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Abstract

We consider functions on binary vector spaces which are far from linear functions in different
senses. We compare three existing notions: almost perfect nonlinear functions, almost bent (AB)
functions, and crooked (CR) functions. Such functions are of importance in cryptography because
of their resistance to linear and differential attacks on certain cryptosystems. We give a new
combinatorial characterization of AB functions in terms of the number of solutions to a certain
system of equations, and a characterization of CF in terms of the Fourier transform. We also show
how these functions can be used to construct several combinatorial structures; such as semi-biplanes,
difference sets, distance regular graphs, symmetric association schemes, and uniformly packed (BCH
and Preparata) codes.c© 2003 Elsevier Science Ltd. All rights reserved.

MSC:05E30; 05B20; 94B05; 94A60

1. Almost perfect nonlinear, almost bent, and crooked functions

We consider functions on binary vector spaces which are far from linear functions
in different senses. We compare three existing notions: almost perfect nonlinear (APN)
functions, almost bent functions, and crooked functions. Such functions are of importance
in cryptography because of their resistance to linear and differential attacks on certain
cryptosystems (cf. [8–10, p. 1037]). Furthermore they are of interest in the study of linear
feedback shift register sequences with low crosscorrelation (cf.[15, pp. 1795–1810]). Also
in the construction of certain combinatorial structures they have proven to be useful;
we will give an overview and update on this inSection 2. Furthermore we give a new
combinatorial characterization of almost bent functions in terms of the number of solutions
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to a certain system of equations (similar to such a characterization of APN functions), and
a new characterization of crooked functions in terms of the Fourier transform.

First we introduce some notation which will be used throughout the paper. LetV be an
n-dimensional space over the fieldGF(2); and letN = 2n. By 〈·, ·〉 we shall denote the
standard inner product onV . By |X| we denote the size of a finite setX. Let f : V → V
be any function. Fora ∈ V\{0}, we denote byHa( f ), or simplyHa, the set

Ha = { f (x) + f (x + a) | x ∈ V}.
The Fourier transform (also called Walsh transform)µ f : V × V → R of f is defined by
the formula

µ f (a, b) =
∑
x∈V

(−1)〈a,x〉(−1)〈b, f (x)〉.

Now we introduce the three different classes of “extremely nonlinear” functions which we
shall consider in this paper.

Definition 1. A function f : V → V is called:

(i) APN (almost perfect nonlinear) if|Ha( f )| = 1/2N for all a ∈ V\{0};
(ii) AB (almost bent) ifµ f (a, b) ∈ {0,±√

2N} for all (a, b) �= (0, 0);
(iii) CR (crooked) if f (0) = 0 and every setHa( f ), a �= 0, is the complement of a

hyperplane.

We shall denote the class of APN (AB, CR) functions byAPN (AB, CR).

The first definition can be motivated as follows. For any functionf , the setHa( f ) has size
at most 1/2N (see proof ofLemma 1); and if equality is attained for alla �= 0, then (in
cryptography) such a function has optimal resistance against a so-called differential attack.

The second definition is motivated by the fact that for any functionf , the maximal
value of|µ f (a, b)| for (a, b) �= (0, 0) is at least

√
2N; and equality is attained if and only

if f is AB (as defined; cf.[9]). Such a function has optimal resistance against a so-called
linear attack. Note that as a consequence of the above, an AB function can only exist if the
dimensionn is odd.

We use here the terminology from the papers[8] and[1]; other authors sometimes use
the termssemiplanarfor APN ([11]), andmaximally nonlinearfor AB functions ([7, 21]).
The definition of CR functions given here is different from, but equivalent to, the one used
in [1, 12]:

Definition 1′′′. A function f : V → V is called CR if it satisfies the following three
properties:

(i) f (0) = 0;
(ii) f (x) + f (y) + f (z) + f (x + y + z) �= 0 whenx, y, z are distinct;
(iii) f (x) + f (y) + f (z) + f (x + a) + f (y + a) + f (z + a) �= 0 whena �= 0.

It is also shown in[1] that, for a CR functionf , all setsHa( f ) are distinct, that is, every
complement of a hyperplane occurs among them exactly once.
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Let us recall some more properties of APN, AB, and CR functions. Most of them are
taken from the papers[1, 8].

