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Abstract

We consider functions on binary vector spaces which are far from linear functions in different
senses. We compare three existing notions: almost perfect nonlinear functions, almost bent (AB)
functions, and crooked (CR) functions. Such functions are of importance in cryptography because
of their resistance to linear and differential attacks on certain cryptosystems. We give a new
combinatorial characterization of AB functions in terms of the number of solutions to a certain
system of equations, and a characterization of CF in terms of the Fourier transform. We also show
how these functions can be used to construct several combinatorial structures; such as semi-biplanes,
difference sets, distance regular graphs, symmetric association schemes, and uniformly packed (BCH
and Preparata) codes© 2003 Elsevier Science Ltd. All rights reserved.

MSC:05E30; 05B20; 94B05; 94A60

1. Almost perfect nonlinear, almost bent, and crooked functions

We consider functions on binary vector spaces which are far from linear functions
in different senses. We compare three existing notions: almost perfect nonlinear (APN)
functions, almost bent functions, and crooked functions. Such functions are of importance
in cryptography because of their resistance to linear and differential attacks on certain
cryptosystems (cf.g-1Q p. 1037]). Furthermore they are of interest in the study of linear
feedback shift register sequences with low crosscorrelatiofil&fpp. 1795-181]). Also
in the construction of certain combinatorial structures they have proven to be useful;
we will give an overview and update on this 8ection 2 Furthermore we give a new
combinatorial characterization of almost bent functions in terms of the number of solutions
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to a certain system of equations (similar to such a characterization of APN functions), and
a new characterization of crooked functions in terms of the Fourier transform.

First we introduce some notation which will be used throughout the papeY. betan
n-dimensional space over the fie@lF(2); and letN = 2". By (-, -) we shall denote the
standard inner product ovi. By | X| we denote the size of a finite skt Let f : V — V
be any function. Foa € V\{0}, we denote byH5( ), or simply Hg, the set

Ha={f(X)+ f(Xx+a)|xeV}.

The Fourier transform (also called Walsh transfoym): V x V — R of f is defined by
the formula

pi@b) = (~H)EX (eI,
xeV
Now we introduce the three different classes of “extremely nonlinear” functions which we
shall consider in this paper.

Definition 1. A function f : V — V is called:

(i) APN (almost perfect nonlinear) [Ha(f)| = 1/2N for all a € V\{0};
(i) AB (almostbent) ifut (a, b) € {0, £+/2N} for all (a, b) # (0, 0);
(i) CR (crooked) if f (0) = 0 and every seHa(f), a # 0, is the complement of a
hyperplane.

We shall denote the class of APN (AB, CR) functionsAp N\ (AB, CR).

The first definition can be motivated as follows. For any functigthe setHa( f) has size
at most ¥2N (see proof olL,emma J; and if equality is attained for all # 0, then (in
cryptography) such a function has optimal resistance against a so-called differential attack.
The second definition is motivated by the fact that for any functiothe maximal
value of|u f (a, b)| for (a, b) # (0, 0) is at least/2N; and equality is attained if and only
if fis AB (as defined; cf[9]). Such a function has optimal resistance against a so-called
linear attack. Note that as a consequence of the above, an AB function can only exist if the
dimensiom is odd.
We use here the terminology from the pap@jsand[1]; other authors sometimes use
the termssemiplanarfor APN ([11]), andmaximally nonlineafor AB functions (7, 21]).
The definition of CR functions given here is different from, but equivalent to, the one used
in[1,12]:

Definition 1’. A function f : V — V is called CR if it satisfies the following three
properties:

(i) f(©O) =0;
@iy fO+ fy)+ f(@+ f(xX+y+ 2 #0whenx,y, zare distinct;
@i) fO+fyy+f@+fx+a+ f(y+a+ f(z+a) #0whena#0.

