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As these systems become ubiquitous, so does the need to curtail their behavior. Left untethered, they are 
susceptible to tampering (adversarial examples) and prone to prejudiced and unsafe actions. Currently, 
the response of these systems is tailored by leveraging domain expert knowledge to either construct 
models that embed the desired properties or tune the training objective so as to promote them. While 
effective, these solutions are often targeted to specific behaviors, contexts, and sometimes even problem 
instances and are typically not transferable across models and applications. What is more, the growing 
scale and complexity of modern information processing and autonomous systems renders this manual 
behavior tuning infeasible. Already today, explainability, interpretability, and transparency combined with 
human judgment are no longer enough to design systems that perform according to specifications. 

The present thesis addresses these issues by leveraging constrained statistical optimization. More 
specifically, it develops the theoretical underpinnings of constrained learning and constrained inference to 
provide tools that enable solving statistical problems under requirements. Starting with the task of 
learning under requirements, it develops a generalization theory of constrained learning akin to the 
existing unconstrained one. By formalizing the concept of probability approximately correct constrained 
(PACC) learning, it shows that constrained learning is as hard as its unconstrained learning and 
establishes the constrained counterpart of empirical risk minimization (ERM) as a PACC learner. To 
overcome challenges involved in solving such non-convex constrained optimization problems, it derives a 
dual learning rule that enables constrained learning tasks to be tackled by through unconstrained learning 
problems only. It therefore concludes that if we can deal with classical, unconstrained learning tasks, then 
we can deal with learning tasks with requirements. 

The second part of this thesis addresses the issue of constrained inference. In particular, the issue of 
performing inference using sparse nonlinear function models, combinatorial constrained with quadratic 
objectives, and risk constraints. Such models arise in nonlinear line spectrum estimation, functional data 
analysis, sensor selection, actuator scheduling, experimental design, and risk-aware estimation. Although 
inference problems assume that models and distributions are known, each of these constraints pose 
serious challenges that hinder their use in practice. Sparse nonlinear functional models lead to infinite 
dimensional, non-convex optimization programs that cannot be discretized without leading to 
combinatorial, often NP-hard, problems. Rather than using surrogates and relaxations, this work relies on 
duality to show that despite their apparent complexity, these models can be fit efficiently, i.e., in 
polynomial time. While quadratic objectives are typically tractable (often even in closed form), they lead to 
non-submodular optimization problems when subject to cardinality or matroid constraints. While 
submodular functions are sometimes used as surrogates, this work instead shows that quadratic 
functions are close to submodular and can also be optimized near-optimally. The last chapter of this 
thesis is dedicated to problems involving risk constraints, in particular, bounded predictive mean square 
error variance estimation. Despite being non-convex, such problems are equivalent to a quadratically 
constrained quadratic program from which a closed-form estimator can be extracted. 

These results are used throughout this thesis to tackle problems in signal processing, machine learning, 
and control, such as fair learning, robust learning, nonlinear line spectrum estimation, actuator 
scheduling, experimental design, and risk-aware estimation. Yet, they are applicable much beyond these 
illustrations to perform safe reinforcement learning, sensor selection, multiresolution kernel estimation, 
and wireless resource allocation, to name a few. 
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Abstract

Constrained Learning and Inference

Luiz F. O. Chamon
Alejandro Ribeiro

Data and learning have become core components of the information processing and autonomous

systems upon which we increasingly rely on to select job applicants, analyze medical data, and

drive cars. As these systems become ubiquitous, so does the need to curtail their behavior. Left

untethered, they are susceptible to tampering (adversarial examples) and prone to prejudiced and

unsafe actions. Currently, the response of these systems is tailored by leveraging domain expert

knowledge to either construct models that embed the desired properties or tune the training objective

so as to promote them. While effective, these solutions are often targeted to specific behaviors,

contexts, and sometimes even problem instances and are typically not transferable across models and

applications. What is more, the growing scale and complexity of modern information processing and

autonomous systems renders this manual behavior tuning infeasible. Already today, explainability,

interpretability, and transparency combined with human judgment are no longer enough to design

systems that perform according to specifications.

The present thesis addresses these issues by leveraging constrained statistical optimization. More

specifically, it develops the theoretical underpinnings of constrained learning and constrained infer-

ence to provide tools that enable solving statistical problems under requirements. Starting with the

task of learning under requirements, it develops a generalization theory of constrained learning akin

to the existing unconstrained one. By formalizing the concept of probability approximately correct

constrained (PACC) learning, it shows that constrained learning is as hard as its unconstrained

learning and establishes the constrained counterpart of empirical risk minimization (ERM) as a

PACC learner. To overcome challenges involved in solving such non-convex constrained optimiza-

tion problems, it derives a dual learning rule that enables constrained learning tasks to be tackled

by through unconstrained learning problems only. It therefore concludes that if we can deal with

classical, unconstrained learning tasks, then we can deal with learning tasks with requirements.

The second part of this thesis addresses the issue of constrained inference. In particular, the

issue of performing inference using sparse nonlinear function models, combinatorial constrained with
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quadratic objectives, and risk constraints. Such models arise in nonlinear line spectrum estimation,

functional data analysis, sensor selection, actuator scheduling, experimental design, and risk-aware

estimation. Although inference problems assume that models and distributions are known, each

of these constraints pose serious challenges that hinder their use in practice. Sparse nonlinear

functional models lead to infinite dimensional, non-convex optimization programs that cannot be

discretized without leading to combinatorial, often NP-hard, problems. Rather than using surrogates

and relaxations, this work relies on duality to show that despite their apparent complexity, these

models can be fit efficiently, i.e., in polynomial time. While quadratic objectives are typically

tractable (often even in closed form), they lead to non-submodular optimization problems when

subject to cardinality or matroid constraints. While submodular functions are sometimes used as

surrogates, this work instead shows that quadratic functions are close to submodular and can also

be optimized near-optimally. The last chapter of this thesis is dedicated to problems involving risk

constraints, in particular, bounded predictive mean square error variance estimation. Despite being

non-convex, such problems are equivalent to a quadratically constrained quadratic program from

which a closed-form estimator can be extracted.

These results are used throughout this thesis to tackle problems in signal processing, machine

learning, and control, such as fair learning, robust learning, nonlinear line spectrum estimation,

actuator scheduling, experimental design, and risk-aware estimation. Yet, they are applicable much

beyond these illustrations to perform safe reinforcement learning, sensor selection, multiresolution

kernel estimation, and wireless resource allocation, to name a few.

Keywords. Statistical learning. Inference. Machine learning. Constrained learning. Constrained

optimization. Combinatorial optimization. Functional optimization.

vii



Contents

Acknowledgements iv

Abstract vi

List of Tables xiii

List of Figures xiv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 List of publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Preprints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.2 Journals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.3 ML conferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.4 Control conferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.5 Signal processing conferences . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Learning and inference under requirements 10

2.1 Solving statistical problems with requirements today . . . . . . . . . . . . . . . . . . 10

2.2 Constrained learning and inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 The learning setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

viii



2.2.2 The inference setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

I Constrained learning 19

3 Constrained learning theory 20

3.1 Classical learning theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Probably Approximately Correct Constrained Learning . . . . . . . . . . . . . . . . 22

3.3 PACC Learning is as Hard as PAC Learning . . . . . . . . . . . . . . . . . . . . . . . 23

4 Dual constrained learning 25

4.1 Empirical dual learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 The duality gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.2 The parameterization gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.3 The empirical gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 A Constrained Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Applications 38

5.1 Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.1 Invariance and fair learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.2 Rate-constrained learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

II Constrained inference 50

6 Sparse nonlinear functional models 51

6.1 Sparse functional programs and duality . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1.1 Sparse functional programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1.2 The Lagrangian dual of sparse functional programs . . . . . . . . . . . . . . . 55

6.2 Strong duality and its implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2.1 Strong duality of sparse functional programs . . . . . . . . . . . . . . . . . . 58

6.2.2 SFPs and L1-norm optimization problems . . . . . . . . . . . . . . . . . . . . 61

ix



6.3 Solving sparse functional programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.4.1 Nonlinear line spectrum estimation . . . . . . . . . . . . . . . . . . . . . . . . 68

6.4.2 Robust functional data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7 Combinatorial constraints and nonsubmodular optimization 79

7.1 (Approximate) supermodularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.1.1 Approximately supermodular scalarizations . . . . . . . . . . . . . . . . . . . 84

7.2 Approximately supermodular minimization . . . . . . . . . . . . . . . . . . . . . . . 88

7.2.1 Cardinality constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.2.2 Intersection of matroids constraints . . . . . . . . . . . . . . . . . . . . . . . . 91

7.3 The multiset case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.4.1 Graph Signal Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.4.2 Control input scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.4.3 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8 Risk-aware minimum mean square error estimation 131

8.1 The risk-constrained MMSE problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.2 Convex Variational QCQP Reformulation . . . . . . . . . . . . . . . . . . . . . . . . 135

8.3 Risk-Aware MMSE Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9 Concluding remarks 143

A Proofs of Part I 145

A.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.2 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.2.1 The approximation gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.2.2 The estimation gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

A.2.3 The PACC solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

x



A.2.4 Proof of Proposition 19: The Approximation Gap . . . . . . . . . . . . . . . 149

A.2.5 Proof of Proposition 20: The Estimation Gap . . . . . . . . . . . . . . . . . . 153

A.3 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.4 Duality Gap for Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A.5 Proof of Proposition 2: The Approximation Gap . . . . . . . . . . . . . . . . . . . . 163

A.6 Proof of Proposition 3: The Estimation Gap . . . . . . . . . . . . . . . . . . . . . . . 166

A.7 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

B Proofs of Part II 172

B.1 Chapter 6: Nonconvex functional models . . . . . . . . . . . . . . . . . . . . . . . . . 172

B.1.1 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

B.1.2 A step-by-step guide to solving SFPs . . . . . . . . . . . . . . . . . . . . . . . 175

B.1.3 Proof of Proposition 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

B.2 Chapter 7: Combinatorial constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 181

B.2.1 Proof of Lemma 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

B.2.2 Proof of Lemma 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

B.2.3 Proof of Theorem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

B.3 Proof of Theorem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

B.3.1 Proof of Theorem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

B.3.2 Proof of Theorem 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

B.3.3 Proof of Theorem 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

B.3.4 Proof of Proposition 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

B.3.5 Proof of Proposition 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

B.3.6 Proof of Proposition 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

B.3.7 Proof of Proposition 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

B.3.8 Proof of Theorem 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

B.3.9 Proof of Theorem 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

B.4 Chapter 8: Risk constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

B.4.1 Proof of Lemma 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

B.4.2 Proof of Theorem 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

xi



Bibliography 207

xii



List of Tables

5.1 Preprocessing of the Adult dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Preprocessing of the COMPAS dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Classifier insensitivity on the COMPAS dataset . . . . . . . . . . . . . . . . . . . . . 43

8.1 Classification of statistical uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . 133

xiii



List of Figures

5.1 Classifier sensitivity on the Adult test set. . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Dual variable analysis for Adult dataset: (a) distribution of the dual variables values

and (b) prevalence of different groups among the 20% training set examples with

largest dual variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Dual variables of different counterfactual constraints for the COMPAS dataset. . . . 44

5.4 Dual variable relative to the fairness constraint. . . . . . . . . . . . . . . . . . . . . . 46

5.5 Dual variable relative to the fairness constraint. . . . . . . . . . . . . . . . . . . . . . 46

5.6 Robust constrained learning (FMNIST): (a) Accuracy of classifiers under the PGD

attack for different perturbation magnitudes and (b) distribution of ε used during

training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.7 Robust constrained learning (CIFAR-10): (a) Accuracy of classifiers under the PGD

attack for different perturbation magnitudes and (b) distribution of ε used during

training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1 Illustration of Example 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2 Reconstruction MSE for line spectral estimation of linear sources. . . . . . . . . . . . 70

6.3 Support size estimation for line spectral estimation of linear sources. . . . . . . . . . 71

6.4 Solutions obtained for line spectral estimation of saturated sources. . . . . . . . . . . 72

6.5 Reconstruction MSE for line spectral estimation of saturated sources. . . . . . . . . 74

6.6 Solution of functional logistic regression for ECG classification. . . . . . . . . . . . . 75

6.7 Receiver operating characteristic (ROC) curve for logistic classifiers in the presence

of impulsive noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xiv



6.8 ECG and sparse functional coefficients (positive coefficients: blue, negative coeffi-

cients: red): (a) healthy heart and (b) heart with myocardial infarction. . . . . . . . 78

7.1 Illustration of the near-optimal guarantee from Theorem 8. . . . . . . . . . . . . . . 90

7.2 Comparison between the bound in (7.48) and α . . . . . . . . . . . . . . . . . . . . . 104

7.3 Relative suboptimality of sampling schemes for low SNR (SNR = −20 dB) . . . . . . 106

7.4 Relative suboptimality of sampling schemes for high SNR (SNR = 20 dB) . . . . . . 107

7.5 Relative suboptimality of MSE and log det (SNR = 20 dB) . . . . . . . . . . . . . . 108

7.6 Sampling set size for 90% reduction of MSE . . . . . . . . . . . . . . . . . . . . . . . 109

7.7 Classification performance: (a) PCA and kPCA and (b) greedy subsampled kPCA. . 109

7.8 Classification performance of subsampled kPCA for different sampling schemes: (a) k =

12 components and (b) k = 15 components. Mean (solid line), median (×), and error

bars (one standard deviation) based on 100 sampling realizations. . . . . . . . . . . . 110

7.9 Illustration of time-specific and overall input sets and schedules. . . . . . . . . . . . 113

7.10 Bound on α from (7.59) for a schedule of length N = 4: (a) deterministic dynamical

system (Wk = 0, LQR) and (b) dynamical system with disturbance (LQG). Shaded

regions span two standard deviations from the mean. . . . . . . . . . . . . . . . . . . 118

7.11 Relative suboptimality of greedy scheduling for different constraints (100 system re-

alizations). (a) I1 (less than 2 actuators per time step); (b) I1 and I2 (less than 5

control actions over the horizon); (c) I1, I2, and I3 (inputs cannot be used on con-

secutive time slots). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.12 Amazon basin, amazon river (dark blue trace), system states (light grey circles), and

chemical spill origins (red circles). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.13 Greedy schedule and actuation energy of the spill control agents. . . . . . . . . . . . 122

7.14 Agents actions and chemical concentrations in the ocean (light blue mass in Fig-

ure 7.12) for the autonomous system (no agent), greedy schedule, and full actuation. 123

7.15 A-optimal design: (a) Thm. 15; (b) A-optimality (low SNR); (c) A-optimality (high

SNR). The plots show the unnormalized A-optimality value for clarity. . . . . . . . . 128

7.16 E-optimal design: (a) Thm. 16; (b) E-optimality (low SNR); (c) E-optimality (high

SNR). The plots show the unnormalized E-optimality value for clarity. . . . . . . . . 128

xv



8.1 Comparison between risk-neutral and risk-aware estimates. . . . . . . . . . . . . . . 132

8.2 Mean squared error and risk for different values of µ in the state-dependent noise

scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.3 Mean squared error and risk for different values of µ in the communication scenario. 141

8.4 Risk-aware, MMSE, and robust estimates of z and h in the communication scenario

for different values of Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

xvi



Chapter 1

Introduction

1.1 Motivation

The information processing and autonomous systems underlying modern technologies such as self-

driving cars and “smart” applications (e.g., grid, city, home, car. . . ) have reached scales and com-

plexity levels that can no longer be handled by traditional, hand-designed algorithms. Simultane-

ously, the access to data has become pervasive due to the lower cost of sensors and the expansion

of the internet-of-things (IoT) and other interconnected devices. These trends have made statistical

learning and inference a core component of the modern systems upon which we increasingly rely to

select job candidates, analyze medical data, and manage assets. As its societal impact grows, the

shortcomings of this approach become clear from the growing number of catastrophic failure reports

involving biased, prejudiced models, systems prone to tampering and unsafe behaviors [1–6]. The

need to control the behavior of data-based solutions has become critical to address these issues.

However, the models and structures found in state-of-the-art solutions are often too complex

and opaque for their behaviors to be analyzed or predicted. Take the case of (convolutional, graph)

neural networks (NNs). While they are now the de facto models in a wide variety of applications, we

lack a fundamental understanding of their inner workings, something that remains an active topic

of research [7–10]. Hence, explainability, interpretability, and transparency combined with human

judgment is no longer enough to produce systems that perform according to specifications. We need
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statistical algorithms and models whose behaviors can be controlled, curtailed, and dictated in a

systematic manner.

Typically, learning requirements are imposed by using domain expert knowledge to tune the

training objective (see, e.g., [11, 12, 12, 13, 13–17]). This approach, known as regularization, is ubiq-

uitous in practice even though it need not yield feasible solutions [18]. In fact, existing results

from classical learning theory guarantee generalization only with respect to the value of the regu-

larized objective, which says nothing about satisfying the requirements it describes [19, 20]. Hence,

even if a solution is feasible for the empirical problem, its statistical performance remains unclear.

This issue is sometimes addressed by constructing models that explicitly embed the required prop-

erties (e.g., [21–27]), although the complexity of modern machine learning (ML) parametrizations

renders this approach impractical.

1.2 Objectives

The goal of this work is to provide systematic, guaranteed way to impose requirements on the solution

of statistical problems. In particular, it sets out to both develop the theoretical underpinnings of

constrained learning and provide tools to (approximately) solve inference problems subject to intricate

requirements, such as sparsity, risk, and combinatorial constraints. The objective is to establish

constrained statistical optimization as a formal solution to impose requirements in both learning

and inference settings. More specifically, this work

• formalizes the problems of learning and inference under requirements using the language of

constrained statistical optimization;

• determines if, when, and to what extent these problems can be solved; and

• provides practical methods and algorithms to obtain these solutions.

1.3 Contributions

The main contributions of this thesis are listed below.
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1) Formal theory of constrained learning (recipient of the best student paper award at ICASSP

2020)

(a) formalize the concept of a probably approximately correct constrained (PACC) learnabil-

ity, the constrained learning counterpart of PAC learning;

(b) show that, under mild conditions, constrained learning is as hard as unconstrained learn-

ing in the sense that a hypothesis class is PACC learnable if and only if it is PAC learnable;

(c) prove that, under mild conditions, if unconstrained learning tasks can be performed, then

so can constrained learning tasks. In other words, it possible to learn under requirements

by solving only unconstrained learning problems.

2) Definition and solution of sparse functional programs (SFPs)

(a) define a new class of nonlinear, non-convex, infinite dimensional optimization programs

involving sparse objectives: the SFP;

(b) prove that despite their non-convexity, SFPs are strongly dual under mild conditions

(c) show that the value of SFPs (“L0-norm minimization”) and their continuous compressive

sensing counterparts (L1-norm minimization) are essentially the same, although not all

solutions of the latter are sparse;

(d) put forward a practical, efficient algorithm to solve SFPs based on primal-dual dynamics.

3) Near-optimal guarantees for the greedy optimization of non-submodular functions

(a) define different forms of approximate submodularity, namely α and ε-submodularity;

(b) derive near-optimal guarantees for the greedy maximization of monotonically increasing,

α and ε-submodular functions;

(c) derive the first explicit (P-computable) bounds on α and ε for quadratic costs such as the

mean-square error (MSE), the worst-case error (maximum eigenvalue of the estimation

error covariance), the average control cost, and the LQR/LQG costs.

4) Closed-form solution for risk-aware minimum MSE estimation problem (recipient of the best

paper award at ICASSP 2020)
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(a) define a new risk constrained estimation problem using the predictive variance as a mea-

sure of risk;

(b) show that, under mild conditions, this problem is equivalent to a convex program for

which strong duality holds;

(c) derive a closed-form expression for the risk-aware minimum MSE estimator, showing that

it has the form of a biased estimator.

Due to time and space constraints, some of the work developed during these five years of Ph.D.

could not be included in this thesis. Nevertheless, since they are closely related to topics it covers,

I present them below along with their relevant references.

• Model predictive selection puts forward an online, receding horizon solution to the problem of

actuator scheduling with stability guarantees [28];

• Bayesian posterior learning proposes a novel way to perform Bayesian inference in which Bayes

rule is replaced by a statistical learning problem. An example in the context of Gaussian

Processes (GPs) can be found in [29].

• Learning for wireless resource allocation uses constrained learning in order to obtain optimal

resource (e.g., power) allocation policies without knowledge of channel distributions or capacity

models [30];

• My work on constrained reinforcement learning essentially shows that a lot of the results that

hold in the supervised learning scenario, also hold for reinforcement learning. It provides tools

and algorithms to impose requirements on the policy learned through reinforcement learning,

which has applications, e.g., in safety [31–33].

• Resilient optimization seeks to develop a theory of resilience akin to that of robustness using

the language of constrained optimization. Here, resilience refers to the ability of a system to

adapt to disturbances so extreme that it cannot continue to function normally. Overcoming

such externalities requires a system to modify its behavior and possibly even change its nominal

equilibrium. Applications in control can be found in [34,35].
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These theoretical contributions have impact in different application spanning different domains,

a non-exhaustive list of which is presented below.

• signal processing: nonlinear line spectrum estimation, risk-aware estimation, graph signal

sampling, wireless resource allocation;

• control: sensor selection, actuator/agent scheduling, safe policy learning, resilient control;

• statistics/machine learning: sparse functional data analysis, experimental design, con-

strained reinforcement learning, Bayesian inference, fairness, robustness, prediction credibility.

1.4 List of publication

The list of manuscripts below includes the work related to this thesis published during the course of

my Ph.D. While most of these publications are featured in this thesis, some could not be included

either because they have appeared (or will appear) as part of other theses or because they are part

of research thrusts that were not mature enough at the time of this writing.

1.4.1 Preprints

1. L. Chamon and A. Ribeiro, “Probably approximately correct constrained learning,” Advances

in Neural Information Processing Systems (under review), 2020, https://arxiv.org/abs/

2006.05487

2. L. Chamon, A. Amice, and A. Ribeiro, “Approximately supermodular scheduling subject to

matroid constraints,” IEEE Trans. on Autom. Control (under review), 2020, https://arxiv.

org/abs/2003.08841

3. S. Paternain, M. Calvo-Fullana, L. Chamon, and A. Ribeiro, “Safe policies for reinforcement

learning via primal-dual methods,” IEEE Trans. on Autom. Control (under review), 2019,

https://arxiv.org/abs/1911.09101
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1.4.2 Journals

1. L. Chamon, Y. Eldar, and A. Ribeiro, “Functional nonlinear sparse models,” IEEE Trans.

Signal Process., vol. 68, no. 1, pp. 2449–2463, 2020

2. M. Peifer, L. Chamon, S. Paternain, and A. Ribeiro, “Sparse multiresolution representations

with adaptive kernels,” IEEE Trans. on Signal Process., vol. 68[1], pp. 2031–2044, 2020

3. L. Chamon, G. J. Pappas, and A. Ribeiro, “Approximate supermodularity of Kalman filter

sensor selection,” IEEE Trans. on Autom. Control., 2020

4. M. Eisen, C. Zhang, L. F. Chamon, D. D. Lee, and A. Ribeiro, “Learning optimal resource

allocations in wireless systems,” IEEE Transactions on Signal Processing, vol. 67, no. 10, pp.

2775–2790, 2019 [Top 50 most accessed articles in IEEE TSP: May, July, Sept, Oct

2019]

5. L. F. O. Chamon and A. Ribeiro, “Greedy sampling of graph signals,” IEEE Trans. Signal

Process., vol. 66[1], pp. 34–47, 2018

1.4.3 ML conferences

1. S. Paternain, L. Chamon, M. Calvo-Fullana, and A. Ribeiro, “Constrained reinforcement learn-

ing has zero duality gap,” in Advances in Neural Information Processing Systems, 2019, pp.

7553–7563

2. L. Chamon and A. Ribeiro, “Approximate supermodularity bounds for experimental design,”

in Advances in Neural Information Processing Systems, 2017, pp. 5403–5412

1.4.4 Control conferences

1. L. Chamon, A. Amice, S. Paternain, and A. Ribeiro, “Resilient control: Compromising to

adapt,” in IEEE Control and Decision Conference (CDC), 2020, https://arxiv.org/abs/

2004.03726
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2. A. Tsiamis, D. Kalogerias, L. Chamon, A. Ribeiro, and G. Pappas, “Risk-constrained linear-

quadratic regulators,” in IEEE Control and Decision Conference (CDC), 2020, https://

arxiv.org/abs/2004.04685

3. L. Chamon, S. Paternain, and A. Ribeiro, “Counterfactual programming for optimal control,”

in Learning for Dynamics & Control (L4DC), 2020

4. L. Chamon, A. Amice, and A. Ribeiro, “Matroid-constrained approximately supermodular

optimization for near-optimal actuator scheduling,” in IEEE Control and Decision Confer-

ence (CDC), 2019, pp. 3391–3398

5. S. Paternain, M. Calvo-Fullana, L. F. Chamon, and A. Ribeiro, “Learning safe policies via

primal–dual methods,” in IEEE Conference on Decision and Control, 2019

6. V. Silva, L. Chamon, and A. Ribeiro, “Model predictive selection: A receding horizon scheme

for actuator selection,” in American Control Conference, 2019, pp. 347–353

7. L. Chamon, G. Pappas, and A. Ribeiro, “The mean square error in Kalman filtering sensor

selection is approximately supermodular,” in Conf. on Decision and Contr., 2017, pp. 343–350

1.4.5 Signal processing conferences

1. L. Chamon, S. Paternain, M. Calvo-Fullana, and A. Ribeiro, “The empirical duality gap of

constrained statistical learning problems,” in International Conference on Acoustics, Speech

and Signal Processing, 2020, pp. 2613–2616 [Best student paper award]

2. D. Kalogerias, L. Chamon, G. J. Pappas, and A. Ribeiro, “Better safe than sorry: Risk-aware

nonlinear Bayesian estimation,” in IEEE International Conference in Acoustic, Speech, and

Signal Processing (ICASSP), 2020 [Best paper award]

3. L. Chamon, S. Paternain, and A. Ribeiro, “Learning gaussian processes with bayesian posterior

optimization,” in Asilomar, 2019

4. L. Chamon, Y. C. Eldar, and A. Ribeiro, “Sparse recovery over nonlinear dictionaries,” in

ICASSP, 2019
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5. M. Peifer, L. Chamon, S. Paternain, and A. Ribeiro, “Sparse learning of parsimonious repro-

ducing kernel Hilbert space models,” in IEEE International Conference in Acoustic, Speech,

and Signal Processing (ICASSP), 2019, pp. 3292–3296

6. M. Eisen, C. Zhang, L. Chamon, D. D. Lee, and A. Ribeiro, “Dual domain learning of opti-

mal resource allocations in wireless systems,” in IEEE International Conference in Acoustic,

Speech, and Signal Processing (ICASSP), 2019, pp. 4729–4733

7. M. Peifer, L. Chamon, S. Paternain, and A. Ribeiro, “Locally adaptive kernel estimation using

sparse functional programming,” in Asilomar Conference on Signals, Systems and Computers,

2018, pp. 2022–2026

8. M. Eisen, C. Zhang, L. Chamon, D. D. Lee, and A. Ribeiro, “Online deep learning in wireless

communication systems,” in Asilomar Conference on Signals, Systems and Computers, 2018,

pp. 1289–1293

9. L. Chamon, Y. C. Eldar, and A. Ribeiro, “Strong duality of sparse functional optimization,”

in ICASSP, 2018, pp. 4739–4743

10. L. Chamon and A. Ribeiro, “Universal bounds for the sampling of graph signals,” in Int. Conf.

on Acoust., Speech and Signal Process., 2016

11. ——, “Near-optimality of greedy set selection in the sampling of graph signals,” in Global

Conf. on Signal and Inform. Process., 2016, pp. 1265–1269

1.5 Notation

Throughout this manuscript, we use lowercase boldface letters for vectors (x), uppercase boldface

letters for matrices (X), calligraphic letters for sets (A), and fraktur font for measures (h). In

particular, we denote the Lebesgue measure by m. We denote the set of complex numbers by C,

real numbers by R, non-negative real numbers by R+, and positive semi-definite (PSD) matrices

by S+. We also use X � 0 to mean that the matrix X is PSD, so that for X,Y ∈ Cn×n,

X � Y ⇔ bHXb ≤ bHY b, for all b ∈ Cn. Similarly, we write X � 0 to say that X is positive

definite.
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We indicate the i-th entry of a vector by [x]i, i.e., if x ∈ Cn and x = [x1 · · · xn]
T

then [x]i = xi.