A function remains APN, AB, or CR after applying any nondegenerate affine transfor-
mations to the argument and/or the value of the function (for a CR function, it is addition-
ally required that the resulting function maps 0 to 0).

If a function f is APN or AB, and bijective, then so is its inverse functionf −1. In
contrast to this, the inverse of a CR function need not be CR. Also, a function remains
APN (AB) after adding any linear function to it. Again, this is not true for CR functions.

There are proper inclusions between the three classes:

CR ⊂ AB ⊂ APN .

In the next section we shall prove both inclusions (note thatCR ⊆ APN follows from the
definition).

Not too many constructions of APN, AB, or CR functions are known; all known such
functions are equivalent under the above transformations to certain functionsf : GF(2n)

→ GF(2n) of the form f (x) = xk. In Section 3we give a complete list of all currently
known APN, AB, and CR functions.

1.1. Alternative descriptions ofAPN , AB, andCR
As is well-known, the definition of APN functions given above can easily be

re-formulated in terms of the number of solutions of a certain system of equations.

Lemma 1. A function f is APN if and only if the system of equations{
x + y = a
f (x) + f (y) = b

(1)

has zero or two solutions(x, y) for every(a, b) �= (0, 0). If so, then the system has two
solutions precisely when b∈ Ha( f ).

Proof. For any function f , if the system(1) has a solution then it has at least two of
them (interchangex andy). Therefore, for everya �= 0 the setHa( f ) has at most 1/2N
elements, and equality is achieved if and only if the system(1) has zero or two solutions
for eachb. �

It turns out that AB functions can be characterized in a similar way.

Theorem 1. A function f is AB if and only if the system of equations{
x + y + z = a
f (x) + f (y) + f (z) = b

(2)

has N− 2 or 3N − 2 solutions(x, y, z) for every(a, b). If so, then the system has3N − 2
solutions if b= f (a), and N− 2 solutions otherwise.

The proof presented below is a typical application of the Fourier transform. We shall
present it in the language of matrices.
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Proof. First we define severalN × N matrices with real entries whose rows and columns
are indexed by vectors fromV . Let I be the identity matrix,J the all-one matrix,E the
matrix with a single nonzero entryE00 = 1, Ei j = 0 for (i , j ) �= (0, 0). The entries of the
matricesX, M, M(3), F , S are as follows:

Xab = (−1)〈a,b〉; Mab = µ f (a, b); M(3)
ab = µ f (a, b)3;

Sab = |{(x, y, z) | x + y + z = a; f (x) + f (y) + f (z) = b}|;
Fab = 1 if b = f (a); otherwiseFab = 0.

One can easily check the following equalities:

X2 = N I ; M = X F X; X J X = N2E. (3)

In particular, it follows that the matrixX is nonsingular.
The condition that the system(2) hasN−2 or 3N−2 solutions follows from the identity

S = (N − 2)J + 2N F. (4)

Moreover, also the converse is true. Indeed, whenb = f (a), the system(2) has 3N − 2
“trivial” solutions with one variable equal toa, and the two other variables equal to each
other. So, from counting all(x, y, z, a, b) satisfying(2) in two ways it follows that the
system has 3N − 2 solutions whenb = f (a), andN − 2 solutions otherwise.

The property thatf is AB can also be stated in matrix terms. It is equivalent to the
identity

M(3) − 2N M = (N3 − 2N2)E. (5)

Indeed, all valuesµ f (a, b) exceptµ f (0, 0) = N are roots of the cubic equationx3 − 2
Nx = 0.

Finally, we have the identity

M(3) = X SX. (6)

Let us prove it. We have

µ f (a, b)3 = ∑
x,y,z∈V

(−1)〈a,x+y+z〉(−1)〈b, f (x)+ f (y)+ f (z)〉

= ∑
p∈V

(−1)〈a,p〉 ∑
x+y+z=p

(−1)〈b, f (x)+ f (y)+ f (z)〉.