It is also shown irf1] that, for a CR functionf, all setsHa( f) are distinct, that is, every
complement of a hyperplane occurs among them exactly once.
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Let us recall some more properties of APN, AB, and CR functions. Most of them are
taken from the papei, 8].

A function remains APN, AB, or CR after applying any nondegenerate affine transfor-
mations to the argument and/or the value of the function (for a CR function, it is addition-
ally required that the resulting function maps 0 to 0).

If a function f is APN or AB, and bijective, then so is its inverse functién?. In
contrast to this, the inverse of a CR function need not be CR. Also, a function remains
APN (AB) after adding any linear function to it. Again, this is not true for CR functions.

There are proper inclusions between the three classes:

CR C AB C APN.

In the next section we shall prove both inclusions (note@ritc APN follows from the
definition).

Not too many constructions of APN, AB, or CR functions are known; all known such
functions are equivalent under the above transformations to certain fundétiofs-(2")
— GF(2") of the form f (x) = xX. In Section 3we give a complete list of all currently
known APN, AB, and CR functions.

1.1. Alternative descriptions oAPN, AB, andCR

As is well-known, the definition of APN functions given above can easily be
re-formulated in terms of the number of solutions of a certain system of equations.

Lemmal. A function f is APN if and only if the system of equations
X+y=a
{f(x)+f(y)=b (1)
has zero or two solution&, y) for every(a, b) # (0, 0). If so, then the system has two
solutions precisely when & Ha( f).

Proof. For any functionf, if the system(1) has a solution then it has at least two of
them (interchange andy). Therefore, for evern # 0 the setHa(f) has at most 22N
elements, and equality is achieved if and only if the systgphas zero or two solutions
foreachb. O

It turns out that AB functions can be characterized in a similar way.

Theorem 1. A function f is AB if and only if the system of equations

X+y+z=a @
f)+ f(yy+ f(@=>b

has N— 2 or 3N — 2 solutions(x, vy, z) for every(a, b). If so, then the system hasl — 2
solutions if b= f(a), and N— 2 solutions otherwise.

The proof presented below is a typical application of the Fourier transform. We shall
present it in the language of matrices.
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Proof. First we define severdl x N matrices with real entries whose rows and columns
are indexed by vectors frodM. Let | be the identity matrix,J the all-one matrixE the
matrix with a single nonzero entiioo = 1, Ejj = 0 for (i, j) # (0, 0). The entries of the
matricesX, M, M® | F, Sare as follows:

Xab=(=1)@b;  Map=pi(@b); MY =ui@b?
Sh=HX ¥, | x+y+z=a; f(x)+ f(y)+ f(2) =Db}|;
Fab=1 if b= f(a); otherwiseFzp = 0.

One can easily check the following equalities:
X% = NI; M = XFX; XJX = N2E. (3)
In particular, it follows that the matriX is nonsingular.
The condition that the syste(®) hasN —2 or 3N — 2 solutions follows from the identity
S=(N-2J+2NF. (4)

Moreover, also the converse is true. Indeed, whea f (a), the system(2) has N — 2
“trivial” solutions with one variable equal ta, and the two other variables equal to each
other. So, from counting allx, y, z, a, b) satisfying(2) in two ways it follows that the
system has R — 2 solutions whet = f (a), andN — 2 solutions otherwise.

The property thatf is AB can also be stated in matrix terms. It is equivalent to the
identity

M® —2NM = (N3 — 2N?)E. (5)

Indeed, all valueg:t (a, b) exceptu (0, 0) = N are roots of the cubic equatioﬁ’ -2
Nx = 0.
Finally, we have the identity

M® = XSX (6)
Let us prove it. We have

ni@ b= Y (—1)@x+y+2) (_1)b. f O+ T (y)+1 ()

X,Yy,zeV
=Y (-p@m ¥y (=1 FOO+TWN+{@)
peV X+y+z=p

In the inner summation, collect all terms with the same vajue f(x) + f(y) + f(2);
for eachq there will beSyq of them. So,

i@ b3 =Y (D" 5a(-DPD = Y XapSpgXgb = (XSXab.
peV qeV p,geVv
Combining the identitie§3) and(6) we get:
X(S—=2NF - (N—=2))X =M® —2NM — (N2 — 2N?)E.