Set subscripts refer either to the vector obtained by keeping only the elements with indices in the

set ([x]A) or to the submatrix whose columns have indices in the set ([X]A). For two vectors x,y ∈

Rn, we write x � y to denote that [x]i ≥ [y]i for all i = 1, . . . , n and x � y when [x]i > [y]i for

all i. We use |A| for the cardinality of A, denote the empty set by ∅, and write 2A for the power set

of A (i.e., the collection of all finite subsets) and P(A) for the free monoid of A (i.e., the collection

of all finite multisets with elements in A). Recall that a multiset is a set with repetition.

For a complex number z = a + jb, j =
√
−1, we write Re[z] = a for its real part and Im[z] = b

for its imaginary part. We use zH for the conjugate transpose of the complex vector z. We denote

the support of a function f : Ω → C as supp(f) = {β ∈ Ω | f(β) 6= 0} and define the indicator

function I : Ω→ {0, 1} as I(β ∈ E) = 1, if β belongs to the event E , and zero otherwise.

We use Lp to denote the space of measurable functions whose p-th power is integrable. Of

particular interest is the L1 space of absolutely integrable functions and the L2 space of square

integrable functions. The measurable space over which these Hilbert spaces are defined can be

inferred from the context. We additionally define the space L1,+ = {f ∈ L1 | f ≥ 0a.e.}, i.e., the

space of a.e.-positive absolutely integrable functions. We write “a.e.” to mean “almost everywhere.”

Unless explicitly stated, e.g., “p-a.e.,” we mean the Lebesgue measure.

Finally, we will often find it convenient to write the gradient as an explicit derivative (as, e.g.,

in [56]). In this case, we consider the derivative of a function f with respect to an n× 1 vector x to

be its 1× n gradient vector, i.e.,

∂f

∂x
= ∇xf =

[
∂f
∂x1

· · · ∂f
∂xn

]
.
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Chapter 2

Learning and inference under requirements

Data-driven solutions have become a core component of the modern information systems we increas-

ingly rely upon to select job candidates, analyze medical data, and control “smart” applications

(home, grid, city). As these systems become ubiquitous, the number of reports involving biased,

prejudiced models or systems prone to tampering (e.g., adversarial examples) and unsafe behaviors

grows [1–6], evoking the need to impose requirements on their behavior. By requirements, we mean

properties, either statistical or structural, that these solution must satisfy. These properties include

fairness [57–62], robustness [15,63,64], safety [33,65,66], smoothness [67,68], and sparsity [69].

2.1 Solving statistical problems with requirements today

Currently, the problem of learning and inference under requirements is addressed in two fashions.

The first involves leveraging domain expert knowledge to build models that embed the desired

behavior. This approach is often deployed to deal with geometric properties, such as invariance [21–

27], or functional shape constraints, e.g., monotonicity. The effectiveness of this approach comes from

the fact that the solution satisfies the desired properties by design, so no additional modification

of the learning procedure is required. For instance, much of the success of convolutional neural

networks (CNNs) in image processing is now attributed to their equivariance to translations and

robustness to small image deformations [70,71]. Other geometric properties, however, are harder to

encode in the model structure, such as rotation invariance or invariances in non-Euclidian domains.
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More challenging yet is to find ways of structurally embedding statistical properties such as fairness,

safety, or risk-awareness. Even if possible, there may be multiple ways to encode a behavior and

no definite path to choosing among them. What is more, these models are often designed for a

specific property of a specific data type and are therefore difficult to transfer and often impossible

to combine.

The second approach modifies the learning objective instead of the model. By leveraging the

fact that learning is typically expressed as an optimization problem, it modifies the cost function of

that problem to promote the desired behaviors. This often takes the form of a weighted combination

between the original cost function, often some measure of statistical performance or fit, and regu-

larizers. The role of these regularizers is to penalize violations of the requirements and/or reward

desired behaviors [11–15, 17]. This approach does not require major modifications of the learning

procedure, since these multiobjective problems can often be tackled using the same algorithms as

their unregularized counterparts. What is more, the objective can include as many regularizers as

necessary to simultaneously cope with a plurality of behaviors, overcoming a serious drawback of

the previous approach.

Selecting these regularizers and their weight, however, can be challenging, especially as the

number of constraints grows. In fact, their values often depend on the problem instance, the objective

value, and can interact in non-trivial ways [72–76]. In the case of convex optimization problems, a

straightforward relation between constraints and regularization costs can be obtained due to strong

duality. A myriad of primal-dual methods can then be used to obtain optimal, feasible solutions [77].

However, most modern parametrizations (e.g., CNNs) lead to non-convex programs for which a

regularized formulation need not yield feasible solutions, all the more so good ones [18]. While

primal-dual algorithms have been used in practice, no guarantees can be given for their outcome

in general [63, 64, 78, 79]. Regularization parameter tuning must therefore be performed by experts

that understand not only the application, but also the underlying optimization algorithm. Though

this trial-and-error process can be partially automated, it remains a brute force approach whose

complexity scales exponentially with the number of regularizers.
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2.2 Constrained learning and inference

Notice that two components of optimization problems have been targeted to address the issue of

imposing requirements on data-driven solutions: the domain, i.e., the model structure, and the ob-

jective function. In contrast, this work posits that the proper way to impose requirements is actually

to use their remaining component, namely, constraints. This approach has several advantages from

a formulation perspective as requirements are often expressed as constraints in the first place. What

is more, it comes with the same feasibility guarantee of the model design approach without limiting

the number of requirements that can be imposed or having to deal with the choice or tuning of

regularizers.

Formally, let Di, i = 0, . . . ,m denote probability distributions over data pairs (x, y), with x ∈

X ⊂ Rd and y ∈ Y ⊂ R, and let H a hypothesis class containing functions φ : Rd → Rk. For

convenience, we can interpret x as a feature vector or a system input, y as a label or a measurement,

and φ as a classifier or estimator. For classification problems, Y is a finite set, typically a subset

of N, whereas it is uncountable in the case of regression. We define the constrained statistical

optimization (CSO) problem as

P ? = min
φ∈H

E(x,y)∼D0

[
`0
(
φ(x), y

)]
subject to E(x,y)∼Di

[
`i
(
φ(x), y

)]
≤ ci, i = 1, . . . ,m,

`j
(
φ(x), y

)
≤ cj Dj-a.e., j = m+ 1, . . . ,m+ q,

(P-CSO)

where `i : Rk×Y → [0, B], i = 0, . . . ,m+q, are bounded functions that, together with the ci, encode

performance metrics and the desired statistical properties of the solution. In general, we think of D0

as a nominal joint distribution and the additional Di as different conditional distributions over which

requirements are imposed either on average, through the losses `i, i ≤ m, or pointwise, through the

losses `j , j > m. Note that we do not assume that any of the `i are convex. Observe that the

unconstrained version of (P-CSO), namely

P ?U = min
φ∈H

E(x,y)∼D0

[
`0
(
φ(x), y

)]
, (PI)
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is at the core of celebrated Bayesian estimators, such as Kalman filters, and virtually every modern

learning algorithm [20,56,80].

Throughout this work, we will distinguish two settings under which we wish to solve (P-CSO),

learning and inference, depending on whether the distributions D are known. In the sequel, we

describe these settings and detail the specific problems we investigate.

2.2.1 The learning setting

Learning refers to statistical problems in which the distributions Di, i = 0, . . . ,m + q, are not

known a priori and are accessible only through independently drawn samples (xni , yni) ∼ Di,

ni = 1, . . . , Ni. In classical statistics, this is known as the non-parametric setting. In the case of the

unconstrained problem, classical learning theory shows that there exist conditions under which (PI)

can be (approximately) solved based only on samples and that when this is the case, a (approximate)

solution can be obtained by replacing expectations by sample averages, i.e., by solving the empirical

risk minimization (ERM) problem [19,20,81,82]

P̂ ?U = min
φ∈H

1

N0

N0∑
n=1

`0
(
φ(xn), yn

)
. (P-ERM)

The phenomenon by which a solution obtained from samples, i.e., (P-ERM), approximates the

solution over the population statistics, i.e., (P-CSO), is known as generalization.

For the constrained problem (P-CSO), similar results exist only in specific cases, e.g., for coher-

ence constraints or rate-constrained learning [57,58,62,83], and often hold for randomized solutions,

e.g., [57,58,60,62]. In general, there is however no reason to expect that the empirical approximation

used to obtain (P-ERM) is also valid in the context constrained learning. Explicitly, it remains an

open question whether the empirical constrained risk minimization (ECRM) problem

P̂ ? = min
φ∈H

1

N0

N0∑
n0=1

`0
(
φ(xn0), yn0

)
subject to

1

Ni

Ni∑
ni=1

`i
(
φ(xni), yni

)
≤ ci, i = 1, . . . ,m

`j
(
φ(xnj ), ynj

)
≤ cj , for all nj , j = m+ 1, . . . ,m+ q

(P-ECRM)
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yields a (approximate) solution of (P-CSO). In fact, it is not clear if it is even possible to obtain a

solution of (P-CSO) in the learning setting. This issue is aggravated when the infinite dimensional

hypothesis class H is parametrized (e.g., using neural networks), leading to non-convex constrained

optimization problems, which from an algorithmic standpoint are considerably harder than their

unconstrained counterparts. Indeed, while gradient descent can sometimes be used to approximately

minimize a loss function even if it is non-convex [7, 9, 84, 85], it does not guarantee feasibility. In

fact, even obtaining a feasible solution of (P-CSO) can be challenging, all the more so a good one.

These questions are addressed in Part I.

2.2.2 The inference setting

Inference problems, on the other hand, assume direct access to the distributions Di in some analytical

form. Though this setting may seem considerably simpler than the previous one, it is nevertheless

useful and several classical problems in statistics, such as hypothesis testing and detection [REF],

have been cast and solved using constrained inference since Neyman-Pearson [86]. What is more,

the additional statistical information given in this scenario allows us to explore more challenging

requirements involving sparsity, combinatorial constraints, and risk. These will be the topic of

Part II.

Before we briefly introduce those constraints we explore in Part II, we make a short remark on

notation. In an attempt to not alienate readers familiar with the Bayesian inference literature, we

reverse the roles of x and y in this part and consider vector measurements, i.e., y ∈ Ck. Explicitly,

we now consider the measurements y as observations based on which we wish to estimate the hidden

variables x. In other words, instead of observing both x and y but not Di (learning), we observe y

and D, but not x. Since the two parts of this manuscript stand mostly on their own, this is the

only place where both notations will appear next to each other. Hence, this should not generate too

much confusion.

2.2.2.1 Sparsity constraints

The first type of constrained inference problems we study involves infinite dimensional, nonlinear

parametrizations with sparsity requirements. These are often found in signal processing due to the
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analog and nonlinear nature of the physical world from where the signals are collected. Indeed,

there are many examples of inherently continuous (as opposed to “discrete”) applications, such as

spectral estimation, image recovery, and source localization [87–90], as well as nonlinear ones, e.g.,

magnetic resonance fingerprinting, spectrum cartography, and manifold data sparse coding [91–93].

These challenges are often tackled by imposing structure on the signals, such as bandlimited-

ness, finite rate of innovation, bounded total variation, or lying in a reproducing kernel Hilbert

space (RKHS), which then allows them to be processed using an appropriate finite set of sam-

ples [94–97]. Hence, the challenges of infinite dimensionality and nonlinearity can be overcome by

means of sampling theorems and “linear-in-the-parameters” methods. Due to the limited number

of measurements, however, these discretizations often leads to underdetermined problems. Sparsity

priors then play an important role in achieving state-of-the-art results by leveraging the assumption

that there exists a signal representation in terms of only a few atoms from an overparametrized

dictionary [69,97,98].

Since fitting these models leads to non-convex (and possibly NP-hard [99]) problems, sparsity is

typically replaced by a tractable relaxation based on an atomic norm (e.g., the l1-norm). For linear,

incoherent dictionaries, these relaxed problems have been shown to retrieve the desired sparse solu-

tion [69,98]. Discretized continuous problems, however, rarely meet these conditions, which are NP-

hard to check (e.g., restricted isometry/eigenvalue properties [100–102]). What is more, due to grid

mismatch issues, infinite dimensional sparse signals need not be sparse when discretized [103–105].

Only in specific instances, such as line spectrum estimation, there exist guarantees for relaxations

that forgo discretization [96,106–111].

Instead, we propose to forgo both discretization and relaxation and directly tackle the continuous

problem

minimize
Θ∈H

Eβ∈D0

[
I [Θ(β) 6= 0]

]
subject to

1

N

N∑
i=1

g(zi) ≤ c

zi = Eβ∈Di

[
Fi [Θ(β),β]

]
, i = 1, . . . , N ,

(PII)

where H is once again the space of measurable functions, g : C → R is a convex performance

measure, and Fi : C × Ω → C is a (possibly nonlinear) function representing, e.g., the dictionary.
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Note that if D0 is the Lebesgue measure m, the objective function of (PII) is the measure of the

support of Θ. Then, the empirical average of g together with c determines the goodness-of-fit

of the parameters Θ for the nonlinear functional model defined for the zi. Observe that while

the statistical performance constraint on g is written in empirical form, the theory developed in

Part I shows that (PII) can also be used in a learning setting. Although SFPs combine the infinite

dimensionality of functional programming with the non-convexity of sparsity and nonlinear models,

we show that they are tractable under mild conditions.

2.2.2.2 Combinatorial constraints

The second type of requirement considered in Part II are combinatorial. They arise in applications

where access to the full measurement y is impractical or impossible. The issue is then to select the

subset of measurements based on which to solve the statistical inference problem and the constraints

limit which subsets can be selected. For instance, power or sensing constraints may limit the number

of observations allowed (cardinality constraint) or disallow certain combinations of observations due

to, e.g., duty cycle limitations (matroid constraints). These problems arise in applications such as

sensor selection, experimental design, and scheduling.

Formally, let V = {1, 2, . . . , k} be the ground set of possible measurements, i.e., the set of indices

of the elements of y ∈ Ck. Our goal is to solve the combinatorial problem

minimize
S⊆V

J(S)

subject to S ∈ Ij , j = 1, . . . , p,

(PIII)

where Ij ⊆ 2V are families of subsets of V that enumerates admissible sets of measurements

and J(S) is the value of a statistical problem solve with [y]S , e.g., the minimum MSE J(S) =

minφ∈H E
[∥∥x− φ([y]S

)∥∥2
]
. Notice that J(S) is itself the value of a statistical optimization prob-

lem.

Notice that the unconstrained version of (PIII) is trivial: inference typically improves as the

number of measurements increases, so the solution is simply S = V. The constraints in (PIII),

however, make that problem NP-hard in general. Hence, we cannot expect to find its solution

even for problems of moderate size. Nevertheless, when the objective function J displays certain
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diminishing return structures (e.g., supermodularity), it is well-known that greedy algorithms can be

used to obtain approximate, near-optimal solutions of (PIII). Yet, many figures of merit of interest,

chief among them the MSE, do not have this property.

2.2.2.3 Risk constraints

Finally, we consider requirements related to risk. Mitigating risk is crucial in critical applications in

which decisions must be made not only on the basis of minimizing average losses, but also safeguard-

ing against less probable, though possibly catastrophic, events. Examples can be found in areas such

as wireless industrial control, energy [112, 113], finance [114–116], robotics [117, 118], LIDAR [119],

and networking [120]. A typical approach is to use regularized objectives that involve not only the

mean performance, but also some measure of statistical volatility of the losses, such as mean-variance

functionals [114, 121], mean-semideviations [122], and Conditional Value-at-Risk (CVaR) [123]. In

this work, however, we obtain risk-averse estimators by solving a constrained inference problem. Of

particular interest is the risk-averse minimum mean square error (MSE) problem, in which a squared

loss is minimized on average subject to a bound on its expected conditional variance. Explicitly,

minimize
φ∈H

ED

[
‖x− φ(y)‖2

]
subject to ED

[
var
(
‖x− φ(y)‖2

∣∣ y)] ≤ ε (P-RISK)

where H denotes the space of y measurable functions,

var
(
‖x− φ(y)‖2

∣∣ y) , E
[(
‖x− φ(y)‖2 − E

[
‖x− φ(y)‖2

])2 ∣∣∣ y] (2.1)

is the predictive variance of the squared loss ‖x− φ(y)‖2 with respect to y, and ε > 0 is a fixed

risk tolerance. While (P-RISK) has many desirable properties (see Chapter 8 for details), it is

a non-convex, functional optimization problem. Hence, even with knowledge of the statistics D,

solving (P-RISK) directly is quite challenging.

In summary, whereas learning and inference problems involving requirements are straightforward

to pose as constrained statistical optimization problems, solving them is certainly not. Among the

main challenges are unknown statistics, infinite dimensionality, non-convexity, and combinatorial

17



nature. In the remainder of this manuscript, we overcome these challenges using a diverse set of

tools spanning learning theory, constrained optimization, duality, vector measure theory, discrete

algebra, and spectral theory.
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Part I

Constrained learning

19



Chapter 3

Constrained learning theory

3.1 Classical learning theory

Classical learning theory is concerned with studying unconstrained learning problems of the form (PI)

to identify what it means to solve a statistical learning problem, when it can be done, and how [20].

While there exist today a myriad of learning models, the first and still quite popular one is known

as (agnostic) probably approximately correct (PAC) learning [19, 20, 81, 82]. Agnostic is used to

differentiate the statistical data model introduced in Chapter 2, i.e., the joint distribution D0, with

the original PAC learning model in which a deterministic labeling function h is used to generate y.

We do not dwell on this distinction, but bear in mind that whenever we say “learning theory” in

this work, we actually mean agnostic PAC learning theory.

The PAC framework describes the best we can expect to achieve in view of the fact that we only

have access to the distributions Di through random samples. In particular, we cannot expect to

obtain an exact solution of (PI) since we can only obtain coarse estimates of its objective function.

This fact is encapsulated in the Approximately part of PAC. What is more, since our estimate is

based on random sample, we must account for the possibility of sometimes obtaining a completely

uninformative sample set, in which case we will completely fail to solve the original problem. Hence,

we can only expect to be Approximately correct in probability, thus the Probably in PAC. When

such an approximate solution of (PI) can be obtained in H with high probability, the hypothesis
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class is said to be PAC learnable as formalized in the definition below [19, 20, 81, 82]. Notice that

PAC learnability is a property of the hypothesis class, i.e., the domain H of (PI), since it must hold

for all distributions D0.

Definition 1 (PAC learnability). A hypothesis class H is (agnostic) probably approximately cor-

rect (PAC) learnable if for every ε, δ ∈ (0, 1) and every distribution D0, a φ† ∈ H can be obtained

from N ≥ NH(ε, δ) samples of D0 such that

E(x,y)∼D0

[
`0
(
φ†(x), y

)]
≤ P ?U + ε, with probability 1− δ. (3.1)

A classical result from learning theory states that H is PAC learnable if and only if it has finite

VC (Vapnik–Chervonenkis) dimension and that the φ† from Def. 1 can be obtained by solving the

ERM problem P-ERM (possibly with the addition of a regularizer on φ) [19,20]. The VC dimension

is a measure of complexity or richness of a hypothesis class:

Definition 2 (VC dimension). Let C = {c1, . . . , cm} ⊂ X be a finite set of points and define the set

of all vectors in {−1, 1} achievable by the hypothesis class H

HC =
{(

sign
(
h(c1)

)
, . . . , sign

(
h(cm)

)) ∣∣ h ∈ H} .

The classH is said to shatter C if |HC | = 2|C|. The VC dimension ofH is the cardinality of the largest

set C it can shatter. If H can shatter sets of arbitrary size, we say H has infinite VC dimension.

Notice, however, that the objects studied in (PAC) learning theory are unconstrained statistical

learning problem. Definition 1 is therefore not enough to enable constrained learning since the a

PAC φ† may not be feasible for (P-CSO). In fact, feasibility often takes priority over performance

in constrained learning problems. For instance, regardless of how good a fair classifier is, it serves

no “fair” purpose in practice unless it meets some fairness requirements. We therefore need a new

framework to deal with constrained learning problems, which we introduce in the sequel.
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3.2 Probably Approximately Correct Constrained Learning

As with unconstrained learning problems, we cannot expect to solve (P-CSO) exactly without ac-

cess to the Di against which to evaluate its expectations. Additionally, (P-CSO) is a variational

problem in general, which can be challenging to solve unless H is finite. Yet, obtaining a PAC

solution (Definition 1) of (P-CSO) is not enough since it does not account for constraints or in a

broader sense, for the problem requirements. The following definition formalizes what it means to

learn under constraints by defining what is a good enough solution of (P-CSO).

Definition 3 (PACC learnability). A hypothesis class H is probably approximately correct con-

strained (PACC, pronounced “PAC-cee”) learnable if for every ε, δ ∈ (0, 1) and every distribution Di,

i = 0, . . . ,m + q, a φ† ∈ H can be obtained based N ≥ NH(ε, δ) samples from each Di such that,

with probability 1− δ, it is

1) probably approximately optimal, i.e.,

E(x,y)∼D0

[
`0
(
φ†(x), y

)]
≤ P ? + ε, and (3.2)

2) probably approximately feasible, i.e.,

E(x,y)∼Di

[
`i
(
φ†(x), y

)]
≤ ci + ε and (3.3a)

`j
(
φ†(x), y

)
≤ cj , for all (x, y) ∈ Kj , (3.3b)

where the Kj ⊆ X × Y are sets of Dj measure at least 1− ε.

Definition 3 is an extension of PAC learnability (Definition 1) to the problem of learning under

requirements. Indeed, observe that (3.2) is equivalent to (3.1). Hence, we immediately obtain that

every PACC learnable class is also PAC learnable. However, a PACC learnable class must also

meet the probably approximate feasibility conditions in (3.3). In the case of average constraints,

namely (3.3a), the PACC solution φ† can violate the specification ci by at most ε. In other words, it

cannot be too far from the original requirement. In the case of pointwise constraints, namely (3.3b),

φ† must satisfy the constraint with Dj-probability at least 1− ε. However, there is no requirement
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on the magnitude of the violation. The additional “C” in PACC serves to remind ourselves of this

distinction, although as we show next, PAC and PACC learnability are in fact equivalent properties.

3.3 PACC Learning is as Hard as PAC Learning

Having formalized what we mean by constrained learning (Sec. 3.2), we turn to the issue of when

it can be done. To do so, we follow the unconstrained learning lead and consider the ECRM rule

in (P-ECRM) based on Ni samples (xni , yni) ∼ Di. The follwoing theorem shows that, under mild

assumptions, if H is PAC learnable, then it is also PACC learnable using (P-ECRM).

Theorem 1. Let the `i, i = 0, . . . ,m + q, be bounded on X . The hypothesis class H is PACC

learnable if and only if it is PAC learnable and (P-ECRM) is a PACC learner of H. Explicitly,

let dH < ∞ be the VC dimension of H. If Ni ≥ Cζ−1(ε, δ, dH), i = 0, . . . ,m + q, for an absolute

constant C and

ζ−1(ε, δ, d) =
d+ log(1/δ)

ε2
, (3.4)

then any solution φ̂? of (P-ECRM) is a PACC solution of (P-CSO).

Proof. See Appendix A.1. �

Theorem 1 shows that, from a learning theoretic standpoint, constrained learning is as hard as

unconstrained learning. Not only that, but notice the sample complexity of constrained described

by (3.4) matches that of PAC learning [19, 20]. It is therefore not surprising that a constrained

version of ERM is a PACC learner. A similar result appeared in [59] for a particular rate constraint

and not in the context of PACC learning. Still, solving (P-ECRM) remains challenging. Indeed,

while it addresses the statistical issue of (P-CSO), it remains, in most practical cases, an infinite

dimensional (functional) problem. This issue is often addressed by leveraging a finite dimensional

parametrization of (a subset of) the H, such as a kernel model or a (C)NN. Explicitly, we associate
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to each parameter vector θ ∈ Rp a function fθ ∈ H, replacing (P-ECRM) by

P̂ ?θ = min
θ∈Rp

1

N0

N0∑
n0=1

`0
(
fθ(xn0

), yn0

)
subject to

1

Ni

Ni∑
ni=1

`i
(
fθ(xni), yni

)
≤ ci, i = 1, . . . ,m

`j
(
fθ(xnj ), ynj

)
≤ cj , for all nj , j = m+ 1, . . . ,m+ q.

(PIV)

Even if (P-ECRM) is a convex program in φ, (PIV) typically is not a convex program in θ, except

in particular cases. While this issue also arises in unconstrained learning problems, it is exacerbated

by the presence of constraints. Though it is sometimes possible to find good approximate minimizers

of `0 using, e.g., gradient descent rules [7,9,84,85,124], even obtaining a feasible θ may be challenging.

Regularized formulations and relaxations are often used to sidestep this issue by incorporating a

linear combination of the constraints into the objective and solving the resulting unconstrained

problem [11–15,17]. Yet, whereas the generalization guarantees of classical learning theory apply to

this modified objective, they say nothing of the requirements it describes. Since strong duality need

not hold for the non-convex (PIV), this procedure need not be PACC (Definition 3) and may lead

to solutions that are either infeasible or whose performance is unacceptably poor [18].

