286 research outputs found

    Broadcasting Automata and Patterns on Z^2

    Get PDF
    The Broadcasting Automata model draws inspiration from a variety of sources such as Ad-Hoc radio networks, cellular automata, neighbourhood se- quences and nature, employing many of the same pattern forming methods that can be seen in the superposition of waves and resonance. Algorithms for broad- casting automata model are in the same vain as those encountered in distributed algorithms using a simple notion of waves, messages passed from automata to au- tomata throughout the topology, to construct computations. The waves generated by activating processes in a digital environment can be used for designing a vari- ety of wave algorithms. In this chapter we aim to study the geometrical shapes of informational waves on integer grid generated in broadcasting automata model as well as their potential use for metric approximation in a discrete space. An explo- ration of the ability to vary the broadcasting radius of each node leads to results of categorisations of digital discs, their form, composition, encodings and gener- ation. Results pertaining to the nodal patterns generated by arbitrary transmission radii on the plane are explored with a connection to broadcasting sequences and ap- proximation of discrete metrics of which results are given for the approximation of astroids, a previously unachievable concave metric, through a novel application of the aggregation of waves via a number of explored functions

    Streaming Tree Transducers

    Get PDF
    Theory of tree transducers provides a foundation for understanding expressiveness and complexity of analysis problems for specification languages for transforming hierarchically structured data such as XML documents. We introduce streaming tree transducers as an analyzable, executable, and expressive model for transforming unranked ordered trees in a single pass. Given a linear encoding of the input tree, the transducer makes a single left-to-right pass through the input, and computes the output in linear time using a finite-state control, a visibly pushdown stack, and a finite number of variables that store output chunks that can be combined using the operations of string-concatenation and tree-insertion. We prove that the expressiveness of the model coincides with transductions definable using monadic second-order logic (MSO). Existing models of tree transducers either cannot implement all MSO-definable transformations, or require regular look ahead that prohibits single-pass implementation. We show a variety of analysis problems such as type-checking and checking functional equivalence are solvable for our model.Comment: 40 page

    A framework for space-efficient string kernels

    Full text link
    String kernels are typically used to compare genome-scale sequences whose length makes alignment impractical, yet their computation is based on data structures that are either space-inefficient, or incur large slowdowns. We show that a number of exact string kernels, like the kk-mer kernel, the substrings kernels, a number of length-weighted kernels, the minimal absent words kernel, and kernels with Markovian corrections, can all be computed in O(nd)O(nd) time and in o(n)o(n) bits of space in addition to the input, using just a rangeDistinct\mathtt{rangeDistinct} data structure on the Burrows-Wheeler transform of the input strings, which takes O(d)O(d) time per element in its output. The same bounds hold for a number of measures of compositional complexity based on multiple value of kk, like the kk-mer profile and the kk-th order empirical entropy, and for calibrating the value of kk using the data

    k-Spectra of weakly-c-Balanced Words

    Full text link
    A word uu is a scattered factor of ww if uu can be obtained from ww by deleting some of its letters. That is, there exist the (potentially empty) words u1,u2,...,unu_1,u_2,..., u_n, and v0,v1,..,vnv_0,v_1,..,v_n such that u=u1u2...unu = u_1u_2...u_n and w=v0u1v1u2v2...unvnw = v_0u_1v_1u_2v_2...u_nv_n. We consider the set of length-kk scattered factors of a given word w, called here kk-spectrum and denoted \ScatFact_k(w). We prove a series of properties of the sets \ScatFact_k(w) for binary strictly balanced and, respectively, cc-balanced words ww, i.e., words over a two-letter alphabet where the number of occurrences of each letter is the same, or, respectively, one letter has cc-more occurrences than the other. In particular, we consider the question which cardinalities n= |\ScatFact_k(w)| are obtainable, for a positive integer kk, when ww is either a strictly balanced binary word of length 2k2k, or a cc-balanced binary word of length 2k−c2k-c. We also consider the problem of reconstructing words from their kk-spectra

    Hopf Algebras of m-permutations, (m+1)-ary trees, and m-parking functions

    Full text link
    The m-Tamari lattice of F. Bergeron is an analogue of the clasical Tamari order defined on objects counted by Fuss-Catalan numbers, such as m-Dyck paths or (m+1)-ary trees. On another hand, the Tamari order is related to the product in the Loday-Ronco Hopf algebra of planar binary trees. We introduce new combinatorial Hopf algebras based on (m+1)-ary trees, whose structure is described by the m-Tamari lattices. In the same way as planar binary trees can be interpreted as sylvester classes of permutations, we obtain (m+1)-ary trees as sylvester classes of what we call m-permutations. These objects are no longer in bijection with decreasing (m+1)-ary trees, and a finer congruence, called metasylvester, allows us to build Hopf algebras based on these decreasing trees. At the opposite, a coarser congruence, called hyposylvester, leads to Hopf algebras of graded dimensions (m+1)^{n-1}, generalizing noncommutative symmetric functions and quasi-symmetric functions in a natural way. Finally, the algebras of packed words and parking functions also admit such m-analogues, and we present their subalgebras and quotients induced by the various congruences.Comment: 51 page

    Brick polytopes, lattice quotients, and Hopf algebras

    Get PDF
    This paper is motivated by the interplay between the Tamari lattice, J.-L. Loday's realization of the associahedron, and J.-L. Loday and M. Ronco's Hopf algebra on binary trees. We show that these constructions extend in the world of acyclic kk-triangulations, which were already considered as the vertices of V. Pilaud and F. Santos' brick polytopes. We describe combinatorially a natural surjection from the permutations to the acyclic kk-triangulations. We show that the fibers of this surjection are the classes of the congruence ≡k\equiv^k on Sn\mathfrak{S}_n defined as the transitive closure of the rewriting rule UacV1b1⋯VkbkW≡kUcaV1b1⋯VkbkWU ac V_1 b_1 \cdots V_k b_k W \equiv^k U ca V_1 b_1 \cdots V_k b_k W for letters a<b1,…,bk<ca < b_1, \dots, b_k < c and words U,V1,…,Vk,WU, V_1, \dots, V_k, W on [n][n]. We then show that the increasing flip order on kk-triangulations is the lattice quotient of the weak order by this congruence. Moreover, we use this surjection to define a Hopf subalgebra of C. Malvenuto and C. Reutenauer's Hopf algebra on permutations, indexed by acyclic kk-triangulations, and to describe the product and coproduct in this algebra and its dual in term of combinatorial operations on acyclic kk-triangulations. Finally, we extend our results in three directions, describing a Cambrian, a tuple, and a Schr\"oder version of these constructions.Comment: 59 pages, 32 figure
    • …
    corecore