As X is nonsingular, it follows that the identitiéd4) and(5) hold simultaneously, and the
theorem is proved. O
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Remark. The identitiesM = X FX andM® = X SXfrom the proof represent a special
case of the general fact that the Fourier image of the convolution of several functions is the
product of their Fourier images.

The characterizations of APN and AB functions giverLemma landTheorem lallow
us to give simple proofs of the inclusio6® < AB C APN.

Proposition 1. Any CR function is AB, and any AB function is APN.

Proof. For the second assertion, it is enough to notice that if for sqrege0,a # p #
a+ q, the equalityf (p) + f(p+q) = f(a) + f(a+ q) holds (that is,f is not APN),
then the system

X+y+z=a
f)+ fy)+ f(2 = f(a),

apart from trivial solutions, has the solutian= p,y = p+q, z= a+ q, and sof is not
AB.

To prove the first assertion, take any CR functiarit is enough to show that, for every
a and evenb = 0, the system

X+y+z=a
fO+fy+f@=~f@+b

hasN — 2 solutions (whetv does equal 0, it follows frorDefinition 1 that the system only
has(3N — 2) trivial solutions). Obviously, every such soluti¢x, y, z) satisfiesz # a. Let
p=z+a=x+y.Thenf(x)+ f(y) € Hp, f(2)+ f(a) € Hp, and thereforé € V\Hy,
sinceHp is the complement of a hyperplane (afid) € GF(2)). Every nonzero vector
b belongs to 12N — 1 hyperplanes, which giveg2N — 1 choices forp, and hence for
z. Oncez is determined the system i andy has precisely two solutions, because of
Lemma 1 Hence we get@/2N — 1) = N — 2 solutions in all. [

In Theorem 1we characterized AB functions (which are defined in terms of the Fourier
transform) in terms of the number of solutions of a certain system of equations. Next, we
shall give characterizations of APN functions and CR functions in terms of the Fourier
transform. In the case of APN functions this characterization is due to Chabaud and
Vaudenay[9]; in fact they used it to prove the inclusictB € APN.

Theorem 2. Let f be an AB function such that(@ = 0. Then f is CR if and only
if the set{a | ui(@ b) = 0} is a hyperplane for every B£ 0. If so, then all these
hyperplanes are distinct angh | uf(@a,b) = 0} = {a | (a,c) = 0}, where c is such
that Ho(f) = {x | (b, x) = 1}.

Proof. This proof will have a similar flavor as the proof of the characterization of AB
functions in Theorem 1 We will make use of the same matricésand E introduced
there. Moreover we introduce the matrick€? and T of which the entries are given

by Méi) =pi@by?andTap = {(X,y) | Xx+y = a; f(X)+ f(y) = b}l. It follows
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thatM® = XT X, which can be proven just like the identi® = X SXwas proven in
Theorem 1

The stated assertion that the &&t| 1 1 (a, b) = 0} is a hyperplane for evelly £ 0 is
equivalent to the existence of a function V — V such thaffa | us(a,b) = 0} = {a |
(a, c(b)) = 0} for everyb £ 0. Without loss of generality we complete the definitiorcof
by takingc(0) = 0.

Since f is an AB function the stated assertion is equivalenutaa, b)2 = N —
N(—1)@c®) for all a andb # 0, hence toM®@ = N(J — XC) + N2E, whereC is
the matrix given byCap = 1 if a = c(b); 0 otherwise. After multiplying both sides of
the matrix equation from the left and right by the nonsingular matrix follows that the
stated assertion is equivalent to the equalice E — CX + J.