In the inner summation, collect all terms with the same valueq = f (x) + f (y) + f (z);
for eachq there will beSpq of them. So,

µ f (a, b)3 =
∑
p∈V

(−1)〈a,p〉 ∑
q∈V

Spq(−1)〈b,q〉 =
∑

p,q∈V

XapSpqXqb = (X SX)ab.

Combining the identities(3) and(6) we get:

X(S− 2N F − (N − 2)J)X = M(3) − 2N M − (N3 − 2N2)E.

As X is nonsingular, it follows that the identities(4) and(5) hold simultaneously, and the
theorem is proved. �
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Remark. The identitiesM = X F X andM(3) = X SX from the proof represent a special
case of the general fact that the Fourier image of the convolution of several functions is the
product of their Fourier images.

The characterizations of APN and AB functions given inLemma 1andTheorem 1allow
us to give simple proofs of the inclusionsCR ⊆ AB ⊆ APN .

Proposition 1. Any CR function is AB, and any AB function is APN.

Proof. For the second assertion, it is enough to notice that if for someq �= 0, a �= p �=
a + q, the equalityf (p) + f (p + q) = f (a) + f (a + q) holds (that is,f is not APN),
then the system{

x + y + z = a
f (x) + f (y) + f (z) = f (a),

apart from trivial solutions, has the solutionx = p, y = p + q, z = a + q, and sof is not
AB.

To prove the first assertion, take any CR functionf . It is enough to show that, for every
a and everyb �= 0, the system{

x + y + z = a
f (x) + f (y) + f (z) = f (a) + b

hasN−2 solutions (whenb does equal 0, it follows fromDefinition 1′ that the system only
has(3N −2) trivial solutions). Obviously, every such solution(x, y, z) satisfiesz �= a. Let
p = z+a = x+ y. Then f (x)+ f (y) ∈ Hp, f (z)+ f (a) ∈ Hp, and thereforeb ∈ V\Hp,
sinceHp is the complement of a hyperplane (and〈·, ·〉 ∈ GF(2)). Every nonzero vector
b belongs to 1/2N − 1 hyperplanes, which gives 1/2N − 1 choices forp, and hence for
z. Oncez is determined the system inx and y has precisely two solutions, because of
Lemma 1. Hence we get 2(1/2N − 1) = N − 2 solutions in all. �

In Theorem 1we characterized AB functions (which are defined in terms of the Fourier
transform) in terms of the number of solutions of a certain system of equations. Next, we
shall give characterizations of APN functions and CR functions in terms of the Fourier
transform. In the case of APN functions this characterization is due to Chabaud and
Vaudenay[9]; in fact they used it to prove the inclusionAB ⊆ APN .

Theorem 2. Let f be an AB function such that f(0) = 0. Then f is CR if and only
if the set{a | µ f (a, b) = 0} is a hyperplane for every b�= 0. If so, then all these
hyperplanes are distinct and{a | µ f (a, b) = 0} = {a | 〈a, c〉 = 0}, where c is such
that Hc( f ) = {x | 〈b, x〉 = 1}.
Proof. This proof will have a similar flavor as the proof of the characterization of AB
functions inTheorem 1. We will make use of the same matricesX and E introduced
there. Moreover we introduce the matricesM(2) and T of which the entries are given
by M(2)

ab = µ f (a, b)2 andTab = |{(x, y) | x + y = a; f (x) + f (y) = b}|. It follows
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that M(2) = XT X, which can be proven just like the identityM(3) = X SXwas proven in
Theorem 1.

The stated assertion that the set{a | µ f (a, b) = 0} is a hyperplane for everyb �= 0 is
equivalent to the existence of a functionc : V → V such that{a | µ f (a, b) = 0} = {a |
〈a, c(b)〉 = 0} for everyb �= 0. Without loss of generality we complete the definition ofc
by takingc(0) = 0.

Since f is an AB function the stated assertion is equivalent toµ f (a, b)2 = N −
N(−1)〈a,c(b)〉 for all a andb �= 0, hence toM(2) = N(J − XC) + N2E, whereC is
the matrix given byCab = 1 if a = c(b); 0 otherwise. After multiplying both sides of
the matrix equation from the left and right by the nonsingular matrixX it follows that the
stated assertion is equivalent to the equationT = E − C X + J.