While no formal connection can be drawn between (PIV) and its regularized formulation, its

dual problem turns out to be related to (P-CSO). In fact, this dual learning approach provides a

practical algorithm that yields a (near-)PACC solutions for (P-CSO) based only on solving uncon-

strained learning problems. This result concludes definitely closes the gap between unconstrained

and constrained learning.
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Chapter 4

Dual constrained learning

In order to overcome the shortcomings of (P-ECRM) [and its parametrized version (PIV)], we put

forward a different learning rule based on the (parametrized) empirical dual of (P-CSO). Our goal

is to quantify the loss of optimality incurred by replacing the constrained, variational, statisti-

cal (P-CSO) by an unconstrained, finite dimensional, empirical problem. In doing so, we prove that

it is a PACC learner except for an approximation error determined by the quality of the parametriza-

tion. We formalize this concept by introducing the parametrized hypothesis class P = {fθ | θ ∈ Rp}

and defining the concept of near-PACC solution:

Definition 4 (Near-PACC learnability). A hypothesis class H is nearly probably approximately

correct constrained (near-PACC) learnable using a parametrized class P if there exists ε0 ≥ 0 such

that for every ε, δ ∈ (0, 1) and every distribution Di, i = 0, . . . ,m + q, a φ† ∈ H can be obtained

from N ≥ NP(ε, δ) samples from each Di that is, with probability at least 1− δ,

1) probably near-approximately optimal, i.e.,

E(x,y)∼D0

[
`0
(
φN (x), y

)]
≤ P ? + ε0 + ε, and (4.1)
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2) probably approximately feasible, i.e.,

E(x,y)∼Di

[
`i
(
φ†(x), y

)]
≤ ci + ε and (4.2a)

`j
(
φ†(x), y

)
≤ cj , for all (x, y) ∈ Kj , (4.2b)

where the Kj ⊆ X × Y are sets of Dj measure at least 1− ε.

The main difference between near-PACC (Definition 4) and PACC learnability (Definition 3) is

the presence of a minimum gap (ε0) between the optimal value P ? of (P-CSO) and the value of φ†.

Indeed, for ε0 = 0, near-PACC reduces to PACC learnability. Note that ε0 does not depend on

the number of samples N or the distributions Di. It is a property of the learning task and the

parametrized class P. In that sense, it is akin to what is known in classical learning known as

the approximation error, as opposed to ε, the estimation error [20]. In contrast to unconstrained

learning, however, the approximation error can not be treated separately due to the constraints.

Yet, it is fixed, i.e., independent of the sample set, and affects neither the sample complexity nor

the constraint satisfaction. Hence, the parametrized constrained learner sacrifices optimality, but

not feasibility, which remains dependent only on the number of samples N [(4.2)]. Finally, note

that the sample complexity NP does not depend on the original hypothesis class H, but on the

parametrized P. Near-PACC is therefore also related to representation-independent learning [20].

In the sequel, we define the (parametrized) empirical dual problem of (P-CSO) and proceed

to show that it is a near-PACC learner (Theorems 2 and 3), by first analyzing the duality gap

of (P-CSO) (Section 4.1.1), then bounding the error due to the finite dimensional parametriza-

tion (the parametrization gap, Section 4.1.2), and finally studying the effect of replacing the expec-

tations by sample averages (the empirical gap, Section 4.1.3).
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4.1 Empirical dual learning

Before defining the (parametrized) empirical dual of (P-CSO), let us derive its classical Lagrangian

dual problem. Explicitly, we begin by defining the Lagrangian of (P-CSO) as

L(φ,µ,λ) = E(x,y)∼D0

[
`0
(
φ(x), y

)]
+

m∑
i=1

µi

[
E(x,y)∼Di

[
`i
(
φ(x), y

)]
− ci

]
+

m+n∑
j=m+1

∫
λj(x, y)

[
`j
(
φ(x), y

)
− cj

]
pDj(x, y)dxdy,

(4.3)

where pDj
is the density of the distribution Dj , µ ∈ Rm+ collects the dual variables µi relative to the

average constraints, and λ is an n × 1 vector that collects the functional dual variables λj ∈ L1,+

relative to the pointwise constraints. Recall that by f ∈ L1,+ we mean that f ∈ L1 (absolutely

integrable) and f ≥ 0 a.e. For conciseness, we leave the measure (Dj) implicit. Observe that, since

the losses `j are bounded (Assumption 4), the integral in (4.3) exists and is well-defined. This is a

direct consequence of Hölder’s inequality [125, Thm. 1.5.2]. Additionally, note that while Dj need

not have a density, we assume that it is absolutely continuous with respect to the Lebesgue measure

to simplify the exposition. The dual problem of (P-CSO) can then be written as

D? = max
µ∈Rm+ , λj∈L1,+

min
φ∈H

L(φ,µ,λ). (D-CSL)

The dual problem (D-CSL) is a composite functional optimization programs. It involves both

a minimization with respect to φ and a maximization with respect to the dual variables λj , which

are infinite dimensional due to the pointwise constraints. Hence, solving it (even approximately)

remains quite challenging. What is more, we only have in general that D? is a lower bound on the

value of P ? (weak duality [18]), which means that even if we could solve (D-CSL), it may not get us

closer to solving the constrained learning problem we are actually interested in, namely (P-CSO).

Nevertheless, (D-CSL) is an unconstrained problem, which suggests that it could be tackled using

the same techniques as unconstrained learning. The goal of this chapter is to show that doing so

actually provide a near-PACC solution of (P-CSO).
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Start by defining the (parametrized) empirical Lagrangian of (P-CSO) as

L̂(θ,µ,λj) =
1

N0

N0∑
n0=1

`0
(
fθ(xn0

), yn0

)
+

m∑
i=1

µi

[
1

Ni

Ni∑
ni=1

`i
(
fθ(xni), yni

)
− ci

]

+

m+q∑
j=m+1

 1

Nj

Nj∑
nj=1

[λj ]nj
(
`j
(
fθ(xnj ), ynj

)
− cj

) ,

(4.4)

based on Ni samples (xni , yni) ∼ Di, i = 0, . . . ,m+ q, where µ ∈ Rm+ collects the dual variables µi

relative to the average constraints and λj ∈ RNj+ collects the dual variables [λj ]nj relative to the j-th

pointwise constraint. The empirical dual problem of (P-CSO) is then written as

D̂? = max
µ∈Rm+ ,

λj∈R
Nj
+

min
θ∈Rp

L̂(θ,µ,λj).
(D̂-CSL)

Note that the empirical Lagrangian (4.4) has the same form as the regularized problems often used

to tackle learning under requirements. However, whereas µ is kept fixed (or estimated based on

trial and error and cross-validation) in the latter, it is an optimization variable in (D̂-CSL). Also

observe that (D̂-CSL) is the dual problem of the parametrized ECRM (PIV). Yet, due to its non-

convexity, only weak duality holds, so that in general a saddle-point of (D̂-CSL) is in no way related

to a solution of (PIV) [18]. In contrast, (D̂-CSL) is a parametrized, empirical version of the dual

problem (D-CSL) that can be related directly to the original learning problem (P-CSO).

The assumptions required to establish these results depend on whether the original learning task

includes pointwise constraints, i.e., on q in (P-CSO). We introduce both results below for reference,

but proceed to showcase only the proof for q = 0, i.e., for the case without pointwise constraints. We

do so because this result considers non-convex losses `i, so its proof is more involved than the q > 0

case, in which the losses are required to be convex. Since the techniques used to establish both

results are similar, we defer the proof of the latter to the appendices.

Let us start with the case with pointwise constraints, i.e., q > 0 in (P-CSO). We establish

that (D̂-CSL) is a near-PACC learner under the following assumptions:

Assumption 1. The losses `i(·, y), i = 0, . . . ,m+q, are M -Lipschitz, convex functions for all y ∈ Y.

Assumption 2. The hypothesis class H is a convex, closed functional space, the parametrized
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class P ⊆ H is PAC learnable, and there is ν > 0 such that for each φ ∈ H there exists fθ ∈ P for

which

sup
x∈X
|fθ(x)− φ(x)| ≤ ν. (4.5)

Assumption 3. There exists θ′ ∈ Rp such that fθ′ is strictly feasible for (P-CSO) with con-

straints ci −Mν and cj −Mν and for each datasets S =
{

(xni , yni)
}
i=0,...,m+q

there exists a θ′′

that is strictly feasible for (PIV).

In this setting, we can obtain the following result:

Theorem 2. Define VN as

VN = B

√
1

N

[
1 + log

(
4(m+ q + 2)(2N)dP

δ

)]
, (4.6)

where dP is the VC dimension of P. Under Assumptions 1–3, it holds with probability at least 1− δ

that

P ? ≤ D̂? ≤ P ? +

1 + ‖µ̃?‖1 +

m+q∑
j=m+1

‖λ̃?j‖L1

Mν + VN0 and (4.7a)

E(x,y)∼Di

[
`i
(
fθ̂?(x), y

)]
≤ ci + VNi , for all i (4.7b)

`i
(
fθ̂?(x), y

)
≤ ci, for all (x, y) ∈ Kj, (4.7c)

where P ? is the value of (P-CSO), (µ̃?, λ̃?j) are the optimal dual variables of (P-CSO) with the

constraints tightened to ci −Mν, i = 1, . . . ,m + q, and Kj ⊆ X × Y is a set of Dj-measure at

least 1− VNj for all j = m+ 1, . . . ,m+ q.

Proof. See Appendix A.2. �

From Theorem 2, we immediately obtain that (D̂-CSL) is a near-PACC learner (Definition 4).

Corollary 1. Under Assumptions 1–3, (D̂-CSL) is a near-PACC learner of H through P for

ε0 =

1 + ‖µ̃?‖1 +

m+q∑
j=m+1

‖λ̃?j‖L1

Mν,
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where (µ̃?, λ̃?j) are the optimal dual variables of (P-CSO) with the constraints tightened to ci−Mν,

i = 1, . . . ,m+ q.

Since the approximation guarantees are very similar, we defer commenting on the implications

of these results until after we have stated the result for learning tasks without pointwise constraints,

i.e., q = 0 in (P-CSO). In this case, we rely on the following milder assumptions:

Assumption 4. The losses `i(·, y), i = 0, . . . ,m, are M -Lipschitz continuous (possibly non-convex)

functions for each y ∈ Y.

Assumption 5. The hypothesis class H is a convex, closed functional space, the parametrized

class P ⊆ H is PAC learnable and there is ν > 0 such that for each φ ∈ H there exists fθ ∈ P for

which

E(x,y)∼Di

[
|fθ(x)− φ(x)|

]
≤ ν, for i = 0, . . . ,m. (4.8)

For clarity, we introduce and prove this result in the classification setting, i.e., the case in which Y

is finite. The regression problem is considered using an additional smoothness assumption on the

losses to transform it into a classification problem as is done for regression trees [80]. These results

are presented in Appendix A.4.

Theorem 3. Consider the learning task (P-CSO) without pointwise constraints, i.e., for q = 0.

Let Y be finite, the conditional random variables x|y induced by the Di be non-atomic, and H be a

decomposable function space (see Section 4.1.1). Under assumptions 3–5, it holds that

P ? ≤ D̂? ≤ P ? + (1 + ‖µ̃?‖1)Mν + VN0
and (4.9a)

E(x,y)∼Di

[
`i
(
fθ̂?(x), y

)]
≤ ci + VNi , for all i (4.9b)

with probability 1− δ, where P ? is the value of (P-CSO) with q = 0, VN is as in (4.6), and µ̃? are

the dual variables of (P-CSO) with the constraints tightened to ci −Mν, i = 1, . . . ,m.

Theorem 3 immediately implies that (D̂-CSL) is a near-PACC learner (Definition 3).

Corollary 2. Under Assumptions 3–5, (D̂-CSL) is a near-PACC learner of H through P in (P-CSO)

with q = 0 for

ε0 =
(
1 + ‖µ̃?‖1

)
Mν, (4.10)
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where µ̃? are the dual variables of (P-CSO) with its constraints tightened to ci −Mν, i = 1, . . . ,m.

Theorems 2 and 3 establish conditions under which (D̂-CSL) is a near-PACC learner of the con-

strained learning problem (P-CSO). When the learning task has pointwise requirements, Theorem 2

requires that the losses `i be convex (Assumption 1). This is in contrast to unconstrained learning

or the ECRM result from Theorem 1 which hold regardless of the losses convexity. Nevertheless, this

does not imply that either (D̂-CSL) or (PIV) are convex problems since `i(fθ(x), y) need not be a

convex function of θ. Theorem 3 shows this restriction can be lifted when there are no pointwise con-

straints under some mild conditions on the distributions and the hypothesis class (see Section 4.1.2

for more details).

Another distinction between Theorems 2 and 3 is with respect to the assumption on the richness

of the parametrized class P. A stronger, uniform approximation requirement (Assumption 2) is

needed to meet the pointwise constraints. Assumptions 2 and 5 also require H to be a convex class

of functions. These conditions are met by a myriad of function space–parametrization pairs, e.g.,

when H is the space of continuous functions or an RKHS, fθ can be a neural network [126–128]

or a finite linear combinations of kernels [68, 129] respectively. This requirement can be relaxed in

the absence of pointwise constraints to a total variation covering (Assumption 5). Notice that H

can be any closed functional space, since only the parametrized class P needs to be PAC learnable.

Assumption 3 is used in both theorems to guarantee that the problem is well-posed, i.e., that there

exist feasible solution for (P-CSO) in P.

In either case, the quality of the approximation is dictated by (i) the sample size, (ii) the difficulty

of the learning task, and (iii) the richness of the parametrization. Indeed, as the sample size increases,

the estimation error VN decreases at the classical rate of O
(

log(N)/
√
N
)
. This has a direct impact

on both the near-optimality and approximate feasibility of the problem. In fact, note that when

the Di denote conditional distributions of D0, Ni can be considerably smaller than N0 and jeopardize

the ability to impose the constraints. This is particularly critical for classes that are minority in

the dataset (see, e.g., the fairness examples in Chapter 5). On the other hand, factors (ii) and (iii)

affect only the optimal value of the solution, as required by the PACC framework (Definition 4).

By learning task difficulty [(ii)], we mean the sensitivity of the statistical problem to the con-

straints. This is embodied by the well-known sensitivity interpretation of the dual variables [130,
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Sec. 5.6], which can be formalized here due to the lack of duality gap (see Lemma 1 below or Propo-

sition 18 in Appendix A.4). Thus,
(
1 + ‖µ̃?‖1

)
M in (4.9a) effectively quantifies how stringent the

constraints are for the learning problem in terms of how much performance could be gained by

relaxing them. A similar interpretation applies to (4.7a).

Finally, the approximation error is affected by the approximation capability ν of the parametriza-

tion [(iii)]. It is worth noting that better parametrizations typically involve more parameters, which

in turn affects the VC dimension of P, leading to a typical compromise between approximation

error and complexity. For small sample sets, (4.9a) is dominated by the estimation error ε = VN .

This motivates the use of lower complexity classes which, though more restricted, will generalize

better. If there is abundance of data or the learning requirements are particularly stringent, the

approximation error ε0 in (4.10) dominates and finer, even if more complex, parametrizations should

be used.

In the sequel, we describe the steps necessary to prove Theorem 3. The proof is a combination

of three results that analyze the errors incurred while transforming (P-CSO) into (D̂-CSL). First,

we show that (P-CSO) is strongly dual under the conditions of Theorem 3. Hence, it is equivalent

to its dual problem (D-CSL) and the duality gap is zero (Section 4.1.1). Then, we bound the

parametrization gap, i.e., the error incurred from solving (D̂-CSL) using the parametrized space P

instead of H (Section 4.1.2). Finally, we study the empirical gap from approximating expectations

by sample averages (Section 4.1.3). Since some of these results may be of independent interest,

we briefly discuss each of them in the sequel. The complete proof of Theorem 2 is deferred to

Appendix A.2.

4.1.1 The duality gap

Consider the dual problem of (P-CSO) in (D-CSL) for q = 0, in which case the Lagrangian in (4.3)

reduces to

L(φ,µ) = E(x,y)∼D0

[
`i
(
φ(x), y

)]
+

m∑
i=1

µi

(
E(x,y)∼Di

[
`i
(
φ(x), y

)]
− ci

)
. (4.11)
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Since (4.11) is a relaxation of (P-CSO), we know from weak duality that D? ≤ P ?. If the `i are con-

vex, it is well-known that this relation holds with equality under some constraint qualification (e.g.,

Assumption 3) [18]. The next result shows that under mild condition on the distributions Di,

equality holds even if the `i are non-convex. We note that, besides being the first step in the con-

struction of Theorem 3, this result is of independent interest and has been used in other contexts (see,

e.g., [30, 38,39]).

Proposition 1. Suppose there exists φ′ such that E(x,y)∼Di

[
`i
(
φ′(x), y

)]
< ci for i = 1, . . . ,m.

If Y is finite, the conditional random variable x|y induced by each of the joint distributions Di is

non-atomic, and H is decomposable, then (P-CSO) is strongly dual, i.e., P ? = D?.

Proof. See Appendix A.3. �

Hence, even if (P-CSO) is a non-convex program (e.g., in the rate-constrained learning example

of Section 5.1.2), it remains strongly dual under mild conditions. In particular, the conditional x|y

induced by the distributions Di must be non-atomic, i.e., cannot contain Dirac deltas. Additionally,

H must be a decomposable function space, i.e., if φ, φ′ ∈ H, then for any measurable set Z it holds

that φ̄ ∈ H for

φ̄(x) =


φ(x), x ∈ Z

φ′(x), x /∈ Z
.

Lebesgue spaces (e.g., L2 or L∞) or more generally Orlicz spaces are typical examples of decompos-

able function spaces [131].

Note that Proposition 1 requires Y be finite, i.e., this result holds only for classification prob-

lems. We address the regression case, i.e., continuous output y, in Appendix A.4 using a slightly

stronger assumption on the continuity of the losses. The regression case can then be approximated

arbitrarily well by a sequence of ever finer classification problems yielding the required strong duality

result (Proposition 22). A similar approach is used in the construction of regression trees [80].

4.1.2 The parameterization gap

Whereas Proposition 1 shows there is no duality gap between (P-CSO) and (D-CSL), the latter

remains a variational, statistical problem. The next step is therefore to approximate the functional
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space H using the finite dimensional parametrization fθ, which leads to the finite dimensional

problem

D?
θ = max

µ∈Rm+
min
θ∈Rp

Lθ(θ,µ) , L(fθ,µ), (Dθ-CSL)

where L is the Lagrangian in (4.11). Notice that the minimization in (Dθ-CSL) is performed over P ⊆

H (Assumption 5). Hence, it is straightforward that D?
θ ≥ D? = P ?. Yet, if the parametrization

is rich enough, we would expect the gap D?
θ − P ? to be small. This intuition is formalized in the

following proposition.

Proposition 2. Let θ? achieve the saddle-point in (Dθ-CSL). Under the conditions of Theorem 3,

fθ? is a feasible, near-optimal solution of (P-CSO). Explicitly,

P ? ≤ D?
θ ≤ P ? + (1 + ‖µ̃?‖1)Mν, (4.12)

where P ? and D?
θ are as in (P-CSO) and (Dθ-CSL) respectively and µ̃? are the dual variables

of (P-CSO) with the constraints tightened to ci −Mν for i = 1, . . . ,m.

Proof. See Appendix A.5. �

Despite being finite dimensional, (Dθ-CSL) remains a statistical problem. Hence, though Propo-

sition 2 establishes that its solutions are not only (P-CSO)-feasible but also near-optimal, the issue

remains of how to solve it without explicit knowledge of the distributions Di. Observe, however,

that the objective of (Dθ-CSL) involves an unconstrained statistical minimization problem. We have

therefore done most of the heavy lifting and can now rely on generalization bounds from classical

learning theory.

4.1.3 The empirical gap

The final step to transform (Dθ-CSL) into the empirical dual problem (D̂-CSL) is to turn the

statistical Lagrangian (4.11) into the empirical (4.4). The estimation error incurred in this step is

detailed in the next proposition.

Proposition 3. Let θ̂? achieve the saddle-point in (D̂-CSL). Under the conditions of Theorem 3,

34



Algorithm 1 Primal-dual constrained learning

1: Initialize: θ(0) = 0, µ(0) = 0, λ
(0)
j = 0

2: for dot = 1, . . . , T

3: Obtain θ(t−1) such that L̂
(
θ(t−1),µ(t−1),λ

(t−1)
j

)
≤ min
θ∈Rp

L̂
(
θ,µ(t−1),λ

(t−1)
j

)
+ ρ

4: Update dual variables

µ
(t)
i =

[
µ

(t−1)
i + η

(
1

Ni

Ni∑
ni=1

`i
(
fθ(t−1)(xni), yni

)
− ci

)]
+

λ
(t)
j,nj

=
[
λ

(t−1)
j,nj

+
η

Nj

(
`j
(
fθ(t−1)(xnj ), ynj

)
− cj

)]
+

5: end for

it holds with probability 1− δ over the samples drawn from the distributions Di that

∣∣D?
θ − D̂?

∣∣ ≤ VN0
and (4.13)

E(x,y)∼Di

[
`i
(
fθ̂?(x), y

)]
≤ ci + VNi . (4.14)

where VN is as in (4.6) and D?
θ and D̂? are as in (Dθ-CSL) and (D̂-CSL) respectively.

Proof. See Appendix A.6. �

Theorem 3 is obtained directly from Propositions 1–3 using the triangle inequality. Observe

that the order in which these transformations is applied to (P-CSO) is crucial. If we begin by

replacing the expectations with sample averages, which leads to (P-ECRM), we need H to be PAC

learnable in order to derive any generalization guarantee. To overcome this issue, we could start

by parametrizing (P-CSO) using P. However, as we have argued before, this leads to a non-convex

problem for which strong duality does not hold.

4.2 A Constrained Learning Algorithm

Having established that (D̂-CSL) is worth solving, i.e., it is a near-PACC learning of (P-CSO) (The-

orems 2 and 3), we now proceed with the issue of how it can be solved. We have argued that (D̂-CSL)

is preferable to (PIV) for constrained learning because it is unconstrained. That is not to say

that (D̂-CSL) is easy to solve, but that it is not harder than classical ERM. We show that this is
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the case next by describing a practical algorithm that (approximately) solves (D̂-CSL) by (approxi-

mately) solving unconstrained learning problems.

To do so, start by noting that the outer maximization in (D̂-CSL) is a convex optimization

program. Indeed, the dual function d̂(µ,λj) = minθ L̂(θ,µ,λj) is the pointwise minimum of a set

of affine functions and is therefore always concave [18]. Additionally, its (sub)gradients can be easily

computed by evaluating the constraint slacks at the minimizer of L̂ [77, Ch. 3]. Hence, the main

challenge in (D̂-CSL) is the inner minimization.

Note, however, that this minimization is a classical, unconstrained ERM problem. In fact, it is

equivalent to solving an instance of a regularized learning problem. Hence, despite the non-convexity

of the Lagrangian (4.4), it is often the case that it is possible to find good minimizers, especially

for differentiable losses and parametrizations (i.e., most common ML models). For instance, there

is ample empirical and theoretical evidence that gradient descent can learn good parameters for

(C)NNs [7, 9, 84, 85, 124]. This is in contrast to (PIV) for which even obtaining a feasible θ can be

intricate. In that vein, we thus assume that we have access to the following oracle:

Assumption 6. There exists an oracle θ†(µ,λj) and ρ > 0 such that L̂
(
θ†(µ,λj),µ,λj

)
≤

minθ L̂
(
θ,µ,λj

)
+ ρ for all µ ∈ Rm+ and λj ∈ RNj+ , j = m+ 1, . . . ,m+ q.

Assumption 6 essentially states that we are able to (approximately) train regularized uncon-

strained learners using the parametrization fθ. We can then alternate between minimizing the

Lagrangian (4.4) with respect to θ for fixed (µ,λj) and updating the dual variables using the result-

ing minimizer. This procedure is summarized in Algorithm 1 and analyzed in the following theorem.

It is worth noting that this result applies to the deterministic output (θ(T ),µ(T )) of Algorithm 1 and

not to a randomized solution obtained by sampling from (θ(t),µ(t)), t = 0, . . . , T , as in [57,58,62].

Theorem 4. Under the conditions of Theorem 2 or 3, the primal-dual pair (θ(T ),µ(T ),λ(T )) ob-

tained after running Algorithm 1 for

T ≤
⌈

U0

2ηMν

⌉
+ 1 steps

with step-size

η ≤ 2ε0(
m+ q

N

)
B2
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satisfies ∣∣∣L̂(θ(T ),µ(T ),λ(T )
)
− P ?

∣∣∣ ≤ ρ+ ε0 + VN0 (4.15)

with probability 1 − δ over sample sets, where U0 = ‖µ?‖2 +
∑m+q
j=m+1

∥∥λ?j∥∥2
is the initial distance

to the optimal dual variables (µ?,λ?j ) of (D̂-CSL) and ε0 is as in Corollary 1 or 2.

Proof. See Appendix A.7. �

Underlying the oracle in Assumption 6 (step 3 in Algorithm 1) is often an iterative procedure, e.g.,

gradient descent, and the cost of running this procedure until convergence to obtain an approximate

minimizer can be prohibitive. A common alternative is to adopt an Arrow-Hurwicz-style approach

in which the the primal variable θ(t) and the dual variables (µ(t),λ
(t)
j ) are updated iteratively [132].

While the convergence guarantee of Theorem 4 no longer holds in this case, good results are observed

in practice by performing the primal and dual updates at different timescales, e.g., by performing

step 3 once per epoch. This is what we do in the next chapter to illustrate the usefulness of this

algorithm in constrained learning applications.
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Chapter 5

Applications

In this chapter, we deploy the dual constrained learning results from Chapter 4 in two applications:

fairness and robustness. Throughout the experiments, we explore a myriad of models, from logistic

regression to fully connected NNs to CNNs, in order to showcase the wide applicability of these

results. We also illustrate how the dual variables can be used to obtain information on the sensitivity

of the constraints and deliver insights into which requirements are more stringent.

5.1 Fairness

Fair learning has garnered considerable attention recently due to the growing number of reports

denouncing biases in learning applications [1–3, 6]. Data-driven models, as it turns out, tend to

amplify discrepancies and biases in the data, an issue that has been studied at length in the classical

statistics literature. However, the complexity and scale of system and models used in modern ML,

combined with the over-reliance on convenience samples, requires that different solutions be put

forward. Constrained learning lens itself naturally to address this issue.