Now we use thaff is APN: Tax = 2 if X € Ha(f), Too = N, andT,x = 0 otherwise.
Finally, we may conclude that the stated assertion is equivalent to the existence of a
functionc: V — V, c(0) = 0 such that

Z (_1)(b,X) . -1 ifxe Ha(f)
o) - 1 otherwise
:a=C

foralla # 0.

Now suppose that the stated assertion is true, and the above equations hold. By
consideringx = 0 it follows that for everya % 0 the number ob such thata = c(b)
must be equal to one, hencés a bijection. Now the equations reduce(tol(a), b) = 1
if and only if b € Ha(f) for all b anda # 0. HenceHy(f) is the complement of a
hyperplane for everg # 0, and we may conclude thétis CR.

On the other hand, iff is CR then the function given bg(b) = a wherea is the
unique vector such thada(f) = {X|(b, x) = 1} satisfies the required equations. Note that
in this casec is a bijective function so the seta | uf(a,b) = 0}, b # 0 comprise all
hyperplanes. O

Proposition 2 ([9]). Let f : V — V be any function. Then

> nt(a byt > 3N* - 2N?
a,b

with equality if and only if f is APN.

Proof. Again, we use the matrix methods (and matroidsYbé&éorems Jand2. For the
function f we have that

Y ut@ b= (M2 =tr(MPM®@T) = tr(XT XXT' X)
a,b a,b

=Ntr(XTT'X) = Ntr(TT'XX) = N#t(TT") = NZZ(Tab)2
a,b

=N*+NZD D (Tap)?.

a#0 b
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As is noticed in the proof oEemma 1 Typ is equal to zero or at least two. This means
that Za#) Zb(TE,lb)2 > Za#) > b 2Tap With equality if and only ifTap equals O or 2
for all b anda # 0O, i.e. if and only if f is APN. We finish our proof by observing that
> az0 X p2Tab=2(N2 = N). [

To summarize things: APN functions can be defined in terms of the number of solutions
of a certain system of equations, in terms of the Fourier transform, or in terms of the sets
Ha(f); AB functions—in terms of the Fourier transform, or in terms of the number of
solutions of a certain system of equations; and CR functions—in ternk&, 0f) or in

terms of the Fourier transform. It would also be interesting to find a characterization of AB
functions in terms of the setd,(f).

1.2. Algebraic degree

First we recall the definition and some standard properties of the algebraic degree of a
function. Consider our spadé as the standard vector space of row vectass. . ., Xn),
Xi € GF(2). Anyfunctionf : V — V can be represented as a polynomial in the variables
X1, . . ., Xn With coefficients inV . Further, all monomials of this polynomial can be chosen
to have degree at most 1 in each variable, since the eleme6Gt& () satisfy the identity
x2 = x. With such a choice of monomials, the polynomial representatiof bécomes
unigue; and it can be found by expanding the representation

f(X1, ..., Xn) = Z fa,...,an)(x1+ar+1)...(xn+an + 1).
(ay,...,an)eVv

The degree of the resulting polynomial is caltbe algebraic degreef f. The algebraic
degree does not depend on the choice of a basi¥ fdrhis follows from the following
characterization:

Lemma 2. The algebraic degree of f is equal to the maximum dimension k for which
there is an affine k-subspace U of V such that., f(u) # 0.

This lemma follows from standard properties of Reed—Muller codes (cf. for instance
[6, Chapter 12, in particular (12.3) and (12.5)).

Itis provedin[8] that the algebraic degree of an AB function does not excggh-1).
We shall prove a better bound for CR functions.

Theorem 3. Let f : V — V be a CR functiondimV = n = 2m+ 1 > 5. Then the
algebraic degree of f isat mostm 1/2(n — 1).

To prove it, we need the following easy combinatorial lemma.

