7 research outputs found

    Resilient Submodular Maximization For Control And Sensing

    Get PDF
    Fundamental applications in control, sensing, and robotics, motivate the design of systems by selecting system elements, such as actuators or sensors, subject to constraints that require the elements not only to be a few in number, but also, to satisfy heterogeneity or interdependency constraints (called matroid constraints). For example, consider the scenarios: - (Control) Actuator placement: In a power grid, how should we place a few generators both to guarantee its stabilization with minimal control effort, and to satisfy interdependency constraints where the power grid must be controllable from the generators? - (Sensing) Sensor placement: In medical brain-wearable devices, how should we place a few sensors to ensure smoothing estimation capabilities? - (Robotics) Sensor scheduling: At a team of mobile robots, which few on-board sensors should we activate at each robot ---subject to heterogeneity constraints on the number of sensors that each robot can activate at each time--- so both to maximize the robots\u27 battery life, and to ensure the robots\u27 capability to complete a formation control task? In the first part of this thesis we motivate the above design problems, and propose the first algorithms to address them. In particular, although traditional approaches to matroid-constrained maximization have met great success in machine learning and facility location, they are unable to meet the aforementioned problem of actuator placement. In addition, although traditional approaches to sensor selection enable Kalman filtering capabilities, they do not enable smoothing or formation control capabilities, as required in the above problems of sensor placement and scheduling. Therefore, in the first part of the thesis we provide the first algorithms, and prove they achieve the following characteristics: provable approximation performance: the algorithms guarantee a solution close to the optimal; minimal running time: the algorithms terminate with the same running time as state-of-the-art algorithms for matroid-constrained maximization; adaptiveness: where applicable, at each time step the algorithms select system elements based on both the history of selections. We achieve the above ends by taking advantage of a submodular structure of in all aforementioned problems ---submodularity is a diminishing property for set functions, parallel to convexity for continuous functions. But in failure-prone and adversarial environments, sensors and actuators can fail; sensors and actuators can get attacked. Thence, the traditional design paradigms over matroid-constraints become insufficient, and in contrast, resilient designs against attacks or failures become important. However, no approximation algorithms are known for their solution; relevantly, the problem of resilient maximization over matroid constraints is NP-hard. In the second part of this thesis we motivate the general problem of resilient maximization over matroid constraints, and propose the first algorithms to address it, to protect that way any design over matroid constraints, not only within the boundaries of control, sensing, and robotics, but also within machine learning, facility location, and matroid-constrained optimization in general. In particular, in the second part of this thesis we provide the first algorithms, and prove they achieve the following characteristics: resiliency: the algorithms are valid for any number of attacks or failures; adaptiveness: where applicable, at each time step the algorithms select system elements based on both the history of selections, and on the history of attacks or failures; provable approximation guarantees: the algorithms guarantee for any submodular or merely monotone function a solution close to the optimal; minimal running time: the algorithms terminate with the same running time as state-of-the-art algorithms for matroid-constrained maximization. We bound the performance of our algorithms by using notions of curvature for monotone (not necessarily submodular) set functions, which are established in the literature of submodular maximization. In the third and final part of this thesis we apply our tools for resilient maximization in robotics, and in particular, to the problem of active information gathering with mobile robots. This problem calls for the motion-design of a team of mobile robots so to enable the effective information gathering about a process of interest, to support, e.g., critical missions such as hazardous environmental monitoring, and search and rescue. Therefore, in the third part of this thesis we aim to protect such multi-robot information gathering tasks against attacks or failures that can result to the withdrawal of robots from the task. We conduct both numerical and hardware experiments in multi-robot multi-target tracking scenarios, and exemplify the benefits, as well as, the performance of our approach

    Constrained Learning And Inference

    Get PDF
    Data and learning have become core components of the information processing and autonomous systems upon which we increasingly rely on to select job applicants, analyze medical data, and drive cars. As these systems become ubiquitous, so does the need to curtail their behavior. Left untethered, they are susceptible to tampering (adversarial examples) and prone to prejudiced and unsafe actions. Currently, the response of these systems is tailored by leveraging domain expert knowledge to either construct models that embed the desired properties or tune the training objective so as to promote them. While effective, these solutions are often targeted to specific behaviors, contexts, and sometimes even problem instances and are typically not transferable across models and applications. What is more, the growing scale and complexity of modern information processing and autonomous systems renders this manual behavior tuning infeasible. Already today, explainability, interpretability, and transparency combined with human judgment are no longer enough to design systems that perform according to specifications. The present thesis addresses these issues by leveraging constrained statistical optimization. More specifically, it develops the theoretical underpinnings of constrained learning and constrained inference to provide tools that enable solving statistical problems under requirements. Starting with the task of learning under requirements, it develops a generalization theory of constrained learning akin to the existing unconstrained one. By formalizing the concept of probability approximately correct constrained (PACC) learning, it shows that constrained learning is as hard as its unconstrained learning and establishes the constrained counterpart of empirical risk minimization (ERM) as a PACC learner. To overcome challenges involved in solving such non-convex constrained optimization problems, it derives a dual learning rule that enables constrained learning tasks to be tackled by through unconstrained learning problems only. It therefore concludes that if we can deal with classical, unconstrained learning tasks, then we can deal with learning tasks with requirements. The second part of this thesis addresses the issue of constrained inference. In particular, the issue of performing inference using sparse nonlinear function models, combinatorial constrained with quadratic objectives, and risk constraints. Such models arise in nonlinear line spectrum estimation, functional data analysis, sensor selection, actuator scheduling, experimental design, and risk-aware estimation. Although inference problems assume that models and distributions are known, each of these constraints pose serious challenges that hinder their use in practice. Sparse nonlinear functional models lead to infinite dimensional, non-convex optimization programs that cannot be discretized without leading to combinatorial, often NP-hard, problems. Rather than using surrogates and relaxations, this work relies on duality to show that despite their apparent complexity, these models can be fit efficiently, i.e., in polynomial time. While quadratic objectives are typically tractable (often even in closed form), they lead to non-submodular optimization problems when subject to cardinality or matroid constraints. While submodular functions are sometimes used as surrogates, this work instead shows that quadratic functions are close to submodular and can also be optimized near-optimally. The last chapter of this thesis is dedicated to problems involving risk constraints, in particular, bounded predictive mean square error variance estimation. Despite being non-convex, such problems are equivalent to a quadratically constrained quadratic program from which a closed-form estimator can be extracted. These results are used throughout this thesis to tackle problems in signal processing, machine learning, and control, such as fair learning, robust learning, nonlinear line spectrum estimation, actuator scheduling, experimental design, and risk-aware estimation. Yet, they are applicable much beyond these illustrations to perform safe reinforcement learning, sensor selection, multiresolution kernel estimation, and wireless resource allocation, to name a few
    corecore