Different forms of fairness have been studied in the literature [57–59, 61, 62, 133]. We showcase

two of them below: the first based on invariance and the second on rate parity.
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5.1.1 Invariance and fair learning

Fairness can be seen as a form of invariance in which a model is trained to be insensitive to certain

protected variable (e.g., a gender). All things being equal, the model should have a similar outcome

regardless of whether the individual is female or male. Formally, consider a model φ whose output

is a discrete distribution over k possible classes. Then, (P-CSO) can be used to write

minimize
φ∈H

E(x,y)∼D

[
`0
(
φ(x), y

)]
subject to E(x,y)∼D

[
DKL

(
φ(x) ‖φ(ρ(x)

)]
≤ c,

(PV)

where ρ is an input transformation we wish the model to be invariant to (e.g., a specific change in

gender) and c > 0 determines the level of insensitivity. Formulation (PV) can be extended trivially

to multiple transformations. When the average invariance from (PV) is not enough, a stricter,

pointwise requirement can be imposed by using

DKL

(
φ(x, z) ‖φ(x, 1− z)

)
≤ c D-a.e.. (5.1)

The constraint in (PV) bounds the average causal effect (ACE) and (5.1) relates to counterfactual

fairness [133].

We begin by showcasing the use of (PV) in the Adult dataset [134], where the goal is to predict

whether an individual makes more than US$ 50, 000.00 while being insensitive to gender. The

transformations performed on the data are listed in Table 5.1.1. We use a neural network with

two outputs and a single hidden-layer with 64 nodes using a sigmoidal activation function. The

output is encoded into a probability using a softmax transformation (fθ : X → [0, 1]2). Using this

parametrization, we then pose the constrained learning problem

minimize
θ∈Rp

E
[
`0
(
fθ(x), y

)]
subject to DKL

(
fθ(x, z) ‖ fθ(x, 1− z)

)
≤ c,

(PVI)

where z is the variable gender (encoded 0 for female and 1 for male) and `0 is the negative logistic

log-likelihood, i.e., − log
(

[fθ(x)]y

)
. To solve (PVI), we use ADAM [135] for step 3 of Algorithm 1,
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Table 5.1: Preprocessing of the Adult dataset
Variable names Transformation
fnlwgt Dropped
educational-num Dropped
relationship Dropped
capital-gain Dropped
capital-loss Dropped
education Grouped the levels Preschool, 1st-4th, 5th-6th, 7th-8th, 9th, 10th,

11th, 12th
race Grouped the levels Other and Amer-Indian-Eskimo
marital-status Grouped the levels Married-civ-spouse, Married-AF-spouse, Married-

spouse-absent
marital-status Grouped the levels Divorced, Separated
race Grouped the levels Other and Amer-Indian-Eskimo
native-country Grouped the levels Columbia, Cuba, Guatemala, Haiti, Ecuador, El-

Salvador, Dominican-Republic, Honduras, Jamaica, Nicaragua, Peru,
Trinadad&Tobago

native-country Grouped the levels England, France, Germany, Greece, Holand-
Netherlands, Hungary, Italy, Ireland, Portugal, Scotland, Poland, Yu-
goslavia

native-country Grouped the levels Cambodia, Laos, Philippines, Thailand, Vietnam
native-country Grouped the levels China, Hong, Taiwan
native-country Grouped the levels United-States, Outlying-US(Guam-USVI-etc),

Puerto-Rico
age Binned by quantiles (6 bins)
hours-per-week Binned levels into less than 40 and more than 40
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Figure 5.1: Classifier sensitivity on the Adult test set.

with batch size 128 and learning rate 0.1. All other parameters were kept as in the original paper.

After each epoch, we update the dual variables (step 4), also using ADAM with a step size of 0.01.

We take c = 10−3. All classifiers were trained over 300 epochs.

Without the constraint in (PVI), the resulting classifier is quite sensitive to gender: its prediction

would changes for approximately 8% of the test samples if their gender were reversed (Figure 5.1).

With the pointwise constraint, the classifier becomes insensitive to the protected variable in 99.9% of

the test set, which is on the order of 1/
√
N ≈ 0.008. While the less strict ACE can also be imposed,

it leads to slightly more sensitive classifiers (for c = 5×10−4, the classifier changes prediction in 0.2%

of the test set).

Recall that due to the bound on the duality gap, the dual variables of (PVI) obtained in Algo-

rithm 1 have a sensitivity interpretation (Lemma 9): the larger their value, the harder the constraint

is to satisfy [18]. Almost 96% of the dual variables are zero after convergence, meaning that the

constraint was tight for only 4% of the individuals. In Figure 5.2a, we show the distribution of λ > 0

over the Adult training set. If we analyze the group with the largest dual variables (the 80% per-

centile to be exact), we find a significantly higher prevalence of married individuals, non-white,

non-US natives, and with a Masters degree (Figure 5.2b). Hence, while attempting to control for

gender invariance, the constrained learner also had to overcome other prejudices correlated to sexism

in the dataset.

This situation becomes clearer when applying (PV) to the COMPAS dataset [136]. Here, the
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Figure 5.2: Dual variable analysis for Adult dataset: (a) distribution of the dual variables values and
(b) prevalence of different groups among the 20% training set examples with largest dual variables.

Table 5.2: Preprocessing of the COMPAS dataset
Variable names Transformation
age cat Dropped
is recid Dropped
is violent recid Dropped
score text Dropped
v score text Dropped
decile score Dropped
v decile score Dropped
race Grouped the levels Other, Asian, Native American
age Binned by quantiles (5 bins)
priors count Binned levels into 0, 1, 2, 3, 4, and more than 4
juv misd count Binned levels into 0, 1, and more than 1
juv other count Binned levels into 0, 1, and more than 1

goal is to predict recidivism based on an individual’s past offense data (see Table 5.1.1 for details

on the data processing). We use the same neural network as before trained over 400 iterations using

a similar procedure, but with batch size 256, primal learning rate 0.1, and dual variables learning

rate 2 (halved every 50 iterations). Unconstrained, it reaches an accuracy of almost 70%, but is

sensitive to both gender, race, and gender × race (Table 5.1.1). By including ACE constraints on

these counterfactuals, we obtain a classifier that is now invariant to these variables.

Once again, the value of the dual variables bring insights into the different forms of biases in

the dataset (Figure 5.3). If we do not include constraints on the cross-term counterfactuals, then

the hardest constraint to satisfy is the gender-invariant one. Invariance to the Caucasian:Hispanic
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Table 5.3: Classifier insensitivity on the COMPAS dataset
Counterfactual Unc. (Acc: 69.4%) ACE (Acc: 67.9%)
Male ↔ Female 21.4% 0%
African-American ↔ Caucasian 10.86% 0%
African-American ↔ Hispanic 14.32% 0.02%
African-American ↔ Other 11.38% 0%
Caucasian ↔ Hispanic 9.11% 0%
Caucasian ↔ Other 6.54% 0%
Hispanic ↔ Other 3.08% 0%
Male ↔ Female + African-American ↔ Caucasian 28.84% 0.02%
Male ↔ Female + African-American ↔ Hispanic 27.47% 0%
Male ↔ Female + African-American ↔ Other 29.17% 0%
Male ↔ Female + Caucasian ↔ Hispanic 22.71% 0%
Male ↔ Female + Caucasian ↔ Other 24.27% 0%
Male ↔ Female + Hispanic ↔ Other 21.15% 0%

and Hispanic:Other counterfactuals is effectively “implied” by the other constraints, since their dual

variables vanish. If we include all 13 counterfactuals, i.e., add the cross-terms between gender and

race, then the cross-terms dominate the satisfaction difficulty, with the Male:Female × African-

American:Caucasian dichotomy dominating over all others. Interestingly, however, the dual variable

for the African-American:Caucasian counterfactual does not completely vanish, indicating the exis-

tence of a gender-independent race bias in the dataset. This does not occur with other combinations

of the race factor. This type of combinatorial (gerrymandering) fairness poses a serious challenge in

fair classification [60].

5.1.2 Rate-constrained learning

Many definitions of fairness involve some form of rate constraint parity. Rate constraints, or more

precisely probability or chance constraints, have been used in statistics since Neyman-Pearson [86]

and have been applied beyond fair learning to control classifier performance, such as its coverage,

precision, or accuracy [57,58,60,62]. Explicitly, a rate-constrained learning problems can be written

as

P ? = min
φ∈H

E(x,y)∼D0

[
`0
(
φ(x), y

)]
subject to E(x,y)∼Di

[
I
(
E
)]
≤ ci,

(P-RCL)
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Figure 5.3: Dual variables of different counterfactual constraints for the COMPAS dataset.

where I
(
E
)

denotes the indicator function of an event E , i.e., I
(
E
)

= 1 when E occurs and zero

otherwise.

Rate constraints are challenging due to their non-convexity and non-differentiability. Hence,

most existing generalization guarantees for rate-constrained problems apply to specific algorithms

and hold for randomized models [57, 58, 60, 62]. In contrast, Theorems 3 and 4 provide conditions

under which (P-RCL) is (near-)PACC learnable, i.e., under which deterministic models can be

obtained. Still, the non-differentiability of the indicator function can hinder step 3 of Algorithm 1.

Since we only need an approximate solution, we use a smooth surrogate of the indicator in the sequel,

namely a sigmoidal function, in order to allow step 3 to be performed using gradient descent. This

is a typical approach in the statistics (e.g., logistic models) and rate constraints literature [57,62].

To illustrate the use of rate constraints in learning, let us revisit the problem of fair classifica-

tion application using the COMPAS dataset [136]. The goal is to predict recidivism based on the

individual’s characteristics and past offenses. Yet, while the overall recidivism rate in the dataset

is 45.5%, this rate is 52.3% for African-Americans, which compose 51.4% of the data (Figure 5.4).

Considering how this data was collected (based on arrests), we expect this disparity to be due to

sampling bias. Training an unconstrained logistic classifier exacerbates this skewness. While its test

accuracy is 68.5%, it predicts an overall recidivism rate of 38.4% (the actual rate on the test set
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is 45.7%) while maintaining the African-American group rate at 52.2% (Figure 5.4). This classifier

was trained over a random sample containing 80% of the dataset using ADAM [135] for 1000 epochs

with batch size of 128 samples, learning rate 0.2, and all other parameters as in the original paper.

While we use a logistic classifier, the same results are obtained for a single layer feedforward neural

network.

We overcome this issue, by imposing an asymmetric form of statistical parity that upper bounds

the difference between each protected group’s recidivism rate and the overall one. Explicitly,

P ? = min
φ∈H

E
[
`0
(
φ(x), y

)]
subject to E

[
I
[
φ(x) ≥ 0.5

] ∣∣∣Race = r
]
≤ E

[
I
[
φ(x) ≥ 0.5

]]
+ 0.01,

(PVII)

where `0 is the negative log-likelihood of the logistic distribution and r = {African-American, Cau-

casian, Hispanic, Other}. In other words, the final classifier is required to predict recidivism within

each group at most 1% above the rate of the overall population.

We solve (PVII) using a logistic classifier for φ trained with Algorithm 1 over T = 1000 epochs.

For step 3, we used ADAM with the same hyperparameters as above and a sigmoidal approximation

for the indicator function. Explicitly, we replaced I
[
φ(x) ≥ 0.5

]
by σ

(
a(φ(x) − 0.5)

)
, where σ

denotes the sigmoid function. In our simulations, we set a = 8. After each epoch, we updated the

dual variables (step 5) also using ADAM with step size 0.001. The results are shown in the last row

of Figure 5.4.

Notice that compared to the unconstrained model, the predicted recidivism rate over the test set

remains almost the same (38.9%), but the rates within each group are now more homogeneous. For

instance, the rate for African-Americans is now only 1.5% above the overall one. Interestingly, the

model now predicts Caucasians have a considerably higher recidivism, from 24.07% in the uncon-

strained model to 39.8%, which is much closer to the actual rate in the data set (39.1%). In doing

so, the test accuracy of (PVII) (66.3%) remains close to that of the unconstrained classifier.

Since we used a logistic classifier, we can interpret its coefficients as odds ratio to analyze the dif-

ferences between the constrained and unconstrained models. The coefficients with largest changes are

displayed in Figure 5.5. Note that while the original model estimates that being African-American

increases your chances of recidivism by almost 30%, the constrained model compensates for the
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dataset biases by instead decreasing the probability by 40%. The opposite effect occurs in the Cau-

casian group. The model also compensates for the individual having a large number of priors, a

group composed mostly of African-Americans in the dataset (69%).

5.2 Robustness

Another issue affecting ML models, especially CNNs, is robustness. It is straightforward to construct

small input perturbations that lead to misclassification and there are now numerous methods to

do so. Although adversarial training has been successfully used to train robust ML models, it

often leads to solutions with poor nominal performance, i.e., poor performance on original, clean

data [11, 15, 63, 78, 79, 137]. To overcome this issue, [64] poses a constrained learning that explicitly

trades-off nominal performance and with the model invariance to a worst-case perturbation. They

propose an algorithm that optimizes over an upper bound of this robustness constraint, leading to

solutions that are accurate on clean data and have similar classification on noisy inputs. Similarly,

we address this nominal performance vs. robustness compromise by using (P-CSO) to constraint the

performance of the classifier on an adversarial distribution (rather than making it invariant as in
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Section 5.1.1). Explicitly, we pose

minimize
φ∈H

E(x,y)∼D

[
`0
(
φ(x), y

)]
subject to E(x,y)∼A

[
`0
(
φ(x), y

)]
≤ c

(PVIII)

where A is an adversarial data distributions. Hence, we optimize against a given adversarial distri-

bution A rather a worst-case one. This distribution can be tailored to provide a smooth performance

degradation, as we illustrate next.

Consider the problem of training a ResNet18 [138] to classify images from the FMNIST dataset [139].

We reserve 100 images from each class sampled at random for validation. When trained without con-

straints over 100 epochs using the ADAM optimizer with the settings from [135] and batches of 128

images, it reaches it best accuracy over the validation set after 67 epochs. The nominal accuracy of

this solution (over the test set) is 93.5%. However, when the input is attacked using PGD [63], it

fails to classify any of the test images for perturbation magnitudes as low as ε = 0.04 (Figure 5.6a).

In what follows, ε indicates the maximum pixel modification allowed (`∞-norm of the perturbation)

and we run the PGD attack using a step size of ε/30 for 50 iterations displaying the worst result

over 10 restarts, unless stated otherwise.

A first attempt is then to use PGD with ε = 0.04 to sample from a hypothetical adversarial

distribution and constrain its performance against that distribution as in (PVIII). Though the

adversarial distribution is now dependent on the model φ, by using a smaller learning rate for the dual

variables, φ can be considered almost static for the dual update and we have observed no instability

issues in practice. To accelerate training, we use a much weaker attack running PGD without

restarts for only 5 steps with step size ε/3. Notice from Figure 5.6a that when training against ε =

0.04 (c = 0.4), the resulting classifier trades-off nominal performance (now 88%) for adversarial

performance (now 85%). However, as the strength of the attack increases, the performance of the

classifier deteriorates abruptly: for ε = 0.08, it is down to 9%. Increasing the training adversarial

strength to ε = 0.1 (c = 0.7) yields a more robust classifier, albeit at the cost of a lower nominal

accuracy (84.6%). Still, the performance degradation remains quite abrupt.

This issue can be fixed by training against using a hierarchical adversarial distribution. Explicitly,
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we build the adversarial distribution A as

Pr (A) = Pr (A | ε) Pr (ε) , (5.2)

where Pr (A | ε) is induced by an adversarial attack of magnitude at most ε (in our case, PGD)

and Pr (ε) denotes a prior distribution on the magnitude of the attacks. In Figure 5.6a we take ε ∼

0.25 × Beta(3, 8) (Figure 5.6b). Notice that even though the mean value of the perturbation is

approximately 0.07, the resulting classifier has a nominal performance close to 87% and retains

a 67% accuracy for perturbations of magnitude up to 0.12.

Similar results are obtained when training a ResNet18 [138] to classify images in the CIFAR-

10 dataset. The training was performed as above, once again reserving 100 random images from

each class sampled for validation. The unconstrained classifier trained over 100 epochs reached it

best accuracy over the validation set after 82 epochs, which corresponds to a nominal test accuracy

of 85.4%. However, when the input is attacked using PGD [63], the accuracy falls to 5% already

for ε = 0.01 (Figure 5.7a). When using the fixed ε training method described above, we once again

observe a trade-off between nominal accuracy and robustness. This can, however, be improved using

the hierarchical training technique from (5.2). Taking ε ∼ 0.1× Beta(3, 10), such that E [ε] = 0.02,

we obtain the same nominal accuracy as for the fixed-ε, but improve the robustness for higher

perturbation values.
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Figure 5.6: Robust constrained learning (FMNIST): (a) Accuracy of classifiers under the PGD attack
for different perturbation magnitudes and (b) distribution of ε used during training.
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Figure 5.7: Robust constrained learning (CIFAR-10): (a) Accuracy of classifiers under the PGD
attack for different perturbation magnitudes and (b) distribution of ε used during training.
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Part II

Constrained inference
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Chapter 6

Sparse nonlinear functional models

In this chapter, we address the issue of nonlinear functional inference under sparsity constraints.

These constraints are commonly used to obtain parsimonious, interpretable solutions, reduce mea-

surement costs, or enable estimation problems to be solved in challenging, high-dimensional scenar-

ios. Although we now consider the inference setting in which models (distributions) are available to

us analytically, the estimation problems tackled next are by no means easy. In fact, they have the

appearance of intractability due to their infinite dimensional, nonlinear, non-convex properties. Yet,

these functional, nonlinear statistical inference problems appear in numerous applications, such as

spectral estimation, image recovery, source localization, magnetic resonance fingerprinting, spectrum

cartography, and manifold data sparse coding [87–93].

The infinite dimensionality and nonlinearity challenges of these applications are often tackled by

imposing structure on the signals. For instance, bandlimited, finite rate of innovation, or union-of-

subspaces signals can be processed using an appropriate discrete set of samples [94–97]. Functions

in reproducing kernel Hilbert spaces (RKHSs) also admit finite descriptions through variational

results known as representer theorems [140,141]. The infinite dimensionality of continuous problems

is therefore often overcome by means of sampling theorems. Similarly, nonlinear functions with

bounded total variation or lying in an RKHS can be written as a finite linear combination of basis

functions. Under certain smoothness assumptions, nonlinearity can be addressed using “linear-in-

the-parameters” methods.
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In these contexts, sparsity priors play an important role in achieving state-of-the-art results since

discretization often leads to underdetermined problems. This is achieved by leveraging the assump-

tion that there exists a signal representation in terms of only a few atoms from an overparametrized

dictionary [69, 97, 98]. Since fitting these models leads to non-convex (and possibly NP-hard [99])

problems, sparsity is typically replaced by a tractable relaxation based on an atomic norm (e.g.,

the `1-norm). For linear, incoherent dictionaries, these relaxed problems have be shown to retrieve

the desired sparse solution [69,98]. Nevertheless, discretized continuous problems rarely meet these

conditions. Only in specific instances, such as line spectrum estimation, there exist guarantees for

relaxations that forgo discretization [96,106–111].

This discretization/relaxation approach, however, is not always effective. Indeed, discretization

can lead to grid mismatch issues and even loss of sparsity: infinite dimensional sparse signals need

not be sparse when discretized [103–105]. Also, sampling theorems are sensitive to the function class

considered and are often asymptotic: results improve as the discretization becomes finer. This leads

to high dimensional statistical problems with potentially poor numerical properties (high condition

number). In fact, `1-norm-based recovery of spikes on fine grids (essentially) finds twice the number

of actual spikes and the number of support candidate points increases as the number of measurements

decreases [142,143]. Furthermore, performance guarantees for convex relaxations rely on incoherence

assumptions (e.g., restricted isometry/eigenvalue properties) that may be difficult to meet in practice

and are NP-hard to check [100–102]. Finally, these guarantees hold for linear measurements models.

Directly accounting for nonlinearities in sparse models makes a difficult problem harder, since

the optimization program remains non-convex even after relaxing the sparsity objective. This is

evidenced by the weaker guarantees existing for `1-norm relaxations in nonlinear compressive sensing

problems [144, 145]. Though “linear-in-the-parameters” models, such as splines or kernel methods,

may sometimes be used (e.g., spectrum cartography [92]), they are not applicable in general. Indeed,

the number of kernels needed to represent a generic nonlinear model may be so large that the solution

is no longer sparse. What is more, there is no guarantee that these models meet the incoherence

assumptions required for the convex relaxation to be effective [69,97,98].

In what follows, we forgo both discretization and relaxation to directly tackle the continuous

problem using sparse functional programming. SFPs, briefly introduced in Section 2.2.2.1 combine
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the infinite dimensionality of functional programming with the non-convexity of sparsity and non-

linear atoms. Nevertheless, they turn out to be tractable under mild conditions (Theorem 5). This

result also yields a relation between minimizing the support of a function (“L0-norm”) and its L1-

norm, although the latter may yield non-sparse solutions. We illustrate the expressiveness of SFPs

by casting different signal processing problems and providing numerical examples that showcase

their effectiveness.

Recall that in order to be consistent with the Bayesian inference literature, we reverse the roles

of x and y in this part. In other words, we consider the measurements y as observations based on

which we wish to estimate the hidden variables x. Thus, instead of observing both x and y but

not Di (learning, as in Part I), we observe y and D, but not x.

6.1 Sparse functional programs and duality

6.1.1 Sparse functional programs

Sparse functional programs (SFPs) are variational problems that seek sparsest functions, i.e., func-

tions with minimum support measure. Explicitly, let (Ω,B) be a measurable space in which B are

the Borel sets of Ω, a compact set of Rn. In a parallel with the discrete case, define the L0-norm to

be the measure of the support of a function, i.e., for a measurable function X : Ω→ C,

‖X‖L0
= m [supp(X)] =

∫
Ω

I [X(β) 6= 0] dβ. (6.1)

Note that the integral in (6.1) is a multivariate integral over vectors β ∈ Ω. Unless otherwise

specified, all integrals are taken with respect to the Lebesgue measure m. As in the discrete case,

the “L0-norm” in (6.1) is not a norm, but we omit the quotation marks so as not to burden the text.
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A general SFP is then defined as the optimization problem

minimize
X∈X , z∈Cp

∫
Ω

F0 [X(β),β] dβ + λ ‖X‖L0

subject to gi(z) ≤ 0, i = 1, . . . ,m

z =

∫
Ω

F [X(β),β] dβ

X(β) ∈ P a.e.

(P-SFP)

where λ > 0 is a regularization parameter that controls the sparsity of the solution; gi : Cp → R are

convex functions; F0 : C × Ω → R is an optional, not necessarily convex regularization term (e.g.,

take F0(x,β) = |x|2 for shrinkage); F : C×Ω→ Cp is a vector-valued (possibly nonlinear) function;

P is a (possibly non-convex) set defining an almost everywhere (a.e.) pointwise constraints on X,

i.e., a constraint that holds for all β ∈ Ω except perhaps over a set of measure zero (e.g., P =

{x ∈ C | |x| ≤ Γ} for some Γ > 0); and X is a decomposable function space as in Chapter 4, i.e.,

if X,X ′ ∈ X , then for any Z ∈ B it holds that X̄ ∈ X for

X̄(β) =


X(β), β ∈ Z

X ′(β), β /∈ Z
.

Lebesgue spaces (e.g., X = L2 or X = L∞) or more generally Orlicz spaces are typical examples

of decomposable function spaces. The space of constant functions, for instance, is not decompos-

able [131].

The linear, continuous sparse recovery/denoising problem is a particular case of (P-SFP). Here,

we seek to represent a signal y ∈ Rp as a linear combination of a continuum of atoms φ(β) indexed

by β ∈ Ω ⊂ R, i.e., as
∫

Ω
X(β)φ(β)dβ, using a sparse functional coefficient X. This problem can be

posed as

minimize
X∈L2, ŷ∈Rp

‖X‖2L2
+ λ ‖X‖L0

subject to ‖y − ŷ‖22 ≤ ε

ŷ =

∫
Ω

X(β)φ(β)dβ,

(PIX)

where ε > 0 is a goodness-of-fit parameter. Notice that when discretized, this problem yields the
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classical (NP-hard [99]) dictionary denoising problem with ŷ = φTx, where φ = [φ(βj)] and x =

[X(βj)], for a set of βj ∈ Ω, j = 1, . . . ,m.

The expressiveness of SFPs comes from their ability to accommodate nonlinear measurement

models (through F ) and non-convex objective functions. For instance, (PIX) can also be posed

using the nonlinear model

ŷ =

∫
Ω

ρ [X(β)φ(β)] dβ, (6.2)

where ρ represents, for instance, a source saturation (as in, e.g., Section 6.4). Yet, the abstract

formulation in (P-SFP) certainly obfuscates the applicability of SFPs. Additionally, severe technical

challenges, such as infinite dimensionality and non-convexity, appear to hinder their usefulness. We

defer the issue of applicability to Section 6.4, where we illustrate the use of SFPs in the context

of nonlinear spectral estimation and nonlinear functional data analysis. Instead, we first focus on

whether problems of the form (P-SFP) can even be solved. Indeed, note that the discrete versions

of certain SFPs are known to be NP-hard [99]. Hence, discretizing the functional problem in this

case makes it intractable.

We propose to solve SFPs using duality. It is worth noting that duality is often used to solve semi-

infinite convex programs [106–108, 146]. In these cases, strong duality holds under mild conditions

and solving the dual problem leads to a solution of the original optimization problem of interest.

However, SFPs are not convex. To address this issue, we first derive the dual problem of (P-SFP)

in the next section, noting that it is both finite dimensional and convex. Then, we show that we

can obtain a solution of (P-SFP) from a solution of its dual by proving that SFPs have zero duality

gap under quite general conditions (Section 6.2). Finally, we suggest different algorithms to solve

the dual problem of (P-SFP) (Section 6.3).

6.1.2 The Lagrangian dual of sparse functional programs

To formulate the dual problem of (P-SFP), we first introduce the Lagrange multipliers νi ∈ R+,

corresponding to the inequalities gi(z) ≤ 0, and µR,µI ∈ Rp, corresponding to the real and imag-

inary parts respectively of the complex-valued equality z =
∫

Ω
F [X(β),β] dβ. To simplify the

derivations, we collect the former into the vector ν ∈ Rm+ and combine the latter two multipli-

ers into a single complex-valued dual variable by noticing that for any vector x ∈ Cm, it holds
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that µTR Re[x] + µTI Im[x] = Re
[
µHx

]
, where µ = µR + jµI .

The Lagrangian dual of (P-SFP) is then defined as

L(X, z,µ,ν) =

∫
Ω

F0 [X(β),β] dβ + λ ‖X‖L0

+ Re

[
µH

(∫
Ω

F [X(β),β] dβ − z
)]

+

m∑
i=1

νigi(z)

(6.3)

and its dual function is given by

d(µ,ν) = min
X∈X , z∈Cp,
X(β)∈P

L(X, z,µ,ν). (6.4)

The fact that the pointwise constraint holds almost everywhere in Ω is omitted for conciseness.