Lemma3. Let X C V, | < n, k> 0. If for every affine I-subspace U of V the number
|XNU| is divisible by2* then for every affind — 1)-subspace W of V the numb&nw|
is divisible by2<~1,

Proof. Let W be any affingl — 1)-subspace oY. Let W», W3 be two translates oy
such that all th&\V; are distinct. Letxi = | X "W |,i =1, 2, 3.
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All setsW; U W; are affinel-subspaces o¥ . Thus, we have the system of equations
X1+ X2 = a, X2 + X3 = b, X3 + X1 = ¢, wherea, b, c are multiples of b Solving this
system, we find that eveny is a multiple of ¥~1, and the lemma is proved ]

Proof of Theorem 3. Instead off we shall consider Boolean functiofig: V — GF(2),
fn(v) = h(f (v)), for arbitrary nonzero linear functiondts: V. — GF(2). Let

Xn={veV|h(f)=1}.

We only need to show that, for every affitra+ 1)-subspac® of V, the numbefXyNU|
is even. Indeed, dswas arbitrary, this would imply thdt", ., f(v) = 0, and the theorem
would then follow fromLemma 2

The set{v € V | h(v) = 1} is the complement of a hyperplane; therefore it coincides
with the setHa(f) for somea € V. It is proved in[1, Proposition 3 that, for any
hyperplaneV’ c V, the setX, NV’ = {v € V' | h(f(v)) = 1} is of size 22 if
a € V/, and of size 2724+ 2™ 1 jf a ¢ V’. Note also thatXn| = 2"1, sincef is a
bijection.

Take an arbitrary linear subspa®é c V of codimension 2; leW;, Ws, W3 be the
affine subspaces parallel to it.

The setsWp U Wi, i = 1, 2, 3, are the three hyperplanes containifg. So we can
easily find the numbersXy N W, |: if a € Wp then they all are equal td"23; otherwise
two of them are equal to"22, and two others to'23 +£2™1, In any case, a8 > 5, these
numbers are divisible by 1.

Thus,|Xn N W| is divisible by 2"~1 for every affine subspac& c V of dimension
n — 2. NowLemma 3appliedm — 2 times gives the desired resultl]

In the class of functions of algebraic degree 2 (quadratic functions) the three classes
APN, AB, andCR essentially coincide. More precisely, it is proved@nTheorem $that
every quadratic APN function of odd dimension is AB. Now we shall briefly demonstrate
that every quadratic APN function which is bijective, and maps 0 to O, is CR. It is
convenient to us®efinition 1. The property (ii) there is equivalent to the function being
APN. Take any, v,z € V, 0# a € V. We need to check that the sum

s=fxX)+fW+f@+fx+a)+fy+a)+ f(z+a)

is not equal to 0. If any two of the six terms coincide, this follows from the bijectivity of
f. If not, then the set

xX,y,zx+a,y+a,z+a,x+y+zx+y+z+a}

is an affine 3-subspace. Asis quadratic, the sum of its values over this subspace is equal
to 0, and therefore= f (X + y+2) + f (X + y+ z+ &), ands # 0, again by bijectivity.
We note finally that all known examples of CR functions have algebraic degree 2.

2. Combinatorial structures

In this section we will construct several combinatorial structures, such as semi-
biplanes, difference sets, distance-regular graphs, association schemes, and uniformly
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packed (BCH and Preparata) codes, all by using APN, AB, or CR functions. For some
background on distance-regular graphs and association schemes we refer the f@ader to
for background on codes {@8].

2.1. APN functions and semi-biplanes

A semi-biplane sbf, k) is a connected incidence structurevopoints andv blocks,
each incident withk points, such that any two points are incident with zero or two blocks,
and any two blocks are incident with zero or two points. Coulter and Hend¢iddn
construct a semi-biplane from an APN functirin the following way.

Construction 1. Let f be an APN function. Then the incidence structure with point set
and block seV x V, where a poin{x, a) is incident with a block(y, b) if and only if
a+b= f(x+y)isasemi-biplanebp(N2, N) if the incidence structure is connected, or
else it consists of two disjoirstbp(1/2N2, N).