Now we use thatf is APN: Tax = 2 if x ∈ Ha( f ), T00 = N, andTax = 0 otherwise.
Finally, we may conclude that the stated assertion is equivalent to the existence of a
functionc : V → V , c(0) = 0 such that

∑
b:a=c(b)

(−1)〈b,x〉 =
{−1 if x ∈ Ha( f )

1 otherwise

for all a �= 0.
Now suppose that the stated assertion is true, and the above equations hold. By

consideringx = 0 it follows that for everya �= 0 the number ofb such thata = c(b)

must be equal to one, hencec is a bijection. Now the equations reduce to〈c−1(a), b〉 = 1
if and only if b ∈ Ha( f ) for all b and a �= 0. HenceHa( f ) is the complement of a
hyperplane for everya �= 0, and we may conclude thatf is CR.

On the other hand, iff is CR then the function given byc(b) = a wherea is the
unique vector such thatHa( f ) = {x|〈b, x〉 = 1} satisfies the required equations. Note that
in this casec is a bijective function so the sets{a | µ f (a, b) = 0}, b �= 0 comprise all
hyperplanes. �

Proposition 2 ([9]). Let f : V → V be any function. Then∑
a,b

µ f (a, b)4 ≥ 3N4 − 2N2

with equality if and only if f is APN.

Proof. Again, we use the matrix methods (and matroids) ofTheorems 1and2. For the
function f we have that

∑
a,b

µ f (a, b)4 =
∑
a,b

(M(2)
ab )2 = tr(M(2)M(2)T ) = tr(XT X XTT X)

= Ntr(XT TT X) = Ntr(T TT X X) = N2tr(T TT ) = N2
∑
a,b

(Tab)
2

= N4 + N2
∑
a�=0

∑
b

(Tab)
2.
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As is noticed in the proof ofLemma 1, Tab is equal to zero or at least two. This means
that

∑
a�=0

∑
b(Tab)

2 ≥ ∑
a�=0

∑
b 2Tab with equality if and only ifTab equals 0 or 2

for all b anda �= 0, i.e. if and only if f is APN. We finish our proof by observing that∑
a�=0

∑
b 2Tab = 2(N2 − N). �

To summarize things: APN functions can be defined in terms of the number of solutions
of a certain system of equations, in terms of the Fourier transform, or in terms of the sets
Ha( f ); AB functions—in terms of the Fourier transform, or in terms of the number of
solutions of a certain system of equations; and CR functions—in terms ofHa( f ) or in
terms of the Fourier transform. It would also be interesting to find a characterization of AB
functions in terms of the setsHa( f ).

1.2. Algebraic degree

First we recall the definition and some standard properties of the algebraic degree of a
function. Consider our spaceV as the standard vector space of row vectors(x1, . . . , xn),
xi ∈ GF(2). Any function f : V → V can be represented as a polynomial in the variables
x1, . . . , xn with coefficients inV . Further, all monomials of this polynomial can be chosen
to have degree at most 1 in each variable, since the elements ofGF(2) satisfy the identity
x2 = x. With such a choice of monomials, the polynomial representation off becomes
unique; and it can be found by expanding the representation

f (x1, . . . , xn) =
∑

(a1,...,an)∈V

f (a1, . . . , an)(x1 + a1 + 1) . . . (xn + an + 1).

The degree of the resulting polynomial is calledthe algebraic degreeof f . The algebraic
degree does not depend on the choice of a basis forV . This follows from the following
characterization:

Lemma 2. The algebraic degree of f is equal to the maximum dimension k for which
there is an affine k-subspace U of V such that

∑
u∈U f (u) �= 0.

This lemma follows from standard properties of Reed–Muller codes (cf. for instance
[6, Chapter 12], in particular (12.3) and (12.5)).

It is proved in[8] that the algebraic degree of an AB function does not exceed 1/2(n+1).
We shall prove a better bound for CR functions.

Theorem 3. Let f : V → V be a CR function,dim V = n = 2m + 1 ≥ 5. Then the
algebraic degree of f is at most m= 1/2(n − 1).

To prove it, we need the following easy combinatorial lemma.

