18 research outputs found

    Structure Selection from Streaming Relational Data

    Full text link
    Statistical relational learning techniques have been successfully applied in a wide range of relational domains. In most of these applications, the human designers capitalized on their background knowledge by following a trial-and-error trajectory, where relational features are manually defined by a human engineer, parameters are learned for those features on the training data, the resulting model is validated, and the cycle repeats as the engineer adjusts the set of features. This paper seeks to streamline application development in large relational domains by introducing a light-weight approach that efficiently evaluates relational features on pieces of the relational graph that are streamed to it one at a time. We evaluate our approach on two social media tasks and demonstrate that it leads to more accurate models that are learned faster

    Lifted graphical models: a survey

    Get PDF
    Lifted graphical models provide a language for expressing dependencies between different types of entities, their attributes, and their diverse relations, as well as techniques for probabilistic reasoning in such multi-relational domains. In this survey, we review a general form for a lifted graphical model, a par-factor graph, and show how a number of existing statistical relational representations map to this formalism. We discuss inference algorithms, including lifted inference algorithms, that efficiently compute the answers to probabilistic queries over such models. We also review work in learning lifted graphical models from data. There is a growing need for statistical relational models (whether they go by that name or another), as we are inundated with data which is a mix of structured and unstructured, with entities and relations extracted in a noisy manner from text, and with the need to reason effectively with this data. We hope that this synthesis of ideas from many different research groups will provide an accessible starting point for new researchers in this expanding field

    A study on the Probabilistic Interval-based Event Calculus

    Get PDF
    Η Αναγνώριση Σύνθετων Γεγονότων είναι το πεδίο εκείνο της Τεχνητής Νοημοσύνης το οποίο αποσκοπεί στο σχεδιασμό και την κατασκευή συστημάτων τα οποία επεξεργάζονται γρήγορα μεγάλες και πιθανώς ετερογενείς ροές δεδομένων και τα οποία είναι σε θέση να αναγνωρίζουν εγκαίρως μη τετριμμένα και ενδιαφέροντα συμβάντα, βάσει κατάλληλων ορισμών που προέρχονται από ειδικούς. Σκοπός ενός τέτοιου συστήματος είναι η αυτοματοποιημένη εποπτεία πολύπλοκων και απαιτητικών καταστάσεων και η υποβοήθηση της λήψης αποφάσεων από τον άνθρωπο. Η αβεβαιότητα και ο θόρυβος είναι έννοιες που υπεισέρχονται φυσικά σε τέτοιες ροές δεδομένων και συνεπώς, καθίσταται απαραίτητη η χρήση της Θεωρίας Πιθανοτήτων για την αντιμετώπισή τους. Η πιθανοτική Αναγνώριση Σύνθετων Γεγονότων μπορεί να πραγματοποιηθεί σε επίπεδο χρονικής στιγμής ή σε επίπεδο χρονικού διαστήματος. Η παρούσα εργασία εστιάζει στον PIEC, έναν σύγχρονο αλγόριθμο για την Αναγνώριση Σύνθετων Γεγονότων με τη χρήση πιθανοτικών, μέγιστων διαστημάτων. Αρχικά παρουσιάζουμε τον αλγόριθμο και τον ερευνούμε ενδελεχώς. Μελετούμε την ορθότητά του μέσα από μια σειρά μαθηματικών αποδείξεων περί της ευρωστίας (soundness) και της πληρότητάς του (completeness). Κατόπιν, παραθέτουμε εκτενή πειραματική αποτίμηση του υπό μελέτη αλγορίθμου και σύγκρισή του με συστήματα πιθανοτικής Αναγνώρισης Γεγονότων σε επίπεδο χρονικών σημείων. Τα αποτελέσματά μας δείχνουν ότι ο PIEC επιδεικνύει σταθερά καλύτερη Ανάκληση (Recall), παρουσιάζοντας, ωστόσο κάποιες απώλειες σε Ακρίβεια (Precision) σε ορισμένες περιπτώσεις. Για τον λόγο αυτόν, εμβαθύνουμε και εξετάζουμε συγκεκριμένες περιπτώσεις στις οποίες ο PIEC αποδίδει καλύτερα, καθώς και άλλες στις οποίες παράγει αποτελέσματα υποδεέστερα των παραδοσιακών μεθόδων σημειακής αναγνώρισης, σε μια προσπάθεια να εντοπίσουμε και να διατυπώσουμε τις δυνατότητες αλλά και τις αδυναμίες του αλγορίθμου. Τέλος, θέτουμε τις γενικές κατευθυντήριες γραμμές για περαιτέρω έρευνα στο εν λόγω ζήτημα, τμήματα της οποίας βρίσκονται ήδη σε εξέλιξη.Complex Event Recognition is the subdivision of Artificial Intelligence that aims to design and construct systems that quickly process large and often heterogeneous streams of data and timely deduce – based on definitions set by domain experts – the occurrence of non-trivial and interesting incidents. The purpose of such systems is to provide useful insights into involved and demanding situations that would otherwise be difficult to monitor, and to assist decision making. Uncertainty and noise are inherent in such data streams and therefore, Probability Theory becomes necessary in order to deal with them. The probabilistic recognition of Complex Events can be done in a timepoint-based or an interval-based manner. This thesis focuses on PIEC, a state-of-the-art probabilistic, interval-based Complex Event Recognition algorithm. We present the algorithm and examine it in detail. We study its correctness through a series of mathematical proofs of its soundness and completeness. Afterwards, we provide thorough experimental evaluation and comparison to point-based probabilistic Event Recognition methods. Our evaluation shows that PIEC consistently displays better Recall measures, often at the expense of a generally worse Precision. We then focus on cases where PIEC performs significantly better and cases where it falls short, in an effort to detect and state its main strengths and weaknesses. We also set the general directions for further research on the topic, parts of which are already in progress

    Using rules of thumb to repair inconsistent knowledge

    Get PDF
    corecore