. Then the incidence structure with point set and block set $V \times V$, where a point (x, a) is incident with a block (y, b) if and only if $a+b=f(x+y)$ is a semi-biplane $\operatorname{sbp}\left(N^{2}, N\right)$ if the incidence structure is connected, or else it consists of two disjoint $\operatorname{sbp}\left(1 / 2 N^{2}, N\right)$.

Coulter and Henderson [11] also construct certain 2-class association schemes from the CR (Gold) functions $f(x)=x^{2^{k}+1},(k, n)=1$ (here V is identified with $G F\left(2^{n}\right)$). These association schemes are fusions of the schemes constructed in Section 2.3.

2.2. AB functions, Kasami codes, and Kasami graphs

A uniformly packed e-error-correcting code is a code with minimum distance $d=2 e+1$ and the following properties: the number of codewords at distance $e+1$ from a word which is at distance e from the code is constant; and the number of codewords at distance $e+1$ from a word which is at distance $e+1$ or more from the code is also constant (cf. [18]). Carlet et al. [8] found the following.

Construction 2. Let f be an AB function with $f(0)=0$ (and $n>3$). Then the code C of characteristic vectors of all subsets S of $V \backslash\{0\}$ such that $\sum_{r \in S} r=0$ and $\sum_{r \in S} f(r)=0$ is a double-error-correcting binary linear uniformly packed code of length $N-1$ and dimension $N-1-2 n$.

The code C generalizes the double error-correcting BCH codes, also called Kasami codes (note that these codes are extremal in the sense that no linear code of this length and minimum distance can have more codewords). The essence of the proof of this result given in [8] lies in the fact that the dual code has three nonzero weights, which follows from the definition of $A B$ functions in terms of the Fourier transform.

In [12] the present authors gave a combinatorial proof of the above result for CR functions. Their proof is easily adjusted (and simplified!) for AB functions, by using the combinatorial characterization of AB functions in Section 1.1.

Carlet et al. [8] also show that in order to prove that the above code has dimension $N-1-2 n$ and minimum distance 5 (hence that the code is extremal) it suffices that f is APN (with $f(0)=0$).

A distance-regular graph (with parameters $\left\{b_{0}, b_{1}, \ldots, b_{d-1} ; c_{1}, \ldots, c_{d-1}\right\}$) is a connected regular graph such that for an arbitrary pair of vertices $\{x, y\}$ at distance i, the number of vertices adjacent to x and at distance $i-1$ (respectively i, and $i+1$) from y
is a constant c_{i} (respectively a_{i}, and b_{i}) depending only on i (cf. [2]). It follows from the work of Delsarte (cf. [2, Chapter 11]) that the coset graph of the uniformly packed Kasami code as described above is distance-regular with diameter three. An alternative description of this coset graph, like the one given in [4] is the following:

Construction 3. Let f be an AB function with $f(0)=0$. Then the graph with vertex set $V \times V$, where two distinct vertices (x, a) and (y, b) are adjacent if $a+b=f(x+y)$ is a distance-regular graph with parameters $\{N-1, N-2,1 / 2 N+1 ; 1,2,1 / 2 N-1\}$.

A direct proof that this is indeed a distance-regular Kasami graph is given in [12] for CR functions. Again, this proof can be adjusted for AB functions using the combinatorial characterization of such functions in Section 1.1.

Note by the way the resemblance between the construction of the distance-regular graph and the construction of the semi-biplane in Section 2.1. If in the above definition of the graph we would allow an APN function we would obtain an ($N-1$)-regular graph without triangles, such that any two vertices at distance two have two common neighbours. Such a graph, when connected, is called a rectagraph. Note that a more general connection between semi-biplanes, binary linear codes of minimum distance at least 5 , and rectagraphs has been observed; cf. [2, Section 1.13].

2.3. AB functions, accomplices, CR functions, Preparata codes and graphs

In [1] CR functions were introduced to generalize the antipodal distance-regular graphs constructed by de Caen et al. [5]. In [12] the present authors used CR functions to generalize 5-class association schemes constructed in [4], and Preparata codes. Note that the above-mentioned antipodal distance-regular graphs are strongly related to the 5-class association schemes and the Preparata codes, hence they will be called Preparata graphs in the following.

Here we will further generalize the construction of these combinatorial structures by using an AB function f (with $f(0)=0$) with a so-called accomplice g, instead of a CR function.

Definition 2. Let $f: V \rightarrow V$ be a function. A function $g: V \rightarrow V$ is called an accomplice of f if $\left(H_{a}(f)+H_{a}(f)\right) \cap H_{a}(g)=\emptyset$ for all $a \neq 0$.