Lemma 3. Let X ⊆ V , l < n, k > 0. If for every affine l-subspace U of V the number
|X∩U | is divisible by2k then for every affine(l −1)-subspace W of V the number|X∩W|
is divisible by2k−1.

Proof. Let W1 be any affine(l − 1)-subspace ofV . Let W2, W3 be two translates ofW1
such that all theWi are distinct. Letxi = |X ∩ Wi |, i = 1, 2, 3.
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All sets Wi ∪ Wj are affinel -subspaces ofV . Thus, we have the system of equations
x1 + x2 = a, x2 + x3 = b, x3 + x1 = c, wherea, b, c are multiples of 2k. Solving this
system, we find that everyxi is a multiple of 2k−1, and the lemma is proved.�

Proof of Theorem 3. Instead off we shall consider Boolean functionsfh : V → GF(2),
fh(v) = h( f (v)), for arbitrary nonzero linear functionalsh : V → GF(2). Let

Xh = {v ∈ V | h( f (v)) = 1}.
We only need to show that, for every affine(m+1)-subspaceU of V , the number|Xh ∩U |
is even. Indeed, ash was arbitrary, this would imply that

∑
v∈U f (v) = 0, and the theorem

would then follow fromLemma 2.
The set{v ∈ V | h(v) = 1} is the complement of a hyperplane; therefore it coincides

with the setHa( f ) for somea ∈ V . It is proved in [1, Proposition 3] that, for any
hyperplaneV ′ ⊂ V , the setXh ∩ V ′ = {v ∈ V ′ | h( f (v)) = 1} is of size 2n−2 if
a ∈ V ′, and of size 2n−2 ± 2m−1 if a /∈ V ′. Note also that|Xh| = 2n−1, since f is a
bijection.

Take an arbitrary linear subspaceW0 ⊂ V of codimension 2; letW1, W2, W3 be the
affine subspaces parallel to it.

The setsW0 ∪ Wi , i = 1, 2, 3, are the three hyperplanes containingW0. So we can
easily find the numbers|Xh ∩ Wi |: if a ∈ W0 then they all are equal to 2n−3; otherwise
two of them are equal to 2n−3, and two others to 2n−3 ± 2m−1. In any case, asn ≥ 5, these
numbers are divisible by 2m−1.

Thus,|Xh ∩ W| is divisible by 2m−1 for every affine subspaceW ⊂ V of dimension
n − 2. NowLemma 3appliedm − 2 times gives the desired result.�

In the class of functions of algebraic degree 2 (quadratic functions) the three classes
APN ,AB, andCR essentially coincide. More precisely, it is proved in[8, Theorem 8] that
every quadratic APN function of odd dimension is AB. Now we shall briefly demonstrate
that every quadratic APN function which is bijective, and maps 0 to 0, is CR. It is
convenient to useDefinition 1′. The property (ii) there is equivalent to the function being
APN. Take anyx, y, z ∈ V , 0 �= a ∈ V . We need to check that the sum

s = f (x) + f (y) + f (z) + f (x + a) + f (y + a) + f (z + a)

is not equal to 0. If any two of the six terms coincide, this follows from the bijectivity of
f . If not, then the set

{x, y, z, x + a, y + a, z + a, x + y + z, x + y + z + a}
is an affine 3-subspace. Asf is quadratic, the sum of its values over this subspace is equal
to 0, and therefores = f (x + y + z) + f (x + y + z + a), ands �= 0, again by bijectivity.

We note finally that all known examples of CR functions have algebraic degree 2.

2. Combinatorial structures

In this section we will construct several combinatorial structures, such as semi-
biplanes, difference sets, distance-regular graphs, association schemes, and uniformly
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packed (BCH and Preparata) codes, all by using APN, AB, or CR functions. For some
background on distance-regular graphs and association schemes we refer the reader to[2];
for background on codes to[18].

2.1. APN functions and semi-biplanes

A semi-biplane sbp(v, k) is a connected incidence structure ofv points andv blocks,
each incident withk points, such that any two points are incident with zero or two blocks,
and any two blocks are incident with zero or two points. Coulter and Henderson[11]
construct a semi-biplane from an APN functionf in the following way.