Thus, the dual problem of (P-SFP) is given by

maximize
µ, ν�0

d(µ,ν). (D-SFP)

By definition, (D-SFP) is a convex program whose dimensionality is equal to the number of

constraints [130]—in this case, on the order of p. It is therefore tractable as long as we can evaluate

the dual function d. Indeed, solving (D-SFP) is at least as hard as solving the minimization in (6.4).

We next show that the dual function of SFPs is often efficiently computable.

The joint minimization in (6.4) separates as

d(µ,ν) = dX(µ) + dz(µ,ν) (6.5)

with

dX(µ) = min
X∈X ,
X(β)∈P

∫
Ω

{
F0 [X(β),β] + λ I [X(β) 6= 0]

+ Re
[
µHF [X(β),β]

]}
dβ

(6.6)

and dz(µ,ν) = minz
∑m
i=1 νigi(z) − Re[µHz]. The minimum in dz is tractable since the objective

is convex, given that νi ≥ 0 and the gi are convex functions. In certain cases, e.g., when gi is a
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quadratic loss, dz may even have a closed-form expression. On the other hand, dX is in general a non-

convex problem. When F0 and F are normal integrands [131, Def. 14.27], this issue is addressed by

exploiting the separability of the objective across β as shown in Proposition 4. Examples of normal

integrands include functions f(x,β) that are continuous in x for all fixed β and measurable in β for

all fixed x (also known as Carathéodory) or when Ω is Borel and f(·,β) is lower semicontinuous for

all fixed β [131]. Note that these functions can be nonlinear and need not be convex.

Proposition 4. Consider the functional optimization problem in (6.6) and assume that F0 and the

elements of F are normal integrands. Let γ(0)(µ,β) = F0(0,β) + Re
[
µHF (0,β)

]
and define

γo(µ,β) = min
x∈P

F0(x,β) + Re
[
µHF (x,β)

]
. (6.7)

Then, for S(µ) = {β ∈ Ω : γo(µ,β) < γ(0)(µ,β)− λ},

dX(µ) =

∫
S(µ)

[λ+ γo(µ,β)] dβ +

∫
Ω\S(µ)

γ(0)(µ,β)dβ. (6.8)

Proof. We start by separating the objective of (6.6) using the following lemma:

Lemma 1 (Separability principle [131, Thm. 14.60]). Let G(x,β) be a normal integrand and X be

a decomposable space. Then,

inf
X∈X

X(β)∈P

∫
Ω

G [X(β),β] dβ =

∫
Ω

inf
x∈P

G(x,β)dβ. (6.9)

Since Ω is a compact subset of Rn and the indicator function is lower semicontinuous [131, Ex. 14.31],

the integrand in (6.6) is normal and we can restrict ourselves to solving the optimization individually

for each β, i.e., if Xd is a solution of (6.6), then

Xd(β) ∈ argmin
x∈P

F0 [x,β] + λ I [x 6= 0] + Re
[
µHF [x,β]

]
. (PX)

Despite the non-convexity of the indicator function, (PX) is a scalar problem, whose solution involves

a simple thresholding scheme. Indeed, only two conditions need to be checked: (i) if Xd(β) = 0, then

the indicator function vanishes and the objective of (PX) evaluates to γ(0)(β); (ii) if Xd(β) 6= 0, then
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the indicator function is one and the objective of (PX) evaluates to λ + γo(β). The value of (PX)

is the minimum of these two cases, which from Lemma 1 yields the desired result in (6.8). �

Proposition 4 provides a practical way to evaluate (6.5), i.e., to evalute the objective of the dual

problem (D-SFP). Still, it relies on the ability to efficiently solve (6.7), which may be an issue if F0,

F , or P are non-convex. Nevertheless, (6.7) remains a scalar problem that can typically be solved

efficiently using global optimization techniques [147] or through efficient local search procedures (see

Section 6.4).

The tractability of the dual problem (D-SFP) does not imply that it provides a solution to

the original problem (P-SFP). In fact, since SFPs are not convex programs it is not immediate

that (D-SFP) is worth solving at all: there is no reason to expect that the optimal value of (D-SFP)

is anything more than a lower bound on the optimal value of (P-SFP) [130]. In the sequel, we

proceed to show that this is not the case and that we can actually obtain a solution of (P-SFP) by

solving (D-SFP).

6.2 Strong duality and its implications

Though we have argued that the dual problem of (P-SFP) is potentially tractable, we are ultimately

interested in solving (P-SFP) itself. This section tackles this limitation by showing that (P-SFP)

and (D-SFP) have the same values (Theorem 5). In Section 6.3, we show how, under mild conditions,

this result allows us to efficiently find a solution for (P-SFP). Before that, however, we use strong

duality to derive a relation between SFPs and L1-norm optimization problems when their solution

saturates (Section 6.2.2).

6.2.1 Strong duality of sparse functional programs

The main result of this section is presented in the following theorem:

Theorem 5. Suppose that F0 and F have no point masses (Dirac deltas) and that there exists

a (P-SFP)-feasible pair (X ′, z′), i.e., X ′ ∈ X with X ′(β) ∈ P a.e. and z′ ∈ Cp, such that z′ =∫
Ω
F [X ′(β),β] dβ and gi(z

′) < 0 for all i = 1, . . . ,m. Then, strong duality holds for (P-SFP), i.e.,

if P ? is the optimal value of (P-SFP) and D? is the optimal value of (D-SFP), then P ? = D?.
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Theorem 5 states that although (P-SFP) is a non-convex functional program, it has zero duality

gap, suggesting that it can be solved through its tractable dual (D-SFP). A noteworthy feature of

this approach is that it precludes discretization by tackling (P-SFP) directly. Discretizing (P-SFP)

may not only result in NP-hard problems, but leads to high dimensional, potentially ill-conditioned

problems. It is also worth noting that Theorem 5 is non-parametric in the sense that it makes no

assumption on the existence or validity of the measurement model in (P-SFP). In particular, it

does not require that the data arise from a specific model in which the parameters are sparse. This

implies, for instance, that the sparsest functional linear model that fits a set of measurements can

be determined regardless of whether these measurements arise from a truly sparse, linear model.

This is useful in practice when sparse solutions are sought, not for epistemological reasons, but for

reducing computational or measurement costs.

Proof of Thm. 5. Recall from weak duality that the dual problem is a lower bound on the value of

the primal, so that D? ≤ P ? [130]. Hence, it suffices to prove that D? ≥ P ?. To do so, denote the

cost function of (P-SFP) by f0(X) ,
∫

Ω
F0 [X(β),β] dβ + λ ‖X‖L0

and define the cost-constraints

set

C =

{
(c,u,kR,kI)

∣∣∣ ∃(X, z) ∈ X × Cp such that

X(β) ∈ P a.e., f0(X) ≤ c, gi(z) ≤ [u]i,

and

∫
Ω

F [X(β),β] dβ − z = kR + jkI

}
.

(6.10)

In words, C describes the range of values taken by the objective and constraints of (P-SFP). Observe

that (6.10) separates the real- and complex-valued parts of the equality constraint in (P-SFP).

Hence, C ⊂ R2p+m+1, allowing us to directly leverage classical convex geometry results. The crux

of this proof is to show that C is a convex set even though (P-SFP) is not a convex program. We

summarize this result in the following technical lemma whose proof relies on Lyapunov’s convexity

theorem [148]:

Lemma 2. Under the assumptions of Theorem 5, the cost-constraints set C in (6.10) is a non-empty

convex set.

Proof. See Appendix B.1.1. �
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We may then leverage the following result from convex geometry:

Proposition 5 (Supporting hyperplane theorem [18, Prop. 1.5.1]). Let A ⊂ Rn be a nonempty

convex set. If x̃ ∈ Rn is not in the interior of A, then there exists a hyperplane passing through x̃

such that A is in one of its closed halfspaces, i.e., there exists p 6= 0 such that pT x̃ ≤ pTx for

all x ∈ A.

Formally, start by observing that the point (P ?,0,0,0) cannot be in the interior of C. Indeed,

there would otherwise exist δ > 0 such that (P ? − δ,0,0,0) ∈ C, violating the optimality of P .

Proposition 5 therefore implies that there exists a non-zero vector (λ0,ν,µR,µI) ∈ R2p+m+1 such

that for all (c,u,kR,kI) ∈ C,

λ0c+ νTu+ µTRkR + µTI kI ≥ λ0P
?. (6.11)

Observe that the vector defining the hyperplane uses the same notation as for the dual variables

of (P-SFP) foreshadowing the fact that these hyperplanes span the values of the Lagrangian (6.3).

From (6.11), we immediately obtain that λ0 ≥ 0 and ν � 0. Indeed, note that C is unbounded above

in its first m+1 components, i.e., if (c,u,kR,kI) ∈ C then (c′,u′,kR,kI) ∈ C for any (c′,u′) � (c,u).

Hence, if any component of λ0 or ν were negative, there would exist a vector in C that makes the

left-hand side of (6.11) arbitrarily small, eventually violating the inequality. Let us now show

that λ0 6= 0.

To do so, suppose λ0 = 0. Then, (6.11) reduces to

νTu+ µTRkR + µTI kI ≥ 0, (6.12)

for all (c,u,kR,kI) ∈ C. However, (6.12) leads to a contradiction because its left-hand side can

always be made negative. Indeed, if [ν]i > 0 for any i, then the hypothesis on the existence

of a strictly feasible point for (P-SFP) violates (6.12). Explicitly, since there exists (X ′, z′) such

that
∫

Ω
F [X ′(β),β] dβ = z′ and gi(z

′) < 0 for all i = 1, . . . ,m, then (c0,−δ1,0,0) ∈ C for some c0

and δ > 0, where 1 is a vector of ones. Thus, if [ν]i > 0 for any i, we obtain −δ(νT1) < 0, which

violates (6.12).
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On the other hand, if ν = 0, then (6.12) reduces to µTRkR + µTI kI ≥ 0 which cannot holds

because for (c̄, ū,−µR,−µI) ∈ C, (6.12) evaluates to −‖µR‖2 − ‖µI‖2 < 0. To see that this

vector is indeed an element of C, simply choose any X̄ ∈ C with X̄(β) ∈ P a.e. and let z̄ =

−µR − jµI −
∫

Ω
F
[
X̄(β),β

]
dβ, [ū]i = gi(z̄), and c̄ = f0(X̄). Hence, it must be that λ0 6= 0.

However, for λ0 6= 0, (6.11)

c+ ν̃Tu+ µ̃TRkR + µ̃TI kI ≥ P ,

where ν̃ = ν/λ0, µ̃R = µR/λ0, and µ̃I = µI/λ0, which from the definition of C implies that

f0(X) +

m∑
i=1

ν̃igi(z) + µ̃TR Re

[∫
Ω

F [X(β),β] dβ − z
]

+ µ̃TI Im
[∫

Ω

F [X(β),β] dβ − z
]
≥ P ?, (6.13)

for any (P-SFP)-feasible pair (X, z). Letting µ̃ = µ̃R+ jµ̃I , we recognize that (6.13) in fact bounds

the value of the Lagrangian in (6.3) for any (P-SFP)-feasible pair (X, z), i.e., L(X, z, µ̃, ν̃) ≥ P ?.

Taking the minimum of the left-hand side of (6.13) hence implies D? ≥ P ?, thus concluding the

proof. �

6.2.2 SFPs and L1-norm optimization problems

Similar to the discrete case, there is a close relation between L0- and L1-norm minimization. For-

mally, consider

minimize
X∈L∞, z∈Cp

‖X‖Lq

subject to gi(z) ≤ 0

z =

∫
Ω

F [X(β),β]dβ

|X| ≤ Γ a.e.

(Pq)

Problem (P0) [i.e., (Pq) with q = 0] is an instance of (P-SFP) without regularization (F0 ≡ 0)

in which P is the set of measurable functions bounded by Γ > 0. On the other hand, (P1) [(Pq)

for q = 1] is a functional version of the classical `1-norm minimization problem. The following
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proposition shows that for a wide class of dictionaries, the optimal values of (P0) and (P1) are the

same (up to a constant).

Proposition 6. Let xo(µ,β) = argmin|x|≤Γ |x| + Re
[
µTF (x,β)

]
saturate, i.e., xo(µ,β) 6= 0 ⇒

|xo(µ,β)| = Γ for all µ ∈ Cp and β ∈ Ω. If P ?0 (P ?1 ) is the optimal value of (Pq) for q = 0 (q = 1)

and Slater’s condition holds, then

P ?0 =
P ?1
Γ

.

Proof. The proof follows by relating the dual values of (Pq) for q = {0, 1} and then using strong

duality. Start by defining the Lagrangian of (Pq) as

L(X,z,µ,ν) = ‖X‖Lq +
∑
i

νigi(z)

+ Re

[
µH

(∫
Ω

F [X(β),β] dβ − z
)]

.

(6.14)

For q = 0, Proposition 1 yields

d0(µ, ν) =

∫
S0(µ)

{
1 + min

|x|≤Γ
Re
[
µHF (x,β)

]}
dβ

+ w(µ,ν).

(6.15)

where

S0(µ) = {β ∈ Ω | min
|x|≤Γ

Re
[
µHF (x,β)

]
< −1} (6.16)

and w(µ,ν) = minz
∑
i νigi(z) − Re

[
µHz

]
. Notice that w is homogeneous, i.e., w(αµ, αν) =

αw(µ,ν) for α > 0. Proceeding similarly from (6.14), the dual function of (P1) is

d1(µ, ν) =

∫
Ω

{
min
|x|≤Γ

|x|+ Re
[
µHF (x,β)

]}
dβ

+ w(µ,ν).

(6.17)

Using the the saturation hypothesis, the integrand in (6.17) is non-trivial only over the set

S1(µ) = {β ∈ Ω | min
|x|≤Γ

Re
[
µHF (x,β)

]
< −Γ}. (6.18)
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Hence,

d1(µ, ν) =

∫
S1(µ)

{
Γ + min

|x|≤Γ
Re
[
µHF (x,β)

]}
dβ

+ w(µ,ν).

(6.19)

To proceed, note that the dual functions in (6.15) and (6.19) are related by

d0(µ,ν) =
1

Γ
d1(Γµ,Γν). (6.20)

Indeed, observe from (6.16) and (6.18) that S1(Γµ) = S0(µ). Thus,

1

Γ

∫
S1(Γµ)

{
Γ + min

|x|≤Γ
Re
[
ΓµHF (x,β)

]}
dβ

=

∫
S0(µ)

{
1 + min

|x|≤Γ
Re
[
µHF (x,β)

]}
dβ.

The homogeneity of w then yields (6.20). Immediately, it holds that if (µo,νo) is a maximum of d0,

then (Γµo,Γνo) is a maximum of d1. To see this is the case, note from (6.20) that

∇d0(µo,νo) = 0⇔ ∇d1(Γµo,Γνo) = 0,

so that (Γµo,Γνo) is a critical point of d1. Since d1 is a concave function, (Γµo,Γνo) must be a

global maximum.

To conclude, observe that (Pq) has zero duality gap for both q = 0, due to Theorem 5, and q = 1,

because it is a convex program. From (6.20) we then obtain

P ?0 = max
µ,ν≥0

d0(µ,ν) = d0(µ?,ν?)

=
1

Γ
d1(Γµ?,Γν?) =

1

Γ
max
µ,ν≥0

d1(µ,ν) =
P ?1
Γ

. �

Proposition 6 shows that a large class of L0- and L1-norm minimization problems found in func-

tional nonlinear sparse recovery are equivalent in the sense that their optimal values are (essentially)

the same. It is worth noting that establishing this relation requires virtually no assumptions: the

saturation hypothesis is met by a wide class of dictionaries, most notably linear ones. This is in con-
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Figure 6.1: Illustration of Example 1.

trast to the discrete case, where such relations exist for incoherent, linear dictionaries [69,98]. Still,

Proposition 6 does not imply that the solution of the L0- and L1-norm problems are the same, as is

the case for discrete results. In fact, though they have the same optimal value, (P1) admits solutions

with larger support (see Example 1). Although conditions exist for which the L1-norm minimiza-

tion problem with linear dictionaries yields minimum support solutions [104, 105, 111], Theorem 5

precludes the use of this relaxation for both linear and nonlinear dictionaries.

Example 1. Proposition 6 gives an equivalence between L0- and L1-norm minimization problems

in terms of their optimal values, but not in terms of their solutions. We illustrate this point using the

example depicted in Figure 6.1. Let Ω = [0, 1], g(z) = ‖y − z‖22, y =

[
y1 y2

]T
with |y1|, |y2| <

Γ/2, and F (x, β) = h(β)x, where h(β) =

[
h′(β) 1− h′(β)

]T
with h′(β) = I(β ∈ [0, 1/2]). Due

to the form of h′, it is readily seen that the optimal value of (P1) is P ?1 = |y1|+ |y2|.

Now consider the family of functions indexed by 0 < a ≤ Γ

Xa(β) = a sign(y1) I(β ∈ A1) + a sign(y2) I(β ∈ A2), (6.21)

where A1 ⊆ [0, 1/2] with ‖A1‖L0
= |y1|/a and A2 ⊆ [1/2, 1] with ‖A2‖L0

= |y2|/a (e.g., XΓ

and Xa<Γ in Figure 6.1). For all a, Xa is a solution of (P1) [it is (Pq)-feasible with value P ?1 ].

However, its support is given by ‖Xa‖L0
= (|y1|+ |y2|)/a. Thus, (P1) admits solutions that do not

have minimum support (Xa<Γ in Figure 6.1), whereas only XΓ is a solution of (P0).
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6.3 Solving sparse functional programs

Theorem 5 from the previous section establishes duality as a fruitful approach for solving the sparse

functional program (P-SFP). Indeed, the strong duality of (P-SFP) implies that

(X?, z?) ∈ argmin
X∈X , z∈Cp,
X(β)∈P

L(X,z,µ?,ν?), (6.22)

for the Lagrangian L in (6.3), where µ? and ν? are the solutions of (D-SFP) [130]. When this set

is a singleton, the inclusion becomes equality and we recover the unique primal solution X?. This

occurs when the Lagragian (6.3) has a single minimizer, i.e., when (PX) is a singleton. This is

the case, for instance, when F0(x,β) = |x|2, in which case L is strongly convex in X [130]. Since

Proposition 4 allows us to solve (6.22), all that remains is to address the issue of solving (D-SFP)

to obtain (µ?,ν?).

Note that (D-SFP) is a convex program and can therefore be solved using any (stochastic)

convex optimization algorithm [77,130]. For illustration, this section introduces an algorithm based

on supergradient ascent. For ease of reference, a step-by-step guide to solving SFPs is presented in

Appendix B.1.2.

Recall that a supergradient of a concave function f : Ω → R at x ∈ Ω is any vector p that

satisfies the inequality f(y) ≤ f(x)+pT (y−x) for all y ∈ Ω. Although a supergradient may not be

an ascent direction at x, taking small steps in its direction decreases the distance to any maximizer

of f [130].

It is straightforward to show that the constraint slacks in (6.3) are supergradients of the dual

function d with respect to their corresponding dual variables [130]. Explicitly,

pµ(µ′,ν′) =

∫
Ω

F [Xd(µ
′,β),β] dβ − zd(µ′,ν′) (6.23a)

pνi(µ
′,ν′) = gi [zd(µ

′,ν′)] (6.23b)
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Algorithm 2 Dual ascent for SFPs

µ(0) = 0, ν
(0)
i = 1

for t = 1, . . . , T do

Xt−1(β) = Xd

(
µ(t−1),β

)
zt−1 = zd

(
µ(t−1),ν(t−1)

)
µ(t) = µ(t−1) + ηt

[∫
Ω

F [Xt−1(β),β] dβ − zt−1

]
ν

(t)
i =

[
ν

(t−1)
i + ηtgi (zt−1)

]
+

Pt = d(µ(t),ν(t))

end for

X?(β) = Xd

(
µ(t?),β

)
for t? ∈ argmax

1≤t≤T
Pt

are supergradients of d for the dual minimizers

Xd(µ, ·) ∈ argmin
X∈X

X(β)∈P

∫
Ω

{
F0 [X(β),β] + λ I [X(β) 6= 0]

+ Re
[
µHF [X(β),β]

]}
dβ, (6.24a)

zd(µ,ν) ∈ argmin
z

∑
i

νigi(z)− Re[µHz]. (6.24b)

Algorithm 2, with step size ηt > 0, then yields the optimal dual variables (µ?,ν?) and a solution X?

of (P-SFP).

Given that the optimization problem in (6.24b) is convex, there are two hurdles in evaluat-

ing (6.23): (i) obtaining Xd involves solving the non-convex, infinite dimensional problem in (6.24a)

and (ii) the integral in (6.23a) may not have an explicit form or this form is too cumbersome to

be useful in practice. We have already argued that despite its non-convexity, the minimization

in (6.24a) is tractable by exploiting separability (see Proposition 4). The resulting scalar problem

often has a closed-form solution (see Section 6.4 for examples) or can be tackled using global opti-

mization techniques [147]. Note that though this approach does not explicitly yield the function Xd,

it allows Xd(µ,β) to be evaluated for any β ∈ Ω using (PX). This is enough to numerically compute

the integral in (6.23a). This integral [(ii)] may either be approximated numerically or done without

by leveraging stochastic optimization techniques. Step-by-step descriptions of both methods are
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presented in Appendix B.1.2.

In the first case, we effectively solve a perturbed version of (P-SFP) and the difference between

the optimal value of the original problem and that obtained numerically depends linearly on the

precision of the integral computation under mild technical conditions:

Proposition 7. Suppose that

(i) the perturbation function of (P-SFP) is differentiable around the origin;

(ii)
∫

Ω
F0(0,β)dβ = 0 and

∫
Ω
F (0,β)dβ = 0;

(iii) there exists α > 0 such that gi(α1), gi(−α1) <∞; and

(iv) there exists a strictly feasible pair (X†, z†) (Slater’s condition) for (P-SFP) such that gi(z
†) <

−ε, for ε > 0, and F̄0 =
∫

Ω
F0(X†(β),β)dβ <∞.

If P ? is the optimal value of (P-SFP) and P ?δ is the value of the solution obtained by Algorithm 2

when evaluating the integral in (6.23a) with approximation error 0 < δ � 1, then |P ? − P ?δ | ≤ O(δ).

Proof. See Appendix B.1.3. �

In the second case, the integral in (6.23a) is approximated using Monte Carlo integration, i.e.,

by drawing a set of βj independently and uniformly at random from Ω and taking

p̂µ =
1

N

N∑
j=1

F [Xd(µ
′,βj),βj ]− zd(µ′,ν′). (6.25)

Since Monte Carlo integration is an unbiased estimators, p̂µ is an unbiased estimate of pµ. Tak-

ing N = 1 in (6.25) is akin to performing stochastic (super)gradient ascent on the dual function d.

For N > 1, we obtain a mini-batch type algorithm. Typical convergence guarantees hold in both

cases [130,149,150].

Algorithm 2, though effective, may converge slowly depending on the numerical properties of

the problem. Faster, problem independent convergence rates can be obtained using, for instance,

second-order methods or by exploiting specific structures of SFP instances. Investigating the use

and fit of these approaches to solving (D-SFP) is, however, beyond the scope of this thesis.
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6.4 Applications

So far, we have focused on whether SFPs are tractable. In this section, we illustrate their expressive-

ness by using (P-SFP) to cast the problems of nonlinear spectral estimation and robust functional

data classification.

6.4.1 Nonlinear line spectrum estimation

The first example application of SFPs is in the context of continuous, possibly nonlinear, sparse

dictionary recovery/denoising problems. Formally, let y ∈ Cp collect samples yi, i = 1, . . . , p, of a

signal. Our goal is to represent y using as few atoms as possible from the nonlinear dictionary

D = {F (·,β) : C→ Cp | β ∈ Ω} . (6.26)

Explicitly, we wish to find {(xk,βk)} such that

ŷ =

K∑
k=1

F (xk,βk) (6.27)

is close to y for some small K. Notice that, in contrast to classical dictionary recovery, the relation

between the coefficients xk and the signal ŷ is not necessarily linear. Moreover, Ω is an uncountable

set, so that we select from a continuum of atoms as opposed to the discrete, finite case.

To make the discussion concrete, consider the problem of estimating the parameters of a small

number of saturated sinusoids from samples of their superposition. This problem is found in several

signal processing applications, such as telecommunication and direction of arrival (DOA) estimation,

where nonlinear behaviors are common due to hardware limitations of the sources. Formally, we

wish to estimate the frequencies, amplitudes, and phases of K sinusoids from the set of noisy samples

yi =

K∑
k=1

ρ [ak cos(2πfkti)] + ni, for i = 1, . . . , p, (6.28)

where fk ∈ [0, 1/2] is the frequency and ak ∈ R is the amplitude/phase of the k-th component;

ti is the fixed, known sampling time of the i-th sample; {ni} are independent and identically dis-
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tributed (i.i.d.) zero-mean random variables with variance En2
i = σ2

n representing the measurement

noise; and ρ is a function that models the source nonlinearity with ρ(0) = 0.

To pose this estimation problem as an SFP, we need an approximate continuous representation

of the signal model in (6.28). We say approximate because the nonlinearity ρ may prevent us from

finding a measurable function X such that
∫
ρ [X(ϕ) cos(2πϕti)] dϕ = ρ [x cos(2πfti)] for a fixed

amplitude-frequency pair (x, f). Even if ρ allows it, an exact representation may involve Dirac

deltas, which violates a hypothesis of Theorem 5 and prevents us from efficiently finding a solution

of (P-SFP). The following proposition introduces a functional signal model that approximates (6.28)

arbitrarily well using parameters in L2.

Proposition 8. For fixed a, t ∈ R, f ∈ [0, 1/2], define the hyperparameter B ∈ R+ and let

r(B) = B

∫ 1
2

0

ρ [X ′(ϕ) cos(2πϕt)] dϕ. (6.29)

If X ′(ϕ) = a for ϕ ∈ [f − B−1, f + B−1] and zero everywhere else, then r(B) → ρ [a cos(2πft)]

as B →∞.