A CR function is an accomplice of itself, since if f is CR , then $H_{a}(f)$ is the complement of a hyperplane, which implies that the sum of any two of its elements lies in the complementary hyperplane. In fact, any function $g_{c, d}$ given by $g_{c, d}(x)=f(x+c)+d$ is an accomplice of f.

For AB functions that are not CR it seems hard to find accomplices. In low dimensions it seems typical that in this case the sets $H_{a}(f)+H_{a}(f)$ are equal to the entire space V (at least for some a). Nevertheless, we challenge the reader to construct such accomplices, or new CR functions, since this would give some interesting new codes and graphs by the following constructions.

A nearly perfect e-error-correcting code is a code with minimum distance $d=2 e+1$ such that each word at distance at least e from the code has distance e or $e+1$ to exactly
$\left\lfloor\frac{L}{e+1}\right\rfloor$ codewords, where L is the length of the code (clearly such a code is also uniformly packed).

Construction 4. Let f be an AB function with $f(0)=0$, and with an accomplice g. Then the code P consisting of characteristic vectors of pairs (S, T) with $S \subseteq V \backslash\{0\}, T \subseteq V$, such that $|T|$ is even, $\sum_{s \in S} s=\sum_{t \in T} t$, and $\sum_{s \in S} f(s)=\sum_{t \in T} f(t)+g\left(\sum_{t \in T} t\right)$ is a double-error-correcting nearly perfect code of size $2^{2 N-2-2 n}$ and length $L=2 N-1$, i.e. it has the same parameters as the Preparata code.

The proof of this result is essentially given in [12].
As was briefly mentioned in [12] (end of Section 3) linear accomplices would be of particular interest since it looked like new Kerdock codes could be constructed from them. However, it is shown by Brouwer and Tolhuizen [3] that no linear code with the same parameters as the Preparata code exists. This implies that the accomplice g cannot be linear, since such a function would give rise to a linear Preparata code by the above construction, as is easily checked.

Corollary 1. An $A B$ function does not have a linear accomplice.
A d-class association scheme is a partition of the edge set of the complete graph into regular spanning subgraphs $G_{1}, G_{2}, \ldots, G_{d}$ such that, for any edge $\{x, y\}$ in G_{h}, the number of vertices z such that $\{x, z\}$ is in G_{i} and $\{z, y\}$ is in G_{j} equals a constant $p_{i j}^{h}$ depending only on h, i, j.

Construction 5. Let f be an AB function f with $f(0)=0$, and with an accomplice g. Take as vertex set $V \times V$, and let G_{1} be the Kasami graph as described in Section 2.2, i.e. distinct vertices (x, a) and (y, b) are adjacent if $a+b=f(x+y)$. The graph G_{2} is an isomorphic copy of G_{1}, and is defined by the equation $a+b=f(x+y)+g(x)+g(y)$. The graphs G_{3} and G_{4} are the distance-two graphs of G_{1} and G_{2}, respectively. The final graph G_{5} is the remainder, and is given by the equations $x=y, a \neq b$. Then the graphs $G_{1}, G_{2}, \ldots, G_{5}$ form a 5 -class association scheme.

For CR functions this is proven in [12], and this proof is easily adjusted to $A B$ functions with an accomplice. This association scheme is of particular interest since it has many fusion schemes (that is, association schemes that are obtained from the original one by uniting some of the graphs) (cf. [4]). For example, the association scheme $\left\{G_{1}, G_{3}, G_{2} \cup\right.$ $\left.G_{4} \cup G_{5}\right\}$ is the 3 -class association scheme of the distance 1,2, and 3 graphs of the distanceregular Kasami graph of the previous section. Further fusion gives the association scheme $\left\{G_{1} \cup G_{3}, G_{2} \cup G_{4} \cup G_{5}\right\}$ with the same parameters as the 2-class association scheme mentioned by Coulter and Henderson [11], see Section 2.1 (note that these two fusion schemes can be obtained for AB functions without an accomplice). Another interesting fusion scheme is $\left\{G_{1} \cup G_{2}, G_{3} \cup G_{4}, G_{5}\right\}$, since it is a so-called quotient of the association scheme of an antipodal distance-regular graph with the same parameters as the Preparata graphs constructed by de Caen et al. [5]. This means that the following construction generalizes the Preparata graphs.