Construction 1. Let f be an APN function. Then the incidence structure with point set
and block setV × V , where a point(x, a) is incident with a block(y, b) if and only if
a + b = f (x + y) is a semi-biplanesbp(N2, N) if the incidence structure is connected, or
else it consists of two disjointsbp(1/2N2, N).

Coulter and Henderson[11] also construct certain 2-class association schemes from the
CR (Gold) functionsf (x) = x2k+1, (k, n) = 1 (hereV is identified withGF(2n)). These
association schemes are fusions of the schemes constructed inSection 2.3.

2.2. AB functions, Kasami codes, and Kasami graphs

A uniformly packed e-error-correcting codeis a code with minimum distanced = 2e+1
and the following properties: the number of codewords at distancee+1 from a word which
is at distancee from the code is constant; and the number of codewords at distancee + 1
from a word which is at distancee + 1 or more from the code is also constant (cf.[18]).
Carlet et al.[8] found the following.

Construction 2. Let f be an AB function withf (0) = 0 (andn > 3). Then the codeC of
characteristic vectors of all subsetsS of V\{0} such that

∑
r∈Sr = 0 and

∑
r∈S f (r ) = 0

is a double-error-correcting binary linear uniformly packed code of lengthN − 1 and
dimensionN − 1 − 2n.

The codeC generalizes the double error-correcting BCH codes, also called Kasami codes
(note that these codes are extremal in the sense that no linear code of this length and
minimum distance can have more codewords). The essence of the proof of this result given
in [8] lies in the fact that the dual code has three nonzero weights, which follows from the
definition of AB functions in terms of the Fourier transform.

In [12] the present authors gave a combinatorial proof of the above result for CR
functions. Their proof is easily adjusted (and simplified!) for AB functions, by using the
combinatorial characterization of AB functions inSection 1.1.

Carlet et al.[8] also show that in order to prove that the above code has dimension
N − 1 − 2n and minimum distance 5 (hence that the code is extremal) it suffices thatf is
APN (with f (0) = 0).

A distance-regular graph(with parameters{b0, b1, . . . , bd−1; c1, . . . , cd−1}) is a con-
nected regular graph such that for an arbitrary pair of vertices{x, y} at distancei , the
number of vertices adjacent tox and at distancei − 1 (respectivelyi , andi + 1) from y
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is a constantci (respectivelyai , andbi ) depending only oni (cf. [2]). It follows from the
work of Delsarte (cf.[2, Chapter 11]) that the coset graph of the uniformly packed Kasami
code as described above is distance-regular with diameter three. An alternative description
of this coset graph, like the one given in[4] is the following:

Construction 3. Let f be an AB function withf (0) = 0. Then the graph with vertex set
V × V , where two distinct vertices(x, a) and(y, b) are adjacent ifa + b = f (x + y) is a
distance-regular graph with parameters{N − 1, N − 2, 1/2N + 1; 1, 2, 1/2N − 1}.
A direct proof that this is indeed a distance-regular Kasami graph is given in[12] for
CR functions. Again, this proof can be adjusted for AB functions using the combinatorial
characterization of such functions inSection 1.1.

Note by the way the resemblance between the construction of the distance-regular graph
and the construction of the semi-biplane inSection 2.1. If in the above definition of the
graph we would allow an APN function we would obtain an(N −1)-regular graph without
triangles, such that any two vertices at distance two have two common neighbours. Such
a graph, when connected, is called arectagraph. Note that a more general connection
between semi-biplanes, binary linear codes of minimum distance at least 5, and rectagraphs
has been observed; cf.[2, Section 1.13].

2.3. AB functions, accomplices, CR functions, Preparata codes and graphs

In [1] CR functions were introduced to generalize the antipodal distance-regular graphs
constructed by de Caen et al.[5]. In [12] the present authors used CR functions to
generalize 5-class association schemes constructed in[4], and Preparata codes. Note that
the above-mentioned antipodal distance-regular graphs are strongly related to the 5-class
association schemes and the Preparata codes, hence they will be called Preparata graphs in
the following.

Here we will further generalize the construction of these combinatorial structures by
using an AB functionf (with f (0) = 0) with a so-called accompliceg, instead of a CR
function.