Proof. Note that (6.29) is equivalent to

r(B) =

∫ 1
2

0

B ·Πf,B−1(ϕ)ρ [a cos(2πϕt)] dϕ

with Πf,b(ϕ) = I (ϕ ∈ [f − b, f + b]). The result then follows from the fact that B · Πf,B−1(ϕ)

converges weakly to δ(ϕ− f) as B →∞, where δ is the Dirac’s delta [151]. �

Proposition 8 allows us to cast nonlinear line spectrum estimation as the SFP

minimize
X∈L2

‖X‖L2
+ λ ‖X‖L0

subject to

p∑
i=1

(yi − ŷi)2 ≤ ε

ŷi = B

∫ 1
2

0

ρ [X(ϕ) cos(2πϕti)] dϕ,

for i = 1, . . . , p,

(PXI)
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Figure 6.2: Reconstruction MSE for line spectral estimation of linear sources.

where B > 0 is an approximation parameter and ε > 0 determines the solution fit. Problem (PXI)

explicitly seeks the sparsest function X that fits the observations given the model in (6.28). The L2-

norm regularization improves robustness to noise as well as the numerical properties of the dual

by adding shrinkage. Note that since X ∈ L2, the solution X? of (PXI) does not contain atoms

and is instead a superposition of bump functions around the component frequencies fk (see, e.g.,

Figure 6.4). As Proposition 8 suggests, the height and width of each bump depends on the amplitude

of the sinusoidal component and the choice of B. Thus, the parameter ak from (6.28) can be

estimated using

âk = B

∫
Bk
X?(ϕ)dϕ, (6.30)

where X? is a solution of (PXI) and Bk ⊂ [0, 1/2] contains a single bump. The parameter fk can then

be estimated using the center frequency of the bump. Naturally, B should be as large as possible so

that (6.29) is a good approximation of (6.28), improving the parameter estimates. Choosing B too

large, however, degrades the numerical properties of the dual problem, making it harder to solve in

practice. Similar trade-offs are found several methods when tuning regularization parameters, for

instance, elastic net [152,153].

Since ρ is an arbitrary function, a particular case of (PXI) performs spectral estimation with

linear sources, i.e., when ρ(z) = z in (6.28) and there is no saturation. The dual function is
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Figure 6.3: Support size estimation for line spectral estimation of linear sources.

straightforward to evaluate in this case since the optimization problem (6.7) from Proposition 4

becomes a quadratic program that admits a closed-form solution. However, a myriad of classical

methods such as MUSIC or atomic soft thresholding (AST) have been proposed for the linear

case. MUSIC performs line spectrum estimation using the eigendecomposition of the empirical

autocorrelation matrix of the measurements yi [87]. Nevertheless, it can only be used in single

snapshot applications when the signal is sampled regularly—see [87] for details—and requires that

the number K of components be known a priori. The AST approach, on the other hand, is based

on an atomic norm relaxation of the sparse estimation problem and leverages duality and spectral

properties of Toeplitz matrices to preclude discretization [106, 107]. Both methods first obtain

the component frequencies and then determine amplitudes and phases using least squares. These

different approaches are compared in Figures 6.2 and 6.3.

These plots display the average performance over 10 realizations that used p = 61 samples (ti =

−30, . . . , 30) of the superposition of K = 5 components whose the frequencies fk were drawn uni-

formly at random with a minimum spacing of 4/p and whose amplitudes ak were taken randomly

and independently from [0.5, 3]. Problem (PXI) was solved using the approximate supergradient

method described in Appendix B.1.2 with B = 1, λ = 5000 for all noise levels expect σ2
n = 5 which

used λ = 6000, and ε = pσ2
n. For the AST method, we used the optimal regularization from [107]
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Figure 6.4: Solutions obtained for line spectral estimation of saturated sources.

which depends on σ2
n. In all cases, the reconstruction MSE is evaluated as

MSE =

p∑
i=1

(yi − ŷi)2,

where ŷi denotes the samples reconstructed based on the K components with largest magnitudes

obtained by each algorithm. For AST, the support is obtained from the peaks of the trigonometric

polynomial defined by the dual as in [106, 107] and for SFP, from the center of the bumps in the

solution X? of (PXI) (as illustrated in Figure 6.4).

In high SNR scenarios, all methods display similar performance. As the level of noise increases,

however, the advantages of explicitly minimizing the L0-norm instead of its convex surrogate become

clearer, especially with respect to support identification. Observe in Figure 6.3 that as σ2
n increases

the number of components obtained from AST decreases considerably, despite using the optimal

regularization parameter. Finally, it is worth noting that although the performances are similar,

AST involves solving a semidefinite program (SDP), which becomes infeasible in practice as the

number of samples p grows and has motivated the study of dimensionality reduction techniques and

sampling patterns [154]. On the other hand, efficient solvers based on coordinate ascent can be

leveraged to solve large-scale SFPs [77,130].

Still, the signal reconstruction performance is similar across methods in the linear case (Fig-
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ure 6.2). This is not surprising given the close relation between L0- and L1-norm minimization (The-

orem 6). In contrast, when the signals are distorted by a nonlinearity, the linear measurement model

of AST and MUSIC tends to underestimate the amplitude of the components (Figure 6.4). Though

greedy approaches to atomic norm minimization are able to deal with nonlinear dictionaries, opti-

mally selecting single atoms from these infinite dimensional dictionary is challenging. Exhaustive,

grid-based heuristics have been proposed for specific problems without guarantees [155].

To illustrate this effect, consider the hard saturation

ρ(x) =


x, |x| ≤ r

r · sign(x), otherwise

, (6.31)

where r > 0 defines the saturation level. Though computing the dual function may seem challenging

in this case due to the nonlinearity, it turns out to be tractable due to the scalar nature of the

problem. Indeed, we obtain the dual minimizer from Proposition 4 by evaluating

γo(µ, ϕ) = min
x∈R

x2 + µT ρ [xh(ϕ)] ,

where [h]i = cos(2πϕti) for i = 1, . . . , p and the function ρ applies element-wise. Since we can

determine a priori which of the elements will saturate, solving this non-convex problem actually

reduces to finding the minimum value of p quadratic problems. Namely, assume that h is sorted

such that h1 ≤ · · · ≤ hp and let wi(x) = [h1x · · · hix r · · · r]T , where r is the saturation level

from (6.31). For conciseness, we omit the dependence on ϕ. Then, γo(µ) = min1≤i≤p γ
o
i (µ) for

γoi (µ) = min
1/|hi+1|≤|x|≤1/|hi|

x2 + µTwi(x), i = 1, . . . , p− 1,

γop(µ) = min
|x|≤1/|hp|

x2 + µThx.

Figure 6.4 shows the solutions obtained using (PXI) and AST for ρ as in (6.31) with r = 1. We

omit the results for MUSIC in this plot as its performance is similar to AST. Notice that since (PXI)

takes the the nonlinear nature of the signal into account it provides more precise parameter estimates.

This is evident in Figure 6.5, which shows that (PXI) leads to lower reconstruction errors, especially
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Figure 6.5: Reconstruction MSE for line spectral estimation of saturated sources.

in higher SNRs. This is expected since neither AST nor MUSIC take the nonlinear effects into

account. Yet, as the noise increases and begins to dominate over mismodeling, the performance of

all methods becomes similar. This effect is more pronounced here than in the linear case because

the saturation limits the energy of the signal leading to even lower effective SNRs. For instance, the

average SNR for σ2
n = 2 in Figure 6.2 is 6.6 dB, whereas in Figure 6.5, it is 2.05 dB.

In these experiments, the signal samples were constructed as in the linear case, but we used

for (PXI) B = 200, ε = pσ2
n, and λ = 100 for all noise levels expect σ2

n ∈ {2, 5} which used λ = 80.

For the AST method, we again used the optimal regularization parameter from [107]. Better results

could not be obtained by hand-tuning the regularization.

6.4.2 Robust functional data analysis

Functional data analysis extends classical statistical methods to data supported on continuous do-

mains. Since it copes with non-uniformly sampled data and precludes registration, this tool set is

especially appropriated for analyzing time series without assuming generative models, such as AR

or ARMAX [156]. For concreteness, consider the functional extension of logistic regression: given

a data pair (yi, Zi) with label yi ∈ {0, 1} and independent variable Zi : [0, 1] → R, the probability
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that yi is positive is modeled as

Pr [yi = 1] =
1

1 + exp
(
−
∫ 1

0
Zi(τ)W (τ)dτ + b

) , (6.32)

where W : [0, 1] → R is the functional classifier parameter and b is the intercept. Although the

domain of Zi and W can be an arbitrary compact set, we use the normalized [0, 1] for simplicity.

Typically, some smoothness prior is assumed for W so that the statistical problem is well-posed,

e.g., by using splines or imposing that W has small RKHS norm [156]. Observe that if we re-

place
∫ 1

0
Zi(τ)W (τ)dτ by wTzi, for w, zi ∈ Rm, we recover the classical, finite dimensional logistic

model.

As is the case with traditional (discrete) logistic regression, the classifier in (6.32) is sensitive to

outliers. In fact, it has been shown recently that any classifier trained by minimizing a convex loss, as

is the case of logistic regression or support vector machines (SVM), suffers from this issue [157,158].

Although sparsity has been used to mitigate this drawback using convex surrogates such as the

`1-norm [159, 160], these methods remain susceptible to extreme data points caused by impulsive

noise or other measurement errors [158].

One approach to addressing this weakness is replacing the inner product in (6.32) by a robust

version that reduces the influence of these extreme samples. In [157,158], this is done by computing
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inner products over a subset of the data. Here, however, since (P-SFP) allows us to consider arbitrary

nonlinearities in the data model, we can explicitly limit the influence of any sample by saturating

the inner product in (6.32). Explicitly,

Pr [yi = 1] =
1

1 + exp
(
−
∫ 1

0
ρ [Zi(τ)W (τ)] dτ + b

) , (6.33)

where ρ is the saturation from (6.31). Notice that (6.33) controls the influence of any data point by

using the threshold r from the saturation (6.31). In fact, notice that due to the saturation, the value

of the inner product in (6.33) lies in the range [−r, r]. Using the negative log likelihood expression

for logistic regression [152], we then formulate the following SFP for learning the robust classifier

minimize
X∈L2

‖W‖L2
+ b2 + λ ‖W‖L0

subject to −
p∑
i=1

log [1 + exp ((1− 2yi)ŷi)] ≤ ε

ŷi =

∫
T
ρ [Zi(β)W (β)] dβ + b,

for i = 1, . . . , p,

(PXII)

for some fit parameter ε > 0. Notice that (PXII) also allows us to fit sparse functional coefficient W

by setting λ > 0. Moreover, although it is written in terms of the logistic likelihood, other convex

criteria such as the hinge loss could be used to obtain robust SVMs.

To illustrate the performance of the robust classifier (6.33), we consider the problem of identifying

whether an electrocardiogram (ECG) signal comes from a healthy heart or one that suffered a

myocardial infarction, i.e., a heart attack. The continuous time series Zi are obtained by linearly

interpolating a single heartbeat (see examples in Figure 6.8). Other techniques, such as sinc or spline

interpolation are also commonly used in functional data analysis [156]. The labels yi indicate whether

a heart is healthy (1) or not (0). The samples used in the following experiments were taken from the

ECG200 dataset [161], which draws from the MIT-BIH Supraventricular Arrhythmia Database [162].

To train the classical functional logistic classifier in (6.32), we solved (PXII) with λ = 0 and r →∞,

i.e., no sparsity regularization and no saturation of the inner product. For the robust version, we

used λ = 10 and r = 4. In both cases, the classifier was fitted with ε = −46 using the approximate
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impulsive noise.

supergradient method described in Appendix B.1.2.

Notice in Figure 6.6 that the value of the coefficients of the classical and robust classifiers are

similar, leading to comparable performance on both training and test sets (approximately 80%

accuracy). The receiver operating characteristic (ROC) curve of both classifiers on the test set is

displayed in solid lines in Figure 6.7. The robustness of these classifiers to outliers, on the other hand,

is considerably different. To illustrate this behavior, corruption by impulsive noise was simulated

by randomly adding ±20 to a random subset of 10% of the samples from each heartbeat in the

test set. The resulting ROC curves are shown in dashed lines. Although the performance of the

linear logistic classifier has now degraded (the test accuracy dropped to 66%), the ROC of the robust

version remains unaltered due to the nonlinearity ρ in (6.33) limiting the effect of the corruption (test

accuracy of 76%).

Additionally, the sparsity of the robust classifier parameters improves interpretability by focusing

on the portions of the signal that differentiate between normal and abnormal heartbeats (Figure 6.8).

For instance, healthy heart signals tend to have negative values for τ ∈ [0.25, 0.4] and positive values

for τ ∈ [0.4, 0.6], whereas hearts that suffered myocardial infarctions do not. On the other hand,

there is no discriminant information for τ ∈ [0.6, 0.75] and, perhaps less intuitively, between 0.15

and 0.25.
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Figure 6.8: ECG and sparse functional coefficients (positive coefficients: blue, negative coefficients:
red): (a) healthy heart and (b) heart with myocardial infarction.
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Chapter 7

Combinatorial constraints and

nonsubmodular optimization

Whereas the SFPs from Chapter 6 turned out to be “easy” to solve (in the sense that they are in

P), statistical problems with combinatorial constraints are not. In fact, most of the problems we

study in this chapter are well-known NP-hard problems [99, 163, 164]. Our goal here is therefore to

efficiently obtain near-optimal approximate solutions, i.e., to derive algorithms that output solutions

whose values are within a factor of the optimal value. Typically, the term “near-optimal” is reserved

for the case in which that factor is a constant independent of the problem instance (universal).

Unfortunately, the lack of structure of the problems we tackle make this hard and in certain cases

impossible. It is now known that it is NP-hard to approximate within a constant factor certain

quadratic problems with combinatorial constraints (e.g., sensor selection [163]). The best we can do

in this case is to provide guarantees that depend only on problem parameters known a priori.

To be more specific, we are interested in solving quadratic statistical optimization problems

subject to combinatorial constraints. Such problems arise in applications where access to the full

measurement y is impractical or impossible. The issue then becomes that of selecting a subset of ob-

servations based on which to perform inference within the limitations of the problem. For instance,

power or sensing constraints may limit the number of observations allowed (cardinality constraint)

or disallow certain combinations of observations due to, e.g., duty cycle limitations (matroid con-
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straints). These problems arise in applications such as sensor selection, experimental design, and

scheduling.

A common way to select measurements is based on greedy heuristics in which sensors or exper-

iments are chosen one at a time by selecting the one that most reduces the cost at each step. A

classical result from discrete optimization shows that if the cost function displays a certain dimin-

ishing returns property known as supermodularity, then greedy procedures are near-optimal: they

achieve a value that is at within 63% of the optimal one. The cost functions in many of these prob-

lems, however, are quadratic and are well-known to not be supermodular (e.g., the estimation MSE

or a quadratic control cost as in the LQR or LQG problems [164–167]). Nevertheless, rather than

relying on surrogates and relaxations, we show that greedy methods can still obtain approximate

solutions to these problems by building a theory of approximate supermodularity.

7.1 (Approximate) supermodularity

Supermodularity (submodularity) encodes a “diminishing returns” property of certain set functions

that implies near-optimality bounds on their greedy minimization (maximization). Well-known

representatives of this class include the rank or log det of a sum of PSD matrices, the Shannon

entropy, and the mutual information [166, 168]. Still, supermodularity is a stringent condition. In

particular, it does not hold for typical the quadratic cost functions such as the MSE [164–167].

The purpose of approximate supermodularity (submodularity) is to relax the original “diminishing

returns” property while controlling the magnitude of the violations. The rationale is that if a function

is “almost” supermodular, then it should behave similar to a supermodular function. In what follows,

we formalize and quantify these statements.

Consider a set function f : 2V → R whose value for an arbitrary set X ⊆ V is denoted by f(X ).

We say f is normalized if f(∅) = 0 and f is monotone decreasing if for all sets A ⊆ B ⊆ V it holds

that f(A) ≥ f(B). Observe that if a function is normalized and monotone decreasing it must be

that f(X ) ≤ 0 for all X ⊆ V. Define

∆uf(X ) = f (X )− f (X ∪ {u}) (7.1)
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to be the variation in the value of f incurred by adding the element u ∈ V \ X to the set X . Then,

a set function f is supermodular if for all sets A ⊆ B ⊆ V and elements u ∈ V \ B it holds that

∆uf(A) ≥ ∆uf(B). (7.2)

A function f is submodular if −f is supermodular.

The relevance of supermodular functions in this work is due to the celebrated bound on the

suboptimality of their greedy minimization [169]. Specifically, consider the generic cardinality con-

strained optimization problem

X ? ∈ argmin
|X |≤s

f(X ),

and construct its greedy solution by starting with G0 = ∅ and incorporating the elements from V

one at a time so as to maximize the gain at each step. Explicitly, at step j we do

Gj+1 = Gj ∪ {u},

with u = argmin
w∈V\Gj

f (Gj ∪ {w}) .
(7.3)

The recursion in (7.3) is repeated for s steps to obtain a greedy solution with s elements. If f is

monotone decreasing and supermodular [169], then

f(Gs) ≤ (1− e−1)f(X ?). (7.4)

The guarantee in (7.4), however, no longer applies when f is not supermodular. To provide

guarantees in these cases, we leverage two measures of approximate supermodularity and derive

near-optimality bounds for each of them. It is worth noting that though intuitive, such results

are not trivial. In fact, [170] showed that for another measure of proximity, functions δ-close to

supermodular cannot be optimized in polynomial time unless δ is small.

We start with a multiplicative relaxation of the supermodular property (7.2).

Definition 5 (α-supermodularity). A set function f : 2V → R is α-supermodular, for α ∈ R, if for
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all sets A ⊆ B ⊆ V and all u ∈ V \ B it holds that

∆uf(A) ≥ α∆uf(B). (7.5)

For α ≥ 1, (7.5) reduces the original definition of supermodularity (7.2), in which case we refer

to the function simply as supermodular [166, 168]. On the other hand, when α < 1, f is said to be

approximately supermodular. Notice that if f is decreasing, then (7.5) always holds for α = 0. We

are therefore interested in the largest α for which (7.5) holds, i.e.,

α = min
A⊂B⊆V
u∈V\B

∆uf(A)

∆uf(B)
(7.6)

This concept first appeared in the context of auction design [171], although it has been redis-

covered in the context of discrete optimization, estimation, and control [45,55,172,173]. It is worth

noting that α in Definition 5 is also related to the supermodularity ratio, a relaxation based on a

different, though equivalent, definition of supermodularity. Explicitly, the supermodularity ratio is

defined as the largest γ for which

∑
w∈W

∆wf(L) ≥ γ [f(L)− f(L ∪W)] , (7.7)

for all disjoint sets W,L ⊆ E . It was introduced in [174]1 in the context of variable selection,

although the resulting guarantees depended on sparse eigenvalues that are NP-hard to compute.

Explicit (P-computable) lower bounds on γ were derived in [173, 175, 176], although it is worth

noting that the bounds on α obtained earlier in [45,55] also hold for the supermodularity ratio:

Proposition 9. Let f be an α-supermodular and denote its supermodularity ratio by γ. Then,

α ≤ γ.

Proof. We proceed by showing that (7.7) holds with γ = α for any α-supermodular function. To do

1Although [174] and subsequent literature define γ in terms of submodularity, it can be recovered by taking −f
in (7.7). Recall that if f is supermodular, then −f is submodular.
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so, consider an enumeration of W = {w1, . . . , w|W|} and write

f (L)− f (L ∪W) =

|W|∑
k=1

∆wkf (L ∪ {w1, . . . , wk−1}) . (7.8)

Since f is α-supermodular, we can upper bound each of the increments in (7.8) using (7.5) to obtain

f (L)− f (L ∪W) ≤ α−1

|W|∑
k=1

∆wkf (L) . (7.9)

Comparing (7.7) and (7.9) concludes the proof. �

Although α-supermodularity yields a multiplicative approximation factor, finding meaningful

bounds on α can be challenging for certain set functions. It is therefore useful to look at approximate

supermodularity from a different perspective, as proposed in [177].

Definition 6 (ε-supermodularity). A set function f : 2V → R is ε-supermodular, for ε ∈ R, if for all

multisets A ⊆ B ⊆ V and all u ∈ V \ B it holds that

∆uf(A) ≥ ∆uf(B)− ε. (7.10)

Again, we say f is supermodular if ε ≤ 0 and approximately supermodular otherwise. As with α,

we want the best ε that satisfies (7.10), which is given by

ε = max
A⊆B⊆V
u∈V\B

∆uf(B)−∆uf(A). (7.11)

A useful lemma to reduce problems involving approximately supermodular functions shows that

conic combinations preserve approximate supermodularity.

Lemma 3. Consider the set functions fi : 2V → R, i ∈ N. Then, for θi ≥ 0 and b ∈ R,

(i) if the fi are αi-supermodular, then g =
∑
i θifi + b is min(αi)-supermodular;

(ii) if the fi are εi-supermodular, then g =
∑
i θifi + b is (

∑
i θiεi)-supermodular.

Proof. We proceed with the proof case-by-case:
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(i) From the definition of α-supermodularity in (7.5), for A ⊆ B ⊆ V and u ∈ V \ B it holds that

g (A)− g (A ∪ {u}) =
∑
i

θi [fi (A)− fi (A ∪ {u})] ≥
∑
i

αiθi [fi (B)− fi (B ∪ {u})] ,

where the constant factors of the affine transformations cancel out. Since αi ≥ min(αi), we

obtain

g (A)−g (A ∪ {u}) ≥ min(αi)
∑
i

θi [fi (B)− fi (B ∪ {u})] ≥ min(αi) [g (B)− g (B ∪ {u})] .

(ii) Similarly, using the definition of ε-supermodularity in (7.10), for A ⊆ B ⊆ V and u ∈ V \B we

obtain

g (A)−g (A ∪ {u}) ≥
∑
i

θi [fi (B)− fi (B ∪ {u})]−
∑
i

θiεi = g (B)−g (B ∪ {u})−
∑
i

θiεi,

where again the constant factors b canceled out. �

In many cases, it is hard or even impossible [163] to obtain an algorithm to minimize approx-

imately supermodular functions whose near-optimality is independent of α or ε. In other words,

these quantities not only quantify violations of the diminishing returns property, but also the loss

in optimality due to those violations. It is therefore paramount to obtain bounds on α and ε that

are computable. One particular case of interest deals with scalarizations of a particular set matrix

function that commonly appears in the least square problems, which we address next.

7.1.1 Approximately supermodular scalarizations

Consider a set of PSD matrices indexed by the elements of the ground set V, i.e., Mu � 0 for u ∈ V,

together with the PD matrix M∅. We are interested in analyzing the approximate supermodularity

of scalarizations of set functions Y : 2V → S+ of the form

Y (X ) =

(
M∅ +

∑
u∈X

Mu

)−1

. (7.12)

84



In particular, we are interested in studying its trace

t(X ) = Tr[Y (X )] (7.13)

and its spectral norm

e(X ) = ‖Y (X )‖ . (7.14)

In estimation problems, for instance, M∅ denotes an a priori error covariance matrix that repre-

sents the error in the absence of measurements and Mu carries the information obtained by taking

measurement u ∈ V. Then, the trace in (7.13) is related to the estimation MSE and the spectral

norm in (7.14) is its robust counterpart, i.e., the worst-case error.

Before analyzing the α/ε-supermodularity of (7.13) and (7.14), we show that both are monotone

decreasing set functions by proving that Y (X ) is a decreasing set function in the PSD cone (Lemma 4).

The definition of Loewner order and the monotonicity of the trace [178] imply the desired result.

Lemma 4. The matrix-valued set function Y (X ) in (7.12) is monotonically decreasing with respect

to the PSD cone, i.e., A ⊆ B ⊆ V ⇒ Y (A) � Y (B).

Proof. The monotone decreasing nature of Y stems from the fact that matrix inversion is an operator

antitone function, i.e., that for X,Z � 0, it holds that X � Z ⇔ X−1 � Z−1 [179]. To see this,

write (7.12) as Y (X ) = R(X )−1, where R(X ) = M∅ +
∑
u∈XMu. Then, notice that since R is a

sum of PSD matrices, it holds that R(A) � 0 for all A ⊆ V. Moreover, R is a modular (additive)

function, i.e., R(A ∪ B) = R(A) +R(B). Hence, for A ⊆ B ⊆ V, we obtain

R(B) = R(A) +R(B \ A) � R(A). (7.15)

It is straightforward to obtain from (7.15) that for A ⊆ B ⊆ V

R(A) � R(B)⇔ R(A)−1 � R(B)−1 ⇔ Y (A) � Y (B). �

The remainder of this section is dedicated to showing that the trace and the spectral norm are

approximately supermodular scalarizations of Y , starting with the set trace function (7.13).
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Theorem 6. Let t be the set function in (7.13). Then, t is α-supermodular with

α ≥ µmin

µmax
> 0, (7.16)

where

0 < µmin ≤ λmin [M∅] ≤ λmax

[
M∅ +

∑
u∈V

Mu

]
≤ µmax.

Remark 1. Although there exist examples for which t(X ) is not supermodular, the general state-

ment of Theorem 6 does not allow us to claim that α < 1. A simple counter-example involves the

case in which M∅ = µ0I and Mu = µuI, µ0, µu ≥ 0, so that t becomes effectively a scalar function

of µ0, µu. Since scalar convex functions of positive modular functions are supermodular [180], we

have α ≥ 1 in this case.

The proof of Theorem 6 relies on the following bounds on the variation ∆ut(X ):

Lemma 5. For all X ⊂ V and u ∈ V \ X , it holds that

λmin [Y (X )] Tr [MuY (X ∪ {u})] ≤ ∆ut(X ) ≤ λmax [Y (X )] Tr [MuY (X ∪ {u})] . (7.17)

Proof. See appendix B.2.1. �

Theorem 6 then follows readily.

Proof of Theorem 6. Notice from (7.1) and (7.6) that α can be written as

α = min
A⊂B⊆V
u∈V\B

∆ut(A)

∆ut(B)
.

From Lemma 5, we then obtain

α ≥ λmin [Y (A)]

λmax [Y (B)]
× Tr [MuY (A ∪ {u})]

Tr [MuY (B ∪ {u})] . (7.18)

To simplify (7.18), recall from Lemma 4 that Y is monotone decreasing in the PSD cone. Since A ⊂

B ⊆ V, it holds that Y (A ∪ {u}) � Y (B ∪ {u}). The ordering of the PSD cone (Loewner order)
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gives us that the second term in (7.18) is always greater than one, which yields

α ≥ λmin [Y (A)]

λmax [Y (B)]
.

The lower bound in (7.16) is readily obtained by observing that the decreasing nature of Y implies

that for any set X ⊆ V:

λmin [Y (V)] ≤ λmin [Y (X )] ≤ λmax [Y (X )] ≤ λmax [Y (∅)] . �

Theorem 6 gives a deceptively simple bound on the α-supermodularity of the set function t

in (7.13) depending on the spectrum of the M∅,Mi. This bound can be interpreted geometrically

in terms of the “range” of the error covariance matrix Y . To see this, define the numerical range of

the set function Y as

WV(Y ) = W

⊕
X⊆V

Y (X )

 , (7.19)

where A ⊕ B = blkdiag(A,B) is the direct sum of matrices A and B and W (M) = {xTMx |

‖x‖2 = 1} is the classical numerical range [178]. Since the numerical range is a convex set, we can

define its relative diameter as

D = max
µ,η∈WV(Y )

∣∣∣∣µ− ηµ
∣∣∣∣. (7.20)

Then, the following holds:

Proposition 10. The set functions t in (7.13) is α-supermodular with

α ≥ 1−D,

where ∆ is the relative diameter of the numerical range of Y in (7.20).