Construction 6. Let f be an AB function with $f(0)=0$, and with an accomplice g. Consider the graph with vertex set $V \times V \times G F(2)$, where two distinct vertices (x, a, i) and (y, b, j) are adjacent if $a+b=f(x+y)+(i+j)(g(x)+g(y))$. This graph is a distance-regular graph with parameters $\{2 N-1,2 N-2,1 ; 1,2,2 N-1\}$.

Note that the Preparata graphs just like the Kasami graphs are rectagraphs.
If the code P we constructed earlier were linear, then its coset graph would have the same parameters as these antipodal distance-regular graphs. Still, it is possible to indicate the relation between the (nonlinear) code P and the antipodal distance-regular graphs, in the spirit of [5].

2.4. AB functions, $C R$ functions, Hadamard difference sets, and bent functions

An elementary Hadamard difference set is a $\left(2^{2 n}, 2^{2 n-1}-2^{n-1}, 2^{2 n-2}-2^{n-1}\right)$ difference set on $G F(2)^{2 n}$, i.e. a subset of $G F(2)^{2 n}$ of size $2^{2 n-1}-2^{n-1}$, such that any nonzero element of $G F(2)^{2 n}$ occurs $2^{2 n-2}-2^{n-1}$ times as a difference of distinct elements of the subset (note that the complement of the difference set is a difference set with parameters $\left(2^{2 n}, 2^{2 n-1}+2^{n-1}, 2^{2 n-2}+2^{n-1}\right)$, and this is also called a Hadamard difference set). Xiang [21] constructed an elementary Hadamard difference set as follows.

Construction 7. Let f be an AB function. Then the set $\left\{(x, y) \mid y \in H_{x}(f), x \neq 0\right\}=$ $\{(x, f(z)+f(x+z)) \mid x, z \in V, x \neq 0\}$ is an elementary Hadamard difference set on $V \times V$.

It is well known (essentially already by Turyn [20]) that the characteristic function of an elementary Hadamard difference set is another highly nonlinear function called a bent function, i.e. a function from $G F(2)^{2 n}$ to $G F(2)$ that is at Hamming distance $2^{2 n-1} \pm 2^{n-1}$ to all linear functions from $G F(2)^{2 n}$ to $G F(2)$. The bent functions corresponding to the difference set of Construction 2 have also been constructed by Carlet et al. [8].

Another class of Hadamard difference sets and corresponding bent functions can be constructed from CR functions (cf. [1]).

Construction 8. Let f be a CR function, U a hyperplane in V, and $a \notin U$. Then the set $\left\{v \in U \mid f(v) \in H_{a}(f)\right\}$ is a Hadamard difference set on U with parameters $\left(2^{n-1}, 2^{n-2} \pm 2^{(n-3) / 2}, 2^{n-3} \pm 2^{(n-3) / 2}\right)$.

3. Known nonlinear functions

We conclude with the list of all, up to equivalence, known APN, AB, and CR functions. As was mentioned earlier, all known such functions are equivalent to certain power functions $f: G F\left(2^{n}\right) \rightarrow G F\left(2^{n}\right), f(x)=x^{k}$. In Table 1 we give the values of exponents k for odd values of $n, n=2 m+1$, with the indication to which of the three classes the function belongs. In Table 2 we give those values of k for even $n, n=2 m$, which give APN functions. Note that the inverse of an APN (AB) function is also APN (AB), but this need not be so for $C R$ functions. In particular, the inverses to known $C R$ functions are $A B$ but not CR.

Table 1
Known APN, AB, and CR functions x^{k} on $G F\left(2^{n}\right), n=2 m+1$

Name	Exponent k	Type	Reference
Gold's functions	$2^{i}+1$ with $(i, n)=1$,	$C R$	$[14,1]$
Kasami's functions	$1 \leq i \leq m$		
	$2^{2 i}-2^{i}+1$ with $(i, n)=1$,	$A B$	$[17]$
Field inverse	$2 \leq i \leq m$	$A P N$	$[19]$
Welch's function	$2^{n}-2$	$A B$	$[7,16]$
Niho's function	$2^{m}+3$	$A B$	$[16]$
Dobbertin's function	$2^{m}+2^{m / 2}-1($ even $m)$		
	$2^{m}+2^{(3 m+1) / 2}-1($ odd $m)$	$A P N$	$[13]$

Table 2
Known APN functions x^{k} on $G F\left(2^{n}\right), n=2 m$

Name	Exponent k	Type	Reference
Gold's functions	$2^{i}+1$ with $(i, n)=1$,	$A P N$	$[14]$
	$1 \leq i<m$		
Kasami's functions	$2^{2 i}-2^{i}+1$ with $(i, n)=1$,	$A P N$	$[17]$
Dobbertin's function	$2 \leq i<m$	$2^{4 i}+2^{3 i}+2^{2 i}+2^{i}-1$ if $n=5 i$	$A P N$

Acknowledgements

The final preparation of this paper was done while we were visiting Dom de Caen in April-May 2000. We are grateful for the inspiring discussions we had with Dom on the topic of this paper. The second author's work was partly supported by grant 99-01-00581 of the Russian Foundation for Fundamental Research.