Definition 2. Let f : V → V be a function. A functiong : V → V is called an
accomplice off if (Ha( f ) + Ha( f )) ∩ Ha(g) = ∅ for all a �= 0.

A CR function is an accomplice of itself, since iff is CR, thenHa( f ) is the complement
of a hyperplane, which implies that the sum of any two of its elements lies in the
complementary hyperplane. In fact, any functiongc,d given bygc,d(x) = f (x + c) + d is
an accomplice off .

For AB functions that are not CR it seems hard to find accomplices. In low dimensions
it seems typical that in this case the setsHa( f ) + Ha( f ) are equal to the entire spaceV
(at least for somea). Nevertheless, we challenge the reader to construct such accomplices,
or new CR functions, since this would give some interesting new codes and graphs by the
following constructions.

A nearly perfect e-error-correcting codeis a code with minimum distanced = 2e + 1
such that each word at distance at leaste from the code has distancee or e+ 1 to exactly



E.R. van Dam, D. Fon-Der-Flaass / European Journal of Combinatorics 24 (2003) 85–98 95

� L
e+1� codewords, whereL is the length of the code (clearly such a code is also uniformly

packed).

Construction 4. Let f be an AB function withf (0) = 0, and with an accompliceg. Then
the codeP consisting of characteristic vectors of pairs(S, T) with S ⊆ V\{0}, T ⊆ V ,
such that|T | is even,

∑
s∈Ss = ∑

t∈T t , and
∑

s∈S f (s) = ∑
t∈T f (t) + g(

∑
t∈T t) is a

double-error-correcting nearly perfect code of size 22N−2−2n and lengthL = 2N − 1, i.e.
it has the same parameters as the Preparata code.

The proof of this result is essentially given in[12].
As was briefly mentioned in[12] (end ofSection 3) linear accomplices would be of

particular interest since it looked like new Kerdock codes could be constructed from them.
However, it is shown by Brouwer and Tolhuizen[3] that no linear code with the same
parameters as the Preparata code exists. This implies that the accompliceg cannot be linear,
since such a function would give rise to a linear Preparata code by the above construction,
as is easily checked.

Corollary 1. An AB function does not have a linear accomplice.

A d-class association schemeis a partition of the edge set of the complete graph into
regular spanning subgraphsG1, G2, . . . , Gd such that, for any edge{x, y} in Gh, the
number of verticesz such that{x, z} is in Gi and {z, y} is in G j equals a constantph

i j
depending only onh, i , j .

Construction 5. Let f be an AB functionf with f (0) = 0, and with an accompliceg.
Take as vertex setV × V , and letG1 be the Kasami graph as described inSection 2.2, i.e.
distinct vertices(x, a) and(y, b) are adjacent ifa + b = f (x + y). The graphG2 is an
isomorphic copy ofG1, and is defined by the equationa + b = f (x + y) + g(x) + g(y).
The graphsG3 andG4 are the distance-two graphs ofG1 andG2, respectively. The final
graphG5 is the remainder, and is given by the equationsx = y, a �= b. Then the graphs
G1, G2, . . . , G5 form a 5-class association scheme.

For CR functions this is proven in[12], and this proof is easily adjusted to AB functions
with an accomplice. This association scheme is of particular interest since it has many
fusion schemes (that is, association schemes that are obtained from the original one by
uniting some of the graphs) (cf.[4]). For example, the association scheme{G1, G3, G2 ∪
G4∪G5} is the 3-class association scheme of the distance 1, 2, and 3 graphs of the distance-
regular Kasami graph of the previous section. Further fusion gives the association scheme
{G1 ∪ G3, G2 ∪ G4 ∪ G5} with the same parameters as the 2-class association scheme
mentioned by Coulter and Henderson[11], seeSection 2.1(note that these two fusion
schemes can be obtained for AB functions without an accomplice). Another interesting
fusion scheme is{G1∪G2, G3 ∪G4, G5}, since it is a so-called quotient of the association
scheme of an antipodal distance-regular graph with the same parameters as the Preparata
graphs constructed by de Caen et al.[5]. This means that the following construction
generalizes the Preparata graphs.
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Construction 6. Let f be an AB function with f (0) = 0, and with an accompliceg.
Consider the graph with vertex setV × V × GF(2), where two distinct vertices(x, a, i )
and(y, b, j ) are adjacent ifa + b = f (x + y) + (i + j )(g(x) + g(y)). This graph is a
distance-regular graph with parameters{2N − 1, 2N − 2, 1; 1, 2, 2N − 1}.
Note that the Preparata graphs just like the Kasami graphs are rectagraphs.

