2,772 research outputs found

    Efficient Algorithm for Asymptotics-Based Configuration-Interaction Methods and Electronic Structure of Transition Metal Atoms

    Full text link
    Asymptotics-based configuration-interaction (CI) methods [G. Friesecke and B. D. Goddard, Multiscale Model. Simul. 7, 1876 (2009)] are a class of CI methods for atoms which reproduce, at fixed finite subspace dimension, the exact Schr\"odinger eigenstates in the limit of fixed electron number and large nuclear charge. Here we develop, implement, and apply to 3d transition metal atoms an efficient and accurate algorithm for asymptotics-based CI. Efficiency gains come from exact (symbolic) decomposition of the CI space into irreducible symmetry subspaces at essentially linear computational cost in the number of radial subshells with fixed angular momentum, use of reduced density matrices in order to avoid having to store wavefunctions, and use of Slater-type orbitals (STO's). The required Coulomb integrals for STO's are evaluated in closed form, with the help of Hankel matrices, Fourier analysis, and residue calculus. Applications to 3d transition metal atoms are in good agreement with experimental data. In particular we reproduce the anomalous magnetic moment and orbital filling of Chromium in the otherwise regular series Ca, Sc, Ti, V, Cr.Comment: 14 pages, 1 figur

    Hilbert space renormalization for the many-electron problem

    Get PDF
    Renormalization is a powerful concept in the many-body problem. Inspired by the highly successful density matrix renormalization group (DMRG) algorithm, and the quantum chemical graphical representation of configuration space, we introduce a new theoretical tool: Hilbert space renormalization, to describe many-electron correlations. While in DMRG, the many-body states in nested Fock subspaces are successively renormalized, in Hilbert space renormalization, many-body states in nested Hilbert subspaces undergo renormalization. This provides a new way to classify and combine configurations. The underlying wavefunction ansatz, namely the Hilbert space matrix product state (HS-MPS), has a very rich and flexible mathematical structure. It provides low-rank tensor approximations to any configuration interaction (CI) space through restricting either the 'physical indices' or the coupling rules in the HS-MPS. Alternatively, simply truncating the 'virtual dimension' of the HS-MPS leads to a family of size-extensive wave function ansaetze that can be used efficiently in variational calculations. We make formal and numerical comparisons between the HS-MPS, the traditional Fock-space MPS used in DMRG, and traditional CI approximations. The analysis and results shed light on fundamental aspects of the efficient representation of many-electron wavefunctions through the renormalization of many-body states.Comment: 23 pages, 14 figures, The following article has been submitted to The Journal of Chemical Physic

    The influence of orbital rotation on the energy of closed-shell wavefunctions

    Get PDF
    The orbital dependence of closed-shell wavefunction energies is investigated by performing doubly-occupied configuration interaction (DOCI) calculations, representing the most general class of these wavefunctions. Different local minima are examined for planar hydrogen clusters containing two, four, and six electrons applying (spin) symmetry-broken restricted, unrestricted, and generalised orbitals with real and complex coefficients. Contrary to Hartree-Fock (HF), restricted DOCI is found to properly break bonds and thus unrestricted orbitals, while providing a quantitative improvement of the energy, are not needed to enforce a qualitatively correct bond dissociation. For the beryllium atom and the BH diatomic, the lowest possible HF energy requests symmetry-broken generalised orbitals, whereas accurate results for DOCI can be obtained within a restricted formalism. Complex orbital coefficients are shown to increase the accuracy of HF and DOCI results in certain cases. The computationally inexpensive AP1roG geminal wavefunction is proven to agree very well with all DOCI results of this study

    Excitation, two-center interference and the orbital geometry in laser-induced nonsequential double ionization of diatomic molecules

    Full text link
    We address the influence of the molecular orbital geometry and of the molecular alignment with respect to the laser-field polarization on laser-induced nonsequential double ionization of diatomic molecules for different molecular species, namely N2\mathrm{N}_2 and Li2\mathrm{Li}_2. We focus on the recollision excitation with subsequent tunneling ionization (RESI) mechanism, in which the first electron, upon return, promotes the second electron to an excited state, from where it subsequently tunnels. We show that the electron-momentum distributions exhibit interference maxima and minima due to the electron emission at spatially separated centers. We provide generalized analytical expressions for such maxima or minima, which take into account ss pp mixing and the orbital geometry. The patterns caused by the two-center interference are sharpest for vanishing alignment angle and get washed out as this parameter increases. Apart from that, there exist features due to the geometry of the lowest occupied molecular orbital (LUMO), which may be observed for a wide range of alignment angles. Such features manifest themselves as the suppression of probability density in specific momentum regions due to the shape of the LUMO wavefunction, or as an overall decrease in the RESI yield due to the presence of nodal planes.Comment: 11 pages revtex, 2 figure

    Preparation of an Exciton Condensate of Photons on a 53-Qubit Quantum Computer

    Full text link
    Quantum computation promises an exponential speedup of certain classes of classical calculations through the preparation and manipulation of entangled quantum states. So far most molecular simulations on quantum computers, however, have been limited to small numbers of particles. Here we prepare a highly entangled state on a 53-qubit IBM quantum computer, representing 53 particles, which reveals the formation of an exciton condensate of photon particles and holes. While elusive for more than 50 years, such condensates were recently achieved for electron-hole pairs in graphene bilayers and metal chalcogenides. Our result with a photon condensate has the potential to further the exploration of this new form of condensate that may play a significant role in realizing efficient room-temperature energy transport

    Molecular phases in coupled quantum dots

    Full text link
    We present excitation energy spectra of few-electron vertically coupled quantum dots for strong and intermediate inter-dot coupling. By applying a magnetic field, we induce ground state transitions and identify the corresponding quantum numbers by comparison with few-body calculations. In addition to atomic-like states, we find novel "molecular-like" phases. The isospin index characterizes the nature of the bond of the artificial molecule and this we control. Like spin in a single quantum dot, transitions in isospin leading to full polarization are observed with increasing magnetic field.Comment: PDF file only, 28 pages, 3 tables, 4 color figures, 2 appendices. To appear in Physical Review B, Scheduled 15 Feb 2004, Vol. 69, Issue
    • …
    corecore