Proof. Since Y � 0, the numerical range in (7.19) is the bounded convex hull of the eigenvalues

of Y (X ) for all X ⊆ V [178]. We can therefore simplify (7.20) using the fact that it is monotonically
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increasing in µ and decreasing in η. Explicitly,

D = max
X ,Y⊆V

∣∣∣∣λmax [Y (Y)]− λmin [Y (X )]

λmax [Y (Y)]

∣∣∣∣.
Using the fact that Y is monotonically decreasing (Lemma 4), this maximum is achieved for

D =
λmax [Y (∅)]− λmin [Y (V)]

λmax [Y (∅)] .

The bound in (7.16) thus becomes

α ≥ λmin [Y (V)]

λmax [Y (∅)] = 1−D. �

Hence, (7.16) bounds how much t deviates from a supermodular function (as quantified by α) in

terms of the numerical range of its underlying function Y . The shorter the range of Y , the more

supermodular-like (7.13) will be.

Proceeding, we now bound the ε-supermodularity of (7.14).

Theorem 7. Let e be defined as in (7.14). Then, e is ε-supermodular with

ε ≤ λmax(
∑
u∈VMu)

λmin [M∅]
2 . (7.21)

Proof. See appendix B.2.2. �

Having established explicit bounds on the approximate supermodularity of these abstract set

functions, we proceed to derive approximation guarantees for their greedy minimization under differ-

ent constraints. In Section 7.4, we go back to the results of this section to obtain explicit guarantees

for the greedy solution of a variety of problems, from experimental design to actuator scheduling.

7.2 Approximately supermodular minimization

Minimizing monotonically decreasing set functions is, in a sense, trivial: their minimum is achieved

for the ground set V. The difficulty in solving these problems arises, not from their discrete structure,
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Algorithm 3 Greedy algorithm for (P-CARD)

Let S0 ← ∅ and t← 0

while |St| < r do

g ← argminu∈V f(Xt ∪ {u})
Xt+1 ← Xt ∪ {g}
t← t+ 1

end while

Xg ← Xt

but their combinatorial constraints. Indeed, while unconstrained set function minimization is trivial,

constrained set function minimization is often NP-hard. In this section we derive guarantees for

two types of constraints: cardinality and intersection of matroids. It is worth noting that while

cardinality constraints are matroid constraints, their structure is amenable to better guarantees,

which is why we study them separately. What we show next is that not only do α and ε in (7.5)

and (7.10) measure violations of supermodularity, but they also quantify the loss in optimality due

to those violations.

7.2.1 Cardinality constraints

We begin by providing guarantees for cardinality constrained problems. Explicitly, we are interested

in problems of the form

X ? ∈ argmin
X⊆V

f(X )

subject to |X | ≤ s,
(P-CARD)

where f : 2V → R+ is normalized, i.e., f(∅) = 0, and 0 < s ≤ |V| indicates the maximum cardi-

nality of the solution X . In particular, we are interested in the performance greedy solutions Xg
of (P-CARD) obtained using Algorithm 3. Note that Algorithm 3 yields solutions of cardinality r

possibly larger than s. In doing so, we characterize the gain in performance obtained by violating

the constraint of (P-CARD).

We begin by consider the case in which f in (P-CARD) is α-supermodular.

Theorem 8. Let f be a normalized, monotone decreasing, and α-supermodular set function (i.e.,

f(∅) = 0 and f(X ) ≤ 0 for all X ⊆ V). Then, the solution obtained by the greedy search in
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Theorem 1

Figure 7.1: Illustration of the near-optimal guarantee from Theorem 8.

Algorithm 3 satisfies

f(Xg) ≤ (1− e−αr/s)f(X ?). (7.22)

Proof. See appendix B.2.3. �

Theorem 8 bounds the suboptimality of the greedy solution of (P-CARD) when its objective

is α-supermodular. Indeed, since f is a non-positive function, it guarantees that f(Xg) cannot be

too far from the optimal value (Figure 7.1). At the same time, it quantifies the effect of relaxing

the supermodularity hypothesis typically used to provide performance guarantees in these settings.

In fact, if f is supermodular (α = 1) and r = s, we recover the guarantee (7.4) from [169]. On

the other hand, for an approximately supermodular function (α < 1), the result in (7.22) shows

that the same 63% guarantee is recovered by greedily selecting a set of size s/α. Hence, α not

only measures how much f violates supermodularity, but also gives a factor by which a solution set

must increase (violate the cardinality constraint) to maintain supermodular-like near-optimality. It

is worth noting that, as with the original bound in [169], (7.22) is not tight and that better results

are typically obtained in practice (see Section 7.4).

In contrast to α-supermodularity, we obtain an additive approximation guarantee for the greedy

minimization of ε-supermodular functions.

Theorem 9. Let f be a normalized, monotone decreasing, and ε-supermodular set function (i.e.,

f(∅) = 0 and f(X ) ≤ 0 for all X ⊆ V). Then, the solution obtained by the greedy search in

Algorithm 3 satisfies

f(Xg) ≤ (1− e−r/s) [f(X ?) + s · ε] . (7.23)

Proof. See appendix B.3. �

As before, ε quantifies the loss in performance guarantee due to relaxing supermodularity. Indeed,

(7.23) reveals that ε-supermodular functions have the same guarantees as a supermodular function
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up to an additive factor of Θ(sε). In fact, if ε ≤ (es)−1|f(X ?)| (recall that f(X ?) ≤ 0 due to

normalization), then taking r = 3s recovers the supermodular 63% approximation factor. This same

factor is obtained for (α ≥ 1/3)-supermodular functions.

Notice that Theorems 8 and 9 characterize the loss in suboptimality incurred from violating

supermodularity in terms of the values of α and ε. Contrary to classical supermodularity, these

guarantees are therefore not universal. It worth noting, however, that there are cases in which this

is the best approximation factor possible, i.e., in which obtaining universal approximation constants

is impossible (if P 6= NP) [163].

7.2.2 Intersection of matroids constraints

More generally, we can consider the problem of optimizing a set function subject to matroid con-

straints. This generalizes the results from Section 7.2.1 in two ways. First, instead of considering

cardinality constraints (i.e., a uniform matroid), we now allow the solution to be the independent

set of any generic matroid. Second, we now consider the case in which the solution must satisfy

multiple constraints. Explicitly, we consider the problem

X ? ∈ argmin
S⊆V

f(X )

subject to S ∈ Ip, p = 1, . . . , P ,

(P-MTRD)

where the Ip are the family of independent sets of a matroid, entities that extend the notion of

linear independence in vector spaces to arbitrary algebraic structures. Formally,

Definition 7. A matroid M = (V, I) consists of a finite set of elements E and a family I ⊆ 2V of

subsets of V called independent sets that satisfy:

(P1) ∅ ∈ I;

(P2) if A ⊆ B ⊆ V and B ∈ I, then A ∈ I;

(P3) if A,B ∈ I and |A| < |B|, then there exists e ∈ B \ A such that A ∪ {e} ∈ I.
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Thus, the collection of valid schedules I in (P-MTRD) is of the form

I =

P⋂
p=1

Ip, such that (E , Ip) is a matroid for all p. (7.24)

Matroids can be used to describe a myriad constraints common to scheduling problems, such as

limiting the total number of actions, bounding the number of actions per time instant, or restrict

the consecutive actions (duty-cycle constraints) (see Section 7.4). It is worth noting that matroids

are not closed under intersections, so that I need not be a matroid [181, Ch. 39].

The use of matroids as constraints in (P-MTRD) is attractive for two reasons. The first is a

direct consequence of the inheritance property of matroids, i.e., P1 and P2 in Definition 7.

Proposition 11. For each A ∈ I with I as in (7.24), there exists a chain ∅ = A0 ⊂ A1 ⊂ · · · ⊂

AT = A such that At ∈ I for all t. In particular, there exists a chain with T = |A|.

Hence, every feasible set of (P-MTRD) can be constructed element-by-element. In particular, so can

any optimal solution X ?. This suggests an “interior point”-type algorithm that greedily minimizes

the objective f at each step while maintaining feasibility, as described in Algorithm 4. The algorithm

stops once no element can be added to Xt without violating feasibility, i.e., when the argmin set

in step 3 is empty. Denote that final iteration by T . Naturally, T ≤ |V| so the algorithm does

terminate. What is more, note from step 5 that not only is XT ∈ I by construction, but due to

Proposition 11, every set A ∈ I can be constructed by element-by-element as in Algorithm 4 for an

appropriate choice of f (e.g., f(X ) = |X ∩ A|). In other words, the greedy algorithm does not prune

any solution from the feasibility set of (P-MTRD).

The second reason for using matroid intersections is related to the exchange property (P3 in

Definition 7) and is laid out in the following proposition:

Proposition 12. Let A,B ∈ I with I as in (7.24). If |B| > P |A|, then there exist at least |B|−P |A|

elements b of B \ A such that A ∪ {b} ∈ I.

Proof. The proof proceed by induction over the matroids in I. The base case for first matroid (p = 1)

is readily obtained from P3 in Definition 7. Indeed, take e ∈ B \ A such that A ∪ {e} ∈ I1 and

let B′ = B \ {e}. This pruning process can be repeated as long as |B′| > |A|, i.e., at least |B| − |A|

times.
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Algorithm 4 Greedy algorithm for (P-MTRD)

1: Let S0 ← ∅, Z0 ← E , and t← 0

2: while Zt 6= ∅ do

3: g ← argminu∈Zt V
?(St ∪ {u})

4: Zt+1 ← Zt \ {g}
5: if St ∪ {g} ∈ ∩Pp=1Ip then

6: St+1 ← St ∪ {g}
7: else

8: St+1 ← St
9: end if

10: t← t+ 1

11: end while

12: Sg ← St

Now, suppose the claim holds for the first P ′ − 1 < P independence sets, i.e., there exists a

set C ⊆ B \ A such that

|C| > |B| − (P ′ − 1)|A| and A ∪ {c} ∈
P ′−1⋂
p=1

Ip for all c ∈ C. (7.25)

Notice that B ∈ I ⇒ B ∈ ⋂P ′p=1 Ip and since C ⊂ B, the inheritance property of matroids (P2 in

Definition 7) implies that C ∈ ⋂P ′p=1 Ip as well. In particular, since C ∈ IP ′ , we again obtain from

P3 in Definition 7 that there exist C′ ⊆ C \ A such that

|C′| > |C| − |A| and A ∪ {c} ∈ IP ′ for all c ∈ C′. (7.26)

Together, (7.25) and (7.26) yield that |C′| > |B| − P ′|A| and that A ∪ {c} ∈ ⋂P ′−1
p=1 Ip ∩ IP ′ for

all c ∈ C′. �

Though more abstract, this property is fundamental to obtain near-optimal certificates for the

greedy procedure in Algorithm 4. Indeed, the following noteworthy corollary is obtained for B = X ?

and A = Xt:

Corollary 3. If |X ?| > Pt, then there exist at least |X ?|−Pt elements x ∈ X ? such that Xt∪{x} ∈ I.

Hence, it must be that Algorithm 4 terminates after at least T ≥ |X ?|/P .
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At any given point, there are therefore at least |X ?| − Pt elements x ∈ X ? for which f(Xt+1) ≤

f(Xt∪{x}). When combined with some diminishing return property, this greedy property gives near-

optimal guarantees as long as Algorithm 4 runs long enough. That is where the lower bound on T is

useful. It stems directly from the fact that, if Algorithm 4 stops and returns a set with |XT | < |X ?|/P ,

Proposition 12 implies there exists at least one element x ∈ X ? such that XT ∪ {x} ∈ I. This

contradicts the fact that the feasibility set of step 3 must be empty for the algorithm to terminate.

Naturally, near-optimality depends not only on the feasibility set I, but also on the objec-

tive f . For instance, if f is a monotone decreasing modular function, then XT is an optimal solution

of (P-MTRD) with P = 1 in (7.24) [181, Ch. 40]; if f is a normalized, monotone decreasing super-

modular function, then GT would be 1/(1+P )-optimal [182]. The case of α-supermodular objectives

is addressed in the following theorem.

Theorem 10. Consider (P-MTRD) where Ip are independent sets of matroids and f is a normal-

ized, monotone decreasing, α-supermodular function (i.e., f(A) ≤ 0 for all A ⊆ V). Let Xg be its

greedy solution from Algorithm 4. Then,

f(Xg) ≤
α

α+ P
f(X ?). (7.27)

Proof. See appendix B.3.1. �

Theorem 10 provides a near-optimal certificate for the greedy solution of α-supermodular min-

imization problems subject to multiple matroid constraints. Since the values of f are non-positive

due to the normalization assumption, the result in (7.27) may not be straightforward to interpret.

Nevertheless, it can be written equivalently in terms of improvements with respect to the empty

solution, namely,

f(G)− f(X ?)
f(∅)− f(X ?) ≤

P

α+ P
.

As expected from previous results, the guarantee in (7.27) bounds the suboptimality of greedy

search in terms of the α-supermodularity of the cost function. When α < 1, (7.27) quantifies

the loss in performance guarantee due to the objective f violating the diminishing returns property.

Confirming our initial intuition, the larger the violations, i.e., the smaller α, the worst the guarantee.
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On the other hand, (7.27) shows that the classical 1/(1 + P ) certificate for supermodular functions

can be strengthened when f has stronger diminishing returns structures, i.e., when α ≥ 1. It is easy

to see that Theorem 10 is consistent with previous results for single [169] and multiple [182] matroid

constraints.

Observe, however, that (7.27) decreases linearly with P . In other words, the guarantees for

greedy search deteriorates as more matroids are needed to represent I. In a sense, this is the

constraint counterpart of α-supermodularity: the further away from a pure matroid the constraints

are, the worst the greedy algorithm is guaranteed to perform. Effectively, (7.27) states that the

more constraints need to be satisfied, i.e., the larger P , the harder the problem becomes. Note

that P in (7.27) can be replaced by the minimum number of matroids needed to represent
⋂P
p=1 Ip,

so that the guarantee from Theorem 10 can sometimes be improved. Determining this minimum

number, however, can be quite intricate. Still, Theorem 10 is a worst case bound and as is the

case with the classical result for greedy supermodular minimization [169,182], better performance is

often obtained in practice. Still, pathological cases that approach the bound can be constructed (see

Section 7.4).

It is worth noting that in the single matroid case (P = 1), Theorem 10 is strictly (though not

significantly) stronger than the guarantee from [44] for α < 1. This difference is more accentuated

for small α: for instance, if α = 0.2, (7.27) is 60% stronger than the certificate in [44]. A similar

certificate was obtained in [171] with α ≥ 1 for a single matroid constraints.

7.3 The multiset case

In certain applications, we are interested in selecting multisets rather than sets. This is the case, for

instance, in experimental design, where we may wish to allow an informative, yet noisy experiment

to be performed multiple times thus allowing the noise to be averaged out. Directly applying the

guarantees from the previous section in this setting can lead to extremely poor results due to the fact

that they deteriorate the bounds on α/ε from Section 7.1.1. Indeed, since we would need to create a

virtual ground set containing s unique copies of each element in V, this can lead to guarantees that

are six orders of magnitude lower than the ones put forward in this section.
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To provide guarantees for multisets, we refine the definitions of approximate supermodularity

from Section 7.1 to account for set cardinalities. Explicitly,

Definition 8 (α-supermodularity). A multiset function f : P(V) → R is α-supermodular, for α :

N× N→ R, if for all multisets A,B ∈ P(V), A ⊆ B, and all u ∈ V it holds that

f (A)− f (A ∪ {u}) ≥ α(|A|, |B|) [f (B)− f (B ∪ {u})] . (7.28)

Once again, α not only measures how much f violates supermodularity, but it also quantifies the

loss in performance guarantee incurred from these violations.

Theorem 11. Let f be a normalized, monotone decreasing, and α-supermodular multiset function.

Then, for ᾱ = mina<r, b<r+s α(a, b) the greedy solution obtained from Algorithm (3) satisfies

f(Xg) ≤
[

1−
r−1∏
t=0

(
1− 1∑s−1

k=0 α(t, t+ k)−1

)]
f(X ?) ≤ (1− e−ᾱr/s)f(X ?). (7.29)

Proof. See appendix B.3.2. �

We can proceed similarly for ε-supermodularity as shown in the following definition.

Definition 9 (ε-supermodularity). A multiset function f : P(V) → R is ε-supermodular, for ε :

N× N→ R, if for all multisets A,B ∈ P(V), A ⊆ B, and all u ∈ V it holds that

f (A)− f (A ∪ {u}) ≥ f (B)− f (B ∪ {u})− ε (|A|, |B|) . (7.30)

In contrast to α-supermodularity, we obtain an additive approximation guarantee for the greedy

minimization of ε-supermodular functions.

Theorem 12. Let f be a normalized, monotone decreasing, and ε-supermodular multiset function.

Then, for ε̄ = maxa<r, b<r+s ε(a, b), the greedy solution obtained from Algorithm (3) satisfies

f(Xg) ≤
[
1−

(
1− 1

s

)r]
f(X ?) +

1

s

s−1∑
k=0

r−1∑
t=0

ε(t, t+ k)

(
1− 1

s

)r−1−t

≤ (1− e−r/s) [f(X ?) + sε̄]

(7.31)
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Proof. See appendix B.3.3. �

7.4 Applications

In this section, we illustrate the abstract near-optimality results presented so far in three applications.

First, we explore the problem of downsampling graph signals, where cardinality constraints play a

central role. We then proceed to analyze the control input scheduling problem, where more complex

requirements involving bounds the number of actions per time instant or duty-cycle restrictions

arise. These requirements can be described using an intersection of matroids. Finally, we study the

experimental design problem to showcase our results on multiset optimization.

7.4.1 Graph Signal Sampling

A graph-supported signal, or graph signal for short, is an assignment of values to the nodes of a

graph. Formally, let G be a weighted graph with node set V, having cardinality |V| = n, and define

a graph signal to be an injective mapping σ : V → C. For an ordering of the nodes in V, this signal

can be represented as an n× 1 vector that captures its values at each node:

x =

[
σ(u1) · · · σ(un)

]T
, ui ∈ V. (7.32)

In what follows, we assume that the node ordering is fixed, so that we can index x using elements

of V. For instance, we write x{ui,uj ,uk} = [ σ(ui) σ(uj) σ(uk) ]
T

.

Of interest to graph signal processing (GSP) is the spectral representation of the signal σ (or x),

which depends on the graph on which it is supported. Indeed, let A ∈ Cn×n be a matrix represen-

tation of G. Usual choices include the adjacency matrix or one of the discrete Laplacians [183,184].

Assume that A is consistent with the signal vector (7.32) in the sense that they employ the same

ordering of the nodes in V. Furthermore, assume that A is normal, i.e., that there exist V ∈ Cn×n

unitary and D ∈ Rn×n diagonal such that A = V DV H [178]. Then, the graph Fourier transform

of x is given by [183,184]

x̄ = V Hx. (7.33)
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Observe that if A is normal we obtain a spectral energy conservation property analog to Parseval’s

theorem in classical signal processing: it is ready to see that ‖x̄‖2 = ‖x‖2 if and only if V in (7.33)

is unitary, which holds if and only if A is normal [178].

Similar to traditional signal processing, a graph signal x is said to be spectrally sparse (ssparse)

when its spectral representation is sparse. Explicitly, x is K-ssparse if x̄ in (7.33) is such that x̄V\K

is a zero vector. Then,

x = VKx̄K. (7.34)

Note that spectrally sparse signals are a superset of bandlimited (“low-pass”) signals. Hence, all re-

sults in this work apply to bandlimited signals regardless of the graph frequency order adopted [185–

187].

The interest in K-ssparse or bandlimited graph signals is motivated similarly to traditional signal

processing: these signals can be sampled and interpolated without loss of information. Indeed, take

sampling to be the operation of observing the value of a graph signal on S ⊆ V, the sampling set.

Then, there exists a set S of size |K| such that x can be recovered exactly from xS [186–189]. If,

however, only a corrupted version of xS is available, then x can only be approximated. To do so, the

next section poses noisy interpolation as a Bayesian estimation problem, from which the minimum

MSE interpolation operator can be derived.

7.4.1.1 Graph signal interpolation

We study graph signal interpolation as a Bayesian estimation problem. Formally, let x ∈ Cn be a

graph signal and S ⊆ V be a sampling set. We wish to estimate

z = Hx, (7.35)

for some matrix H ∈ Cm×n based on the samples yS taken from

y = x+w, (7.36)
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where w ∈ Cn is a circular zero-mean noise vector. By circular we mean that its relation matrix

vanishes, i.e., that EwwT = 0 [190]. Note that (7.35) accounts for scenarios in which we are

not interested in the graph signal itself but on a post-processed value, such as the output of a

linear classifier or estimator. The usual graph signal interpolation problem from [54, 55, 185–189] is

recovered by taking H = I.

The prior distribution of x reflects the fact that the graph signal is K-ssparse by assuming it is

a circular zero-mean distribution with covariance matrix Σ = xxH = VKΛV H
K for Λ = diag(λi),

λi ∈ R+. We assume without loss of generality that Λ is full-rank. Otherwise, remove from K

any element i for which λi = 0. Note that this is equivalent to placing a zero-mean uncorrelated

prior on x̄ in (7.33). Hence, this model can also be interpreted as the generative model for a wide-

sense stationary random process on G [191–193]. The noise prior is taken as a zero-mean circular

distribution with covariance matrix Λw = diag(λw,i), λw,i ∈ R+ and λw,i > 0.

We consider estimates of z of the form

ẑ(S) = L(S)yS , (7.37)

for some L(S) ∈ Cn×|S|. Because L recovers (approximates) z from the samples yS , it is referred

to as a linear interpolation operator [185–187]. An optimal interpolation operator can be found for

each S by minimizing the interpolation error covariance matrix as in

minimize
L

K [ẑ(S)]

subject to ẑ(S) = LyS

(7.38)

where K [ẑ(S)] = E
[
(z − ẑ(S)) (z − ẑ(S))

H | x,w
]

and the minimum is taken with respect to the

partial ordering of the PSD cone (see Remark 2). We have omitted the dependence of L on S for

clarity. Our interest in solving (7.38) instead of minimizing the MSE directly is that it is more

general. In particular, a solution of (7.38) also minimizes any spectral function of K, including the

MSE and the log-determinant. The following proposition gives an explicit solution to this problem.

To clarify the derivations, we define the selection matrix C ∈ {0, 1}|S|×N composed of the identity

matrix rows with indices in S, so that the samples of (7.36) can be written as yS = Cy.
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Proposition 13. Let y = x + w be noisy observations of a graph signal x. Let the priors on x

and w be zero-mean circular distributions with covariances Σ = VKΛV H
K , Λ = diag(λi), and Λw =

diag(λw,i) respectively. Given a sampling set S, the optimal Bayesian linear interpolator L? that

solves problem (7.38) is obtained as a solution of

L?C (Σ + Λw)CT = HΣCT . (7.39)

The error covariance matrix of the optimal interpolation ẑ? = L?yS is given by

K?(S) = HVK

(
Λ−1 +

∑
i∈S

λ−1
w,iviv

H
i

)−1

V H
K H

H , (7.40)

where VK =

[
v1 · · · vN

]H
.

Proof. Start by substituting (7.35) and (7.37) into the definition of K to get

K(LyS) = E
[
(Hx−LCy)(Hx−LCy)H

∣∣ x,w] .

Note that we used the fact that yS = Cy. Then, using the priors on x and w, K expands to

K(LyS) = HΣHH −LCΣHH −HΣCTLH +LC(Σ + Λw)CTLH . (7.41)

From the partial ordering of the PSD cone, L? can be obtained by minimizing the scalar cost

function

J(L) = bHK(LyS)b (7.42)

simultaneously for all b ∈ Cn [56]. Substituting (7.41) into (7.42) and setting its gradient with

respect to bHL to zero gives

∂J(L)

∂bHL
= 0⇔ C (Σ + Λw)CTLHb = CΣHHb.

Since this must hold for all b simultaneously, we obtain (7.39).
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To determine the error covariance matrix K? of the optimal interpolator, replace any L? satis-

fying (7.39) into (7.41) and expand Σ = VKΛV H
K to get

K?(L?yS) = HVK

{
Λ−ΛV H

K C
T ×

[
C
(
VKΛV H

K + Λw

)
CT
]−1

CVKΛ
}
V H
K H

H . (7.43)

Note that (7.43) does not depend on L? or yS , only on the sampling set S through the selection

matrix C. Moreover, since Λw is diagonal and full rank, (CΛwC
T )−1 = CΛ−1

w C
T , so that the

inverse in (7.43) always exists. Therefore, using the matrix inversion lemma [178] gives

K?(S) = HVK
(
Λ−1 + V H

K C
TCΛ−1

w C
TCVK

)−1
V H
K H

H .

Given that CTC is a diagonal matrix with ones on the indices in S and zeros everywhere else, we

obtain (7.40) by noting that

V H
K C

TCΛ−1
w C

TCVK =
∑
i∈S

λ−1
w,iviv

H
i ,

for VK =

[
v1 · · · vN

]H
. �

Given prior distributions for the graph signal and noise, Proposition 13 determines the optimal

linear interpolator from the samples in S. If the priors on x and w are moreover Gaussian, then ẑ? =

L?yS is also the maximum likelihood estimate of z [56]. An important consequence of the Bayesian

statement of Proposition 13 is that Λ and Λw are taken from prior distributions on the signal and

noise. Thus, their actual values need not be known exactly. Note that the optimal error covariance

matrix K? now depends only on the sampling set S, since it measures the error of the optimal

estimator L?. Moreover, although we assume that the interpolation is performed as a single step

projection, iterative procedures can also be used [194,195].

Despite our assumption that Λw is full-rank, (7.39) also holds in the noiseless case (Λw = 0).

Its solution, however, may no longer be unique. In particular, this happens if the sampling set is

not sufficient to determine z, i.e., if CVK is rank-deficient [186–189]. In contrast, when Λw � 0,

the matrix on the left-hand side of (7.39) is always invertible and L? is unique for each S. This is
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similar to the well-known regularization effect of noise in Kalman filtering [56]. The interpolation

performance given in (7.40), however, is not the same for all sampling sets.