References

[1] T. Bending, D. Fon-Der-Flaass, Crooked functions, bent functions, and distance regular graphs, Electron. J. Comb. 5 (R34) (1998) 14.
[2] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, 1989.
[3] A.E. Brouwer, L.M.G.M. Tolhuizen, A sharpening of the Johnson bound for binary linear codes and the nonexistence of linear codes with Preparata parameters, Des. Codes Cryptogr. 3 (1993) 95-98.
[4] D. de Caen, E.R. van Dam, Association schemes related to Kasami codes and Kerdock sets, Des. Codes Cryptogr. 18 (1999) 89-102.
[5] D. de Caen, R. Mathon, G.E. Moorhouse, A family of antipodal distance-regular graphs related to the classical Preparata codes, J. Algebr. Comb. 4 (1995) 317-327.
[6] P.J. Cameron, J.H. van Lint, Designs, Graphs, Codes and their Links, Cambridge University Press, Cambridge, 1991.
[7] A. Canteaut, P. Charpin, H. Dobbertin, Binary m-sequences with three-valued crosscorrelation: a proof of Welch's conjecture, IEEE Trans. Inform. Theory 46 (2000) 4-8.
[8] C. Carlet, P. Charpin, V. Zinoviev, Codes, bent functions and permutations suitable for DES-like cryptosystems, Des. Codes Cryptogr. 15 (1998) 125-156.
[9] F. Chabaud, S. Vaudenay, Links between differential and linear cryptanalysis, in: Advances in Cryptology, EUROCRYPT' 94, Lecture Notes in Computer Science, Springer, New York, 1995, pp. 356-365.
[10] P. Charpin, Open problems on cyclic codes, in: V.S. Pless, W.C. Huffman (Eds.), Handbook of Coding Theory, Elsevier, Amsterdam, 1998, pp. 963-1063.
[11] R.S. Coulter, M. Henderson, A class of functions and their application in constructing semi-biplanes and association schemes, Discrete Math. 202 (1999) 21-31.
[12] E.R. van Dam, D. Fon-Der-Flaass, Uniformly packed codes and more distance regular graphs from CR functions, J. Algebr. Comb. 12 (2000) 115-121.
[13] H. Dobbertin, Almost perfect nonlinear functions on $G F\left(2^{n}\right)$: a new case for n divisible by 5, in: D. Jungnickel, H. Niederreiter (Eds.), Finite Fields and Applications, Springer, Berlin, 2001, pp. 113-121.
[14] R. Gold, Maximal recursive sequences with 3-valued recursive crosscorrelation functions, IEEE Trans. Inform. Theory 14 (1968) 154-156.
[15] T. Helleseth, P.V. Kumar, Sequences with low correlation, in: V.S. Pless, W.C. Huffman (Eds.), Handbook of Coding Theory, Elsevier, Amsterdam, 1998, pp. 1765-1853.
[16] H.D.L. Hollmann, Q. Xiang, A proof of the Welch and Niho conjectures on cross-correlations of binary m-sequences, Finite Fields Appl. 7 (2001) 253-286.
[17] T. Kasami, The weight enumerators for several classes of subcodes of the second order binary Reed-Muller codes, Inform. Control. 18 (1971) 369-394.
[18] J.H. van Lint, Introduction to Coding Theory, third ed., Springer-Verlag, 1998.
[19] K. Nyberg, Differentially uniform mappings for cryptography, in: Advances in Cryptology, EUROCRYPT’ 93, Lecture Notes in Computer Science, Springer, New York, 1994, pp. 55-64.
[20] R.J. Turyn, Character sums and difference sets, Pacific J. Math. 15 (1965) 319-346.
[21] Q. Xiang, Maximally nonlinear functions and bent functions, Des. Codes Cryptogr. 17 (1999) 211-218.

[^0]: E-mail addresses: Edwin.vanDam@uvt.nl (E.R. van Dam), flaass@math.nsc.ru (D. Fon-Der-Flaass).