Coulter and Hendersoji1] alsko construct certain 2-class association schemes from the
CR (Gold) functionsf (x) = x2t1, (k, n) = 1 (hereV is identified withG F(2")). These
association schemes are fusions of the schemes constru@edtion 2.3

2.2. AB functions, Kasami codes, and Kasami graphs

A uniformly packed e-error-correcting codea code with minimum distance= 2e+1
and the following properties: the number of codewords at distancefrom a word which
is at distance= from the code is constant; and the number of codewords at distahce
from a word which is at distanoe+ 1 or more from the code is also constant (&8]).
Carlet et al[8] found the following.

Construction 2. Let f be an AB function withf (0) = 0 (andn > 3). Then the cod€ of
characteristic vectors of all subs@®f V\{0} such tha) , _.sr =0and) , f(r)=0
is a double-error-correcting binary linear uniformly packed code of lemyth 1 and
dimensionN — 1 — 2n.

The codeC generalizes the double error-correcting BCH codes, also called Kasami codes
(note that these codes are extremal in the sense that no linear code of this length and
minimum distance can have more codewords). The essence of the proof of this result given
in [8] lies in the fact that the dual code has three nonzero weights, which follows from the
definition of AB functions in terms of the Fourier transform.

In [12] the present authors gave a combinatorial proof of the above result for CR
functions. Their proof is easily adjusted (and simplified!) for AB functions, by using the
combinatorial characterization of AB functions$®ction 1.1

Carlet et al.[8] also show that in order to prove that the above code has dimension
N — 1 — 2n and minimum distance 5 (hence that the code is extremal) it suffice$ tisat
APN (with f (0) = 0).

A distance-regular grapltwith parametergbg, b1, ..., bg_1; C1,...,Ccq4—1}) is a con-
nected regular graph such that for an arbitrary pair of vertigey} at distancd, the
number of vertices adjacent toand at distance — 1 (respectively, andi + 1) fromy
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is a constant; (respectivelys;, andb;) depending only o (cf. [2]). It follows from the

work of Delsarte (cf[2, Chapter 1]) that the coset graph of the uniformly packed Kasami
code as described above is distance-regular with diameter three. An alternative description
of this coset graph, like the one given[#] is the following:

Construction 3. Let f be an AB function withf (0) = 0. Then the graph with vertex set
V x V, where two distinct vertice&, a) and(y, b) are adjacentia + b= f(x +y)isa
distance-regular graph with parametgis— 1, N — 2, 1/2N + 1; 1, 2,1/2N — 1}.

A direct proof that this is indeed a distance-regular Kasami graph is givétinfor
CR functions. Again, this proof can be adjusted for AB functions using the combinatorial
characterization of such functions@ection 1.1

Note by the way the resemblance between the construction of the distance-regular graph
and the construction of the semi-biplaneSection 2.11f in the above definition of the
graph we would allow an APN function we would obtain@h— 1)-regular graph without
triangles, such that any two vertices at distance two have two common neighbours. Such
a graph, when connected, is calledegtagraph Note that a more general connection
between semi-biplanes, binary linear codes of minimum distance at least 5, and rectagraphs
has been observed; ¢2, Section 1.18

2.3. AB functions, accomplices, CR functions, Preparata codes and graphs

In[1] CR functions were introduced to generalize the antipodal distance-regular graphs
constructed by de Caen et 4b]. In [12] the present authors used CR functions to
generalize 5-class association schemes constructdd,iand Preparata codes. Note that
the above-mentioned antipodal distance-regular graphs are strongly related to the 5-class
association schemes and the Preparata codes, hence they will be called Preparata graphs in
the following.

Here we will further generalize the construction of these combinatorial structures by
using an AB functionf (with f(0) = 0) with a so-called accompliag, instead of a CR
function.