Remark 2. Problem (7.38) is a PSD matrix minimization problem that searches for the optimal

interpolator L? that minimizes the error covariance matrix K. In general, optimization problems

in the PSD cone need not have a solution. Since the ordering of PSD matrices is only partial, the

existence of a matrix that is smaller than all other matrices is not guaranteed [130]. As shown

in Proposition 13, this is not the case here. Problem (7.38) admits a dominant solution L? in

the PSD cone, i.e., it holds that K(L?yS) � K(LyS) for all L ∈ Cn×|S|. This means that L?

minimizes all the eigenvalues of K simultaneously. Equivalently, it implies that L? is a solution

to the minimization of any spectral function of K. In particular, it follows that L? minimizes the

MSE, since MSE(ẑ) := E ‖z − ẑ‖22 = Tr [K(ẑ)], and the log det [K(ẑ)].

7.4.1.2 Sampling set selection

Proposition 13 allows us to evaluate the optimal interpolator L? that minimizes the estimation error

covariance matrix for a given sampling set. This does not guarantee, however, that there is no other

sampling set of the same size for which the interpolation error is smaller. To address this issue, we

investigate the sampling set selection problem which sets out to find the sampling set that minimizes

the interpolation MSE over all sampling sets. Explicitly, we wish to solve

minimize
S⊆V

MSE(S)

subject to |S| ≤ k
(7.44)

where MSE(S) = Tr[K?(S)].

An important fact about (7.44) is that increasing S always decreases MSE. This has two impor-

tant consequences. First, the unconstrained version of (7.44) is trivial, i.e., its solution is S = V.

Second, it implies that the constraint in (7.44) is tight, i.e., it can be replaced by the equality

constraint |S| = k without changing the problem solution. This property is a direct corollary of

Lemma 4 and the fact that K? in (7.40) has the form 7.12.

Although Lemma 4 reduces the searching space to sampling sets of size k, (7.44) remains a
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combinatorial optimization problem:
(
n
k

)
sampling sets must still be checked, which is impractical

even for moderately small n. In fact, due to the irregularity of the domain of graph signals, sampling

set selection is NP-hard in general. It is straightforward to see that it is equivalent to the sensor

placement or forward regression problems in [167, 174, 196, 197], so that the typical reduction from

set cover applies [99].

Since MSE(S) has the form of the set trace function (7.13), we know that it is α-supermodular.

In fact, we can bound its α as in the following proposition:

Proposition 14. The scalar set functions MSE(S) = Tr[K?(S)] is (i) monotone decreasing and

(ii) α-supermodular with

α ≥ λmax(Λw)−1 + µ−1
max

λmax(Λw)−1 + µ−1
min

µ2
min

κ2(W )µ2
max

, (7.45)

where µmin ≤ λmin

[
Λ−1

]
, µmax ≥ λmax

[
Λ−1 + V H

K Λ−1
w VK

]
, and κ2(W ) is the 2-norm condition

number of W [178].

Proof. See appendix B.3.4. �

Then, the guarantee from Theorem 8 can be combined with the characterization in (7.45) to

yield:

Theorem 13. Let S? be the solution of (7.44) and Xr be the result of applying Algorithm 3

for f(X ) = MSE(X ). Then,

MSE(Xr)−MSE(S?)
MSE(∅)−MSE(S?) ≤ e

−αr/k, (7.46)

where

α ≥ λmax(Λw)−1 + µ−1
max

λmax(Λw)−1 + µ−1
min

µ2
min

κ2(W )µ2
max

(7.47)

for µmin ≤ λmin

[
Λ−1

]
, µmax ≥ λmax

[
Λ−1 + V H

K Λ−1
w VK

]
, and κ2(W ) is the 2-norm condition

number of W . Assuming Λ = σ2
xI and Λw = σ2

wI, (7.47) reduces to

α ≥ 1 + 2γ

κ2(W ) (1 + γ)4
, for γ =

σ2
x

σ2
w

. (7.48)

Theorem 13 establishes that a near-optimal solution to the sampling set selection problem

in (7.44) can be obtained efficiently using greedy search. Though strong empirical evidence ex-
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Figure 7.2: Comparison between the bound in (7.48) and α

ists that greedily minimizing the MSE yields good results in contexts such as regression, dictionary

learning, and graph signal processing [174, 186–189, 198], this result is counter-intuitive given that

the MSE is not supermodular in general. For instance, restrictive and often unrealistic conditions

on data distribution are required to obtain supermodularity in the context of regression [174].

Theorem 13 therefore reconciles the empirical success of greedy sampling set selection and the

non-supermodularity of the MSE by bounding the suboptimality of greedy sampling. In particular,

(7.48) gives a simple bound on α in terms of the SNR and the condition number of W that gives

clear insights into its behavior. Indeed, as γ → ∞ and we approach the noiseless case, α → 0.

This is expected as in the noiseless case almost every set of size |K| achieves perfect reconstruction,

so that the choice of sampling nodes is irrelevant. On the other hand, α → 1 as γ → 0, i.e., the

MSE becomes closer to supermodular as the SNR decreases. Given that reconstruction errors are

small for high SNR, Theorem 13 guarantees that greedy sampling performs well when it is most

needed. Similar trends can be observed in the more general setting of (7.47). These observations are

illustrated in Figure 7.2 that compares the bound in (7.48) to the true value of α for the MSE (found

by exhaustive search) in 100 realizations of random graphs (see Section 7.4.1.3 for details).

Before proceeding, the complexity issue of greedy sampling set selection must be addressed.

The greedy search in Algorithm 3 requires |V|rcf operations, where cf is the cost of evaluating the

objective f . As it is, problem (7.44) has cf = O(|K|3). It can, however, be reduced using the matrix

104



Algorithm 5 Greedy graph sampling

G0 = {} and K?
0 = Λ

for j = 1, . . . , ` do

u = argmax
s∈V\Gj−1

vHu K
?
j−1WK?

j−1vu

λ−1
w,u + vHu K

?
j−1vu

. O(|V||K|2)

K?
j = K?

j−1 −W
K?
j−1vuv

H
u K

?
j−1

λ−1
w,u + vHu K

?
j−1vu

. O(|K|2)

Gj = Gj−1 ∪ {u}
end for

inversion lemma [178].

Indeed, start by noticing that the first step of the greedy approximation of problem (7.44) involves

finding (see Algorithm 3)

u = argmin
s∈V

Tr
[
K? (Gj−1 ∪ {s})

]
,

which, using the definition of K? in (7.40) and the circular commutation property of the trace,

requires the evaluation of

Tr
[
K? (Gj−1 ∪ {s})

]
=

Tr

W
Λ−1 +

∑
i∈Gj−1

λ−1
w,iviv

H
i + λ−1

w,svsv
H
s

−1
 ,

where once again W = V H
K H

HHVK. Letting K?
j = K?(Gj) and using the matrix inversion lemma,

we can reduce the update of K? to

K?(Gj ∪ {s}) = K?
j−1 −W

K?
j−1vuv

H
u K

?
j−1

λ−1
w,u + vHu K

?
j−1vu

. (7.49)

From linearity, it is then straightforward to see that finding the minimum of the trace of (7.49) is

equivalent to finding the maximum of

Tr

[
W

K?
j−1vuv

H
u K

?
j−1

λ−1
w,u + vHu K

?
j−1vu

]
=
vHu K

?
j−1WK?

j−1vu

λ−1
w,u + vHu K

?
j−1vu

. (7.50)

The greedy sampling set selection procedure obtained by leveraging (7.49) and (7.50) is presented
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Figure 7.3: Relative suboptimality of sampling schemes for low SNR (SNR = −20 dB)

in Algorithm 5. This algorithm now requires only O(r|V||K|2) operations.

Remark 3. Since the MSE is not supermodular, it is common to see surrogate supermodular

figures of merit used instead, specially in statistics and experiment design [168, 174, 196, 197]. In

particular, the log-determinant log det[K?(S)] is a common alternative to the objective MSE(S) =

Tr[K?(S)] used in (7.44). This is justified because the log det[K?(S)] is proportional to the volume

of the confidence ellipsoids of the estimate when the data is Gaussian [197, 199]. This choice of

objective is also common in the sensor placement literature due to its relation to information theoretic

measures, such as entropy and mutual information [196]. By replacing the trace operator in (7.44)

by the log det, the problem becomes a supermodular function minimization that can be efficiently

approximated using greedy search, as shown in [55, 200]. We remark that minimizing the log det of

the error covariance matrix and the MSE are not equivalent problems.

7.4.1.3 Numerical experiments

In this section, we start by evaluating the performance greedy sampling set selection (Algorithm 5).

For comparison, we also display the results obtained by the uniform and leverage score randomized

methods from [185] and a deterministic heuristic based on sampling nodes with the highest leverage

score (‖vi‖22). In the following examples, we use undirected graphs generated using the Erdős-Rényi

model, in which an edge is placed between two nodes with probability p = 0.2; the preferential

attachment model [201], in which nodes are added one at a time and connected to a node already
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Figure 7.4: Relative suboptimality of sampling schemes for high SNR (SNR = 20 dB)

in the graph with probability proportional to its degree; and a random undirected graph, obtained

by assigning a weight to all possible edges uniformly at random from [0, 1].

The figure of merit in the following simulations is the relative suboptimality from (7.46). Since it

depends on the optimal sampling set which needs to be determined by exhaustive search, we focus

on graphs with n = 20 nodes. Bandlimited graph signals are generated by taking VK in (7.34)

to be the eigenvectors of the graph adjacency matrix relative to the five eigenvalues with largest

magnitude (|K| = 5). The random vectors x̄ in (7.34) and w in (7.36) are realizations of zero-mean

Gaussian random variables with covariance matrices Λ = I and Λw = σ2
wI, where σ2

w is varied to

obtain different SNRs. The transform in (7.35) is taken to be the identity (H = I) and the sampling

set size is chosen as ` = |K| = 5.

Figures 7.3 and 7.4 display histograms of the relative suboptimality for 1000 realizations of graphs

and graph signals with σ2
w = 102 (SNR = −20 dB) and σ2

w = 10−2 (SNR = 20 dB), respectively. As

predicted by Theorem 13, greedy sampling set selection performs better in low SNR environments,

where the optimal sampling set was obtained in more than 95% of the realizations. Nevertheless,

even in high SNRs, it found the optimal sampling set almost half of the time. In fact, note that

Algorithm 5 typically performs much better than the bounds in Theorem 13 (see details in Fig. 7.4).

For comparison, results for greedily optimizing log det [K?(S)], a supermodular function, are shown

in Figure 7.5. Although the MSE is α-supermodular with α < 1, the relative suboptimality obtained

by using both cost functions is comparable.
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It is worth noting that, although the deterministic leverage score ranking technique often yields

good results, there are advantages to greedy sampling set selection, specially for higher SNR. The

randomized sampling schemes, on the other hand, do not perform as well for single problem instances.

To be fair, these methods are more appropriate when several sampling sets of the same graph

signal are considered. Indeed, the performance measures in [185] hold in expectation over sampling

realizations.

Evaluating the relative suboptimality for larger graphs is untractable. However, since these

sampling set selection techniques build the sampling set sequentially, we can assess their performance

in terms of the sampling set size required to obtain a given MSE reduction. Figure 7.6 displays

the distribution of the sampling set size required to achieve a 90% reduction in the MSE with

respect to the empty set. The plots are obtained from 1000 graphs and signals realizations with

n = 100 nodes, VK in (7.34) composed the eigenvectors relative to the seven eigenvalues with largest

magnitude (|K| = 7), and σ2
w = 10−2. Although Theorem 13 estimates that Algorithm 5 requires

sets considerably larger to recover the same near-optimal guarantees as supermodular functions,
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Figure 7.7: Classification performance: (a) PCA and kPCA and (b) greedy subsampled kPCA.

greedy sampling obtained a sampling set of size exactly |K| in more than 50% of the realizations.

Moreover, as noted in [185], we can now see that leverage score sampling has similar performance

to uniform sampling for Erdős-Rényi graphs, but gives better results for the preferential attachment

model.

A more practically interesting application of greedy graph sampling is found in the context

of kernel PCA (kPCA). Kernel PCA is a nonlinear version of PCA [202] that also identifies data

subspaces by truncating the eigenvalue decomposition (EVD) of a Gram matrix Φ. However, whereas

PCA uses the empirical covariance matrix, kPCA constructs Φ by evaluating inner products between

data points in a higher dimensional space F known as the feature space. Since the map ϕ : Rm → F
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Figure 7.8: Classification performance of subsampled kPCA for different sampling schemes: (a) k =
12 components and (b) k = 15 components. Mean (solid line), median (×), and error bars (one
standard deviation) based on 100 sampling realizations.

can be nonlinear and F typically has infinite dimensionality, kPCA results in richer subspaces than

PCA [202–204].

Naturally, the dimensionality of F poses a challenge for constructing the Gram matrix. This

problem is addressed using the so called kernel trick [202–204]. A kernel is a function κ that allows

the inner product in F to be evaluated directly from vectors in Rm, i.e., κ(r, s) = 〈ϕ(r), ϕ(s)〉F. We

can use κ to construct Φ from a training set {ui}i=1,...,n, ui ∈ Rm, as in

Φ = [κ(ui,uj)]i,j=1,...,n . (7.51)

Kernel PCA identifies the data subspace as the span of the first k eigenvectors of Φ, i.e., as colspan(VK),

where Φ = V ΛV H is the EVD of Φ with eigenvalues in decreasing order and K = 1, . . . , k. Using

the representer’s theorem [204], any data point y can be projected onto this subspace by

ȳ = V H
K ỹ, ỹ = [κ(ui,y)]i=1,...,n . (7.52)

The projection in (7.52) requires Θ(kn) operations and n KEs, making this method impractical

for large data sets even if the dimension k of the subspace of interest is small. Indeed, although

the training phase in (7.51) is usually performed offline, (7.52) needs to be evaluated during the
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operation phase for every new data point. In [205], this issue was addressed by using a Gaussian

generative model for Φ and showing that its maximum likelihood estimate depends only on a subset

of the ui. Another approach is to impose sparsity on V a priori so that it depends only on a reduced

number of training points [203]. Alternatively, one can find a representative subset of the training

data and apply kPCA to that subset [206]. The issue with the latter method is that finding a good

data subset is known to be a hard problem [207,208]. In fact, it is related to the problem of sampling

set selection in GSP.

Indeed, since we used the same notation as in when we described graph signals, formulating kPCA

in the context of GSP is straightforward. Let the graph G have adjacency matrix A = Φ, which is

symmetric and normal, so that (7.52) has the form of a (partial) graph Fourier transform (7.34). In

other words, (7.52) can be interpreted as enforcing graph signals of the form ỹ to be bandlimited

on Φ. Thus, we can apply the sampling and interpolation theory from GSP to put forward a

subsampled kPCA.

Based on the guarantees from Theorem 13, we use greedy search to obtain a sampling set S and

use the interpolation techniques from Section 7.4.1.1 to recover ỹ from its samples as in

ỹ = L?ỹS . (7.53)

Then, (7.52) and (7.53) yield

ȳ = V H
K L

?︸ ︷︷ ︸
P

ỹS . (7.54)

Notice that P is now k × |S|, so that the projection in (7.54) only takes Θ(k|S|) operations

and |S| KEs, leading to a considerable complexity reduction (|S|/n) over the direct projection

in (7.52). Moreover, kPCA is typically used for dimensionality reduction prior to regression or clas-

sification, so that we are actually interested in a linear transformation of ȳ. Subsampled kPCA can

account for this case by properly choosing H in (7.35). It is worth noting that contrary to [206],

the full dataset is used during the training stage to obtain VK. However, once P is determined, only

the subset S is required.

In the sequel, we illustrate this method in a face recognition application using the faces94 data

set [209]. It contains 20 pictures (200 × 180) of 152 individuals which were converted to black and
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white and normalized so that the value of each pixel is in [−1, 1]. A training set is obtained by

randomly choosing 14 images for each individual (70% of the data set) and the remaining pictures

are used for testing. In this application, we use a polynomial kernel of degree d = 2 [204] and a

one-against-one multiclass support vector machine (SVM) classifier, in which an SVM is trained for

each pair of class and the classification is obtained by majority voting (see [210] for details on this

scheme). Finally, note that since images in both training and testing sets come from the same data

set there is no observation noise w. Still, σ2
w can be used to regularize the matrix inversions in (7.39)

and (7.40) [56].

Figure 7.7a shows the misclassification percentage on the test set as a function of the number of

components (k) for both PCA and kPCA. Note that kPCA can achieve the same performance as

PCA with less components. The results of using greedy subsampled kPCA are shown in Figure 7.7b

and clearly illustrate the trade-off between complexity and performance: as the sampling set size

increases, the classification errors decrease. However, since misclassification is a nonlinear function

of the MSE, it may be advantageous to use more components instead of increasing the sampling

set. For instance, kPCA requires k = 7 components to achieve a misclassification of 1%, so that

evaluating the direct projection in (7.52) takes 2128 KEs and 29785 operations. Greedy subsampled

kPCA, on the other hand, can achieve the same performance with k = 12 components and |S| = 33,

i.e., 33 KEs and 780 operations, a complexity reduction of more than 97%. Nevertheless, using

7 components, greedy subsampled kPCA would require S to be almost the full training set.

Naturally, the method in (7.51)–(7.54) is not restricted to sampling sets obtained greedily. Thus,

in Figure 7.8 we compare greedy sampling to other sampling methods based on their misclassifica-

tion performance for 12 (Figure 7.8a) and 15 (Figure 7.8b) components. We omit the deterministic

leverage score results because it performed consistently worst than the other methods. The average

misclassification rates for the randomized schemes are from 1 to 15% higher than those of greedy

sampling. Although some realizations yield good classification, their performance varies a lot, espe-

cially for smaller sampling sets. Comparing Figures 7.8a and 7.8b, it is ready that in this application

the difference between uniform and leverage score sampling becomes less significant as the number

of components increases.

Remark 4. Although we discuss the kPCA case, the same arguments apply to the classical PCA.
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Figure 7.9: Illustration of time-specific and overall input sets and schedules.

It is therefore straightforward to derive an analog subsampled PCA technique using (7.51)–(7.54).

7.4.2 Control input scheduling

To showcase results in an application where matroid constraints are essential, we study the input

scheduling problem in control. Consider a discrete-time, linear dynamical system and let Vk denote

the set of inputs available at time k as illustrated in Figure 7.9. Depending on the context, these

abstract inputs can be used to represent actuators, agents, or both. Suppose that at each time

instant, only a subset Sk ⊆ Vk of inputs is used, so that the states xk ∈ Rn of the system evolve

according to

xk+1 = Akxk +
∑
i∈Sk

bi,kui,k +wk, (7.55)

where, for each time k, Ak denotes the state transition matrix, bi,k ∈ Rn is a vector representing the

effect of applying the control action ui,k to the i-th input, and wk is a zero-mean Gaussian vector

that models the process noise. We assume that {wj ,wk} are independent for j 6= k and that their

covariance matrices EwkwT
k = Wk are either positive definite (Wk � 0) for all k or zero (Wk = 0)

for all k, which accounts for the deterministic dynamics case. Let V = V0∪V1∪· · ·∪VN−1 be the set

of all actuators available over the N -steps time window [0, N−1] and let V ⊇ S = S0∪S1∪· · ·∪SN−1

be called a schedule, as it denotes the set of active inputs at each time instant. We assume without

loss of generality that Vj ∩ Vk = ∅ for all j 6= k. Any input v available at more than a single time

instant can then be represented by unique copies, e.g., as vj ∈ Vj and vk ∈ Vk (Figure 7.9).

Given a schedule S ⊆ V, designing the control actions ui,k reduces to a classical optimal control

problem, since (7.55) describes a well-defined, time-varying dynamical system. In particular, we
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consider the linear-quadratic-Gaussian (LQG) control problem

V ?(S) = min
U(S)

E

[
N−1∑
k=0

(
xTkQkxk +

∑
i∈S∩Vk

ri,ku
2
i,k

)
+ xTNQNxN

]
, (7.56)

where U(S) = {ui,k | i ∈ S ∩ Vk}N−1
k=0 is the set of valid control actions, Qk � 0 for all k are the

state weights, and ri,k > 0 for all i and k are the input weights. The relative value of these weights

describe the trade-off between state regulation (Qk) and input cost (ri,k). The expectation in (7.56)

is taken with respect to the process noise sequence {wk} and the initial state x0, assumed to be a

Gaussian random variable with mean x̄0 and covariance Σ0 � 0. When wk = 0 for all k, (7.56)

reduces to the linear quadratic regulator (LQR) problem. It is useful to recall that (7.56) has a

closed-form solution that we describe in the following proposition.

Proposition 15. Given a schedule S ⊆ V, the optimal value V ?(S) of the LQG problem in (7.56)

can be written as

V ?(S) = Tr [Σ0P0(S)] +

N−1∑
k=0

Tr [WkPk+1(S)] , (7.57)

where the Pk(S) are obtained via the backward recursion

Pk(S) = Qk +AT
k

(
P−1
k+1(S) +

∑
i∈S∩Vk

r−1
i,kbi,kb

T
i,k

)−1

Ak, (7.58)

starting with PN = QN .

Proof. See appendix B.3.5. �

Control scheduling refers to the problem of finding a schedule S that minimizes the control cost

in (7.56) subject to time-input constraints, i.e.,

minimize
S⊆V

J(S) , V ?(S)− V ?(∅)

subject to S ∈ Ip, p = 1, . . . , P ,

(PXIII)

where Ip ⊆ 2V are families of subsets of V that enumerates admissible schedules and 2X denotes

the power set of X (the collection of all finite subsets). Typical scheduling requirements include
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(i) limits on the total number of control actions, (ii) limits on the number of inputs used per time

instant, (iii) restrictions on the consecutive use of inputs, and combinations thereof. Observe that the

constant V ?(∅) in the objective of (PXIII) does not affect the solution of the optimization problem.

It is used so that J(∅) = 0, which simplifies the presentation of our near-optimal certificates.

7.4.2.1 Near-optimal control scheduling

The complexity of (PXIII) is tightly related to the anatomy of its constraints and objective. Indeed,

even obtaining a feasible schedules for (PXIII) can be hard depending on the structure of the Ip.

Not to mention obtaining a good one. In fact, (PXIII) is NP-hard even for constraints as simple

as a budget on the total number of control actions (p = 1 and I = {S ⊆ V | |S| ≤ s}) [164,

165, 167, 174, 196, 197, 211]. Still, depending on the nature of the objective and constraints, there

exist simple algorithms able to provide near-optimal approximate solutions. In particular, when Ip
are collections of independent sets of matroids and V ? is α-supermodular, (PXIII) can be solved

near-optimally using greedy search (Theorem 10).

These, it turns out, are not strict conditions. Indeed, typical schedule constraints can be described

in terms of matroids. Of particular interest are the uniform, partition, and transversal matroids

respectively:

• bound on the total number of control actions:

I = {S ⊆ V | |S| ≤ s},

• bound on the number of inputs used per time instant:

I = {S ⊆ V | |S ∩ Vk| ≤ sk}, and

• restriction on the consecutive use of inputs:

I = {S ⊆ V | vk /∈ S or vk+1 /∈ S, for vk, vk+1 ∈ V},

Under these conditions, an approximate solution of (PXIII) can be obtained using Algorithm 4. We

next show that the objective function J is α-supermodular and monotone decreasing and provide

an explicit lower bound on α.
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Proposition 16. Let Ak in (7.55) be full rank for all k. The normalized actuator scheduling problem

objective J is (i) monotonically decreasing and (ii) α-supermodular with

α ≥ min
k=0,...,N−1

αk, (7.59)

where

αk ≥
λmin

[
P̃
−1

k+1(∅)
]

λmax

[
P̃
−1

k+1(V) +
∑
i∈Vk r

−1
i,k b̃i,kb̃

T

i,k

] , (7.60)

for P̃ k+1(S) = H
1/2
k Pk+1(S)H

1/2
k , b̃i,k = H

−1/2
k bi,k, H0 = A0Σ0A

T
0 , and Hk = AkWk−1A

T
k

for k ≥ 1.

Proof. See appendix B.3.6. �

Remark 5. The full rank hypothesis on Ak can be lifted using a continuity argument. However,

the bound in (7.59) is trivial (α ≥ 0) for rank deficient state transition matrices, so we focus only

on the case of practical significance.

Proposition 16 states that the objective of (PXIII) is α-supermodular for α as in (7.59). Notice

that the lower bound on α is explicit in that it can be evaluated in terms of the parameters of

the dynamical system and the weights Qk and ri,k in (7.56). In other words, (7.59) allows us to

determine α a priori for the objective J and with Theorem 10, give near-optimality guarantees on

the greedy solution of (PXIII). We collect this result in the theorem below.

Theorem 14. Consider the control scheduling problem (PXIII) in which (V, Ip) is a matroid for

each p and let S? be its optimal solution and Sg be its greedy solution obtained using Algorithm 4.

Then,

J(Sg) ≤
α

α+ P
J(S?) (7.61)

with α ≥ mink=0,...,N−1 αk for

αk ≥
λmin

[
P̃
−1

k+1(∅)
]

λmax

[
P̃
−1

k+1(V) +
∑
i∈Vk r

−1
i,k b̃i,kb̃

T

i,k

] , (7.62)

where P̃ k+1(S) = H
1/2
k Pk+1(S)H

1/2
k , for Pk(S) defined in (7.58), and b̃i,k = H

−1/2
k bi,k. The
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transformations are the positive-definite square roots of Hk, defined as H0 = A0Σ0A
T
0 and Hk =

AkWk−1A
T
k for k ≥ 1.

Theorem 14 provides a near-optimal certificate for the greedy solution of the control scheduling

problem (PXIII) as a function of its parameters. Note that the larger the α, the better the guarantee,

and that although J is not supermodular in general, there are situations in which its violations of

the diminishing returns property are small.

To see when this is the case, observe that (7.62) is large when

∑
i∈V0

r−1
i,0 b̃ib̃

T

i is small and P̃
−1

1

(
V
)
≈ P̃−1

1 (∅). (7.63)

Conditions in (7.63) occur when diag (ri,k) Ï Qk, i.e., when the controller (7.56) gives more weight

to the input cost than state regulation. This condition is readily obtained from the definition

of Pk in (7.58). Figure 7.10 illustrates these observations by evaluating the bound from (7.62) for

100 random systems with n = 100 states controlled over a horizon of N = 4 steps with Q = I

and ri,k = γ (see Section 7.4.2.2 for details). Clearly, as the controller actions cost grows, i.e.,

as γ increases, α grows and Theorem 14 yields stronger guarantees. Note that this is a scenario

of considerable practical value. It is well-known that if no restriction is imposed on the input

cost, any controllable set of inputs can drive the system to any state in a single step (dead-beat

controller). Hence, when diag (ri,k) Î Qk, the optimal value of the LQG only really differentiates

between schedules that lead to controllable and uncontrollable input sets. On the other hand, careful

scheduling can have a considerable impact when the actuation (or agent deployment) costs