If the codeP we constructed earlier were linear, then its coset graph would have the
same parameters as these antipodal distance-regular graphs. Still, it is possible to indicate
the relation between the (nonlinear) codeP and the antipodal distance-regular graphs, in
the spirit of[5].

2.4. AB functions, CR functions, Hadamard difference sets, and bent functions

An elementary Hadamard difference setis a (22n, 22n−1 − 2n−1, 22n−2 − 2n−1)

difference set onGF(2)2n, i.e. a subset ofGF(2)2n of size 22n−1 − 2n−1, such that
any nonzero element ofGF(2)2n occurs 22n−2 − 2n−1 times as a difference of distinct
elements of the subset (note that the complement of the difference set is a difference set
with parameters(22n, 22n−1 + 2n−1, 22n−2 + 2n−1), and this is also called a Hadamard
difference set). Xiang[21] constructed an elementary Hadamard difference set as follows.

Construction 7. Let f be an AB function. Then the set{(x, y) | y ∈ Hx( f ), x �= 0} =
{(x, f (z) + f (x + z)) | x, z ∈ V, x �= 0} is an elementary Hadamard difference set on
V × V .

It is well known (essentially already by Turyn[20]) that the characteristic function of
an elementary Hadamard difference set is another highly nonlinear function called abent
function, i.e. a function fromGF(2)2n to GF(2) that is at Hamming distance 22n−1±2n−1

to all linear functions fromGF(2)2n to GF(2). The bent functions corresponding to the
difference set ofConstruction 2have also been constructed by Carlet et al.[8].

Another class of Hadamard difference sets and corresponding bent functions can be
constructed from CR functions (cf.[1]).

Construction 8. Let f be a CR function,U a hyperplane inV , and a /∈ U . Then
the set{v ∈ U | f (v) ∈ Ha( f )} is a Hadamard difference set onU with parameters
(2n−1, 2n−2 ± 2(n−3)/2, 2n−3 ± 2(n−3)/2).

3. Known nonlinear functions

We conclude with the list of all, up to equivalence, known APN, AB, and CR functions.
As was mentioned earlier, all known such functions are equivalent to certain power
functions f : GF(2n) → GF(2n), f (x) = xk. In Table 1we give the values of exponents
k for odd values ofn, n = 2m + 1, with the indication to which of the three classes the
function belongs. InTable 2we give those values ofk for evenn, n = 2m, which give
APN functions. Note that the inverse of an APN (AB) function is also APN (AB), but this
need not be so for CR functions. In particular, the inverses to known CR functions are AB
but not CR.
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Table 1
Known APN, AB, and CR functionsxk on G F(2n), n = 2m + 1

Name Exponentk Type Reference

Gold’s functions 2i + 1 with (i, n) = 1, CR [14, 1]
1 ≤ i ≤ m

Kasami’s functions 22i − 2i + 1 with (i, n) = 1, AB [17]
2 ≤ i ≤ m

Field inverse 2n − 2 APN [19]
Welch’s function 2m + 3 AB [7, 16]
Niho’s function 2m + 2m/2 − 1 (evenm) AB [16]

2m + 2(3m+1)/2 − 1 (oddm)
Dobbertin’s function 24i + 23i + 22i + 2i − 1 if n = 5i APN [13]

Table 2
Known APN functionsxk on G F(2n), n = 2m

Name Exponentk Type Reference

Gold’s functions 2i + 1 with (i, n) = 1, APN [14]
1 ≤ i < m

Kasami’s functions 22i − 2i + 1 with (i, n) = 1, APN [17]
2 ≤ i < m

Dobbertin’s function 24i + 23i + 22i + 2i − 1 if n = 5i APN [13]
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