Definition 2. Let f : V — V be a function. A functiorg : V — V is called an
accomplice off if (Ha(f) + Ha(f)) N Ha(g) = ¥ foralla # 0.

A CR function is an accomplice of itself, sincefifis CR, thenH,(f) is the complement
of a hyperplane, which implies that the sum of any two of its elements lies in the
complementary hyperplane. In fact, any funct@my given byge a(x) = f(x+c¢) +dis
an accomplice off .

For AB functions that are not CR it seems hard to find accomplices. In low dimensions
it seems typical that in this case the sktg(f) + Ha(f) are equal to the entire spave
(at least for soma). Nevertheless, we challenge the reader to construct such accomplices,
or new CR functions, since this would give some interesting new codes and graphs by the
following constructions.

A nearly perfect e-error-correcting cods a code with minimum distanag = 2e + 1
such that each word at distance at leasbm the code has distaneeor e + 1 to exactly
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Lﬁj codewords, where is the length of the code (clearly such a code is also uniformly
packed).

Construction 4. Let f be an AB function withf (0) = 0, and with an accompliog Then
the codeP consisting of characteristic vectors of paf§ T) with S € V\{0}, T C V,
such thaiT|iseveny (.sS =Y (crtand) o s f(S) = D7 T+ 90 (7D isa
double-error-correcting nearly perfect code of sizé2-2" and lengthL = 2N — 1, i.e.
it has the same parameters as the Preparata code.

The proof of this result is essentially given[it?].

As was briefly mentioned ifil2] (end of Section 3 linear accomplices would be of
particular interest since it looked like new Kerdock codes could be constructed from them.
However, it is shown by Brouwer and Tolhuiz§8] that no linear code with the same
parameters as the Preparata code exists. This implies that the accaymaliveot be linear,
since such a function would give rise to a linear Preparata code by the above construction,
as is easily checked.

Corollary 1. An AB function does not have a linear accomplice.

A d-class association schenie a partition of the edge set of the complete graph into
regular spanning subgrapl@, Go, ..., Gq such that, for any edggx, y} in Gy, the
number of verticeg such that{x, z} is in Gj and{z, y} is in G; equals a constamﬂ
depending only o, i, j.

Construction 5. Let f be an AB functionf with f(0) = 0, and with an accompliceg.
Take as vertex s&t x V, and letG; be the Kasami graph as describediection 2.2i.e.
distinct verticegx, a) and(y, b) are adjacent i+ b = f(x 4+ y). The graphG; is an
isomorphic copy of51, and is defined by the equatieart- b = f (X + y) + g(x) + g(y).
The graphsG3 and G4 are the distance-two graphs @f andG», respectively. The final
graphGs is the remainder, and is given by the equatigns y, a # b. Then the graphs
Gy, Gy, ..., Gs form a 5-class association scheme.

For CR functions this is proven if12], and this proof is easily adjusted to AB functions

with an accomplice. This association scheme is of particular interest since it has many
fusion schemes (that is, association schemes that are obtained from the original one by
uniting some of the graphs) (d#]). For example, the association schefa, G3, Go U
G4UGs} is the 3-class association scheme of the distance 1, 2, and 3 graphs of the distance-
regular Kasami graph of the previous section. Further fusion gives the association scheme
{G1 U G3, G2 U G4 U Gs} with the same parameters as the 2-class association scheme
mentioned by Coulter and Hendersfirl], seeSection 2.1(note that these two fusion
schemes can be obtained for AB functions without an accomplice). Another interesting
fusion scheme i§G1U G2, G3U Gg4, Gs}, since it is a so-called quotient of the association
scheme of an antipodal distance-regular graph with the same parameters as the Preparata
graphs constructed by de Caen et[al]. This means that the following construction
generalizes the Preparata graphs.
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Construction 6. Let f be an AB function withf (0) = 0, and with an accomplicg.
Consider the graph with vertex sétx V x GF(2), where two distinct vertice&, a, i)
and(y, b, j) are adjacentibi +b = f(x+Yy) + (i + j)(9(X) + g(y)). This graph is a
distance-regular graph with parametgsl — 1, 2N — 2,1; 1, 2, 2N — 1}.

Note that the Preparata graphs just like the Kasami graphs are rectagraphs.

If the codeP we constructed earlier were linear, then its coset graph would have the
same parameters as these antipodal distance-regular graphs. Still, it is possible to indicate
the relation between the (nonlinear) codeand the antipodal distance-regular graphs, in
the spirit of[5].

2.4. AB functions, CR functions, Hadamard difference sets, and bent functions

An elementary Hadamard difference sist a (22", 220—1 _ 2n-1 p2n-2 _ on-1)
difference set orGF(2)2", i.e. a subset ofs F(2)2" of size 2"~1 — 2"-1 such that
any nonzero element a8 F(2)2" occurs 2'-2 — 2"~ times as a difference of distinct
elements of the subset (note that the complement of the difference set is a difference set
with parameterg22", 2201 4 on-1 22n—2 4 9n—1y ‘and this is also called a Hadamard
difference set). Xian§21] constructed an elementary Hadamard difference set as follows.

Construction 7. Let f be an AB function. Then the sétx, y) | y € Hx(f), X # 0} =
{xX, f(2)+ f(x+2) | X,z € V,x # 0} is an elementary Hadamard difference set on
V x V.

It is well known (essentially already by Turyj20]) that the characteristic function of
an elementary Hadamard difference set is another highly nonlinear function célésd a
function i.e. a function fronG F(2)2" to G F(2) that is at Hamming distancé® 1 + 271
to all linear functions fronG F(2)?" to GF(2). The bent functions corresponding to the
difference set o€onstruction zhave also been constructed by Carlet ef&L.

Another class of Hadamard difference sets and corresponding bent functions can be
constructed from CR functions (dfL]).

Construction 8. Let f be a CR functionU a hyperplane inv, anda ¢ U. Then
the set{fv € U | f(v) € Ha(f)} is a Hadamard difference set @h with parameters
(anl’ 2n—2 + 2(n—3)/2, 2n—3 + 2(n—3)/2)_

3. Known nonlinear functions

We conclude with the list of all, up to equivalence, known APN, AB, and CR functions.
As was mentioned earlier, all known such functions are equivalent to certain power
functionsf : GF(2") — GF(2"), f (x) = xX. In Table 1we give the values of exponents
k for odd values oh, n = 2m + 1, with the indication to which of the three classes the
function belongs. InTable 2we give those values & for evenn, n = 2m, which give
APN functions. Note that the inverse of an APN (AB) function is also APN (AB), but this
need not be so for CR functions. In particular, the inverses to known CR functions are AB
but not CR.
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Table 1
Known APN, AB, and CR functiongX on G F(2"), n = 2m + 1
Name Exponenk Type Reference
Gold’s functions %+ 1 with i,n) =1, CR [14, 1]
l1<i<m
Kasami's functions 2 _2 +1with (i, n) =1, AB [17]
2<i<m
Field inverse 92 APN [19]
Welch's function M43 AB [7, 16]
Niho’s function M 4 2M/2 _ 1 (evenm) AB [16]
2M 4 26M+D/2 _ 1 (oddm)
Dobbertin’s function 3428 402 L0 _1ifn=5i APN [13]
Table 2
Known APN functionsxk on G F(2"), n = 2m
Name Exponenk Type Reference
Gold’s functions %+ 1 with i,n) =1, APN [14]
1<i<m
Kasami's functions 2 —2 ¢+ 1with(i,n) =1, APN [17]
2<i<m )
Dobbertin’s function 9423 4122 42 _1ifn=5i APN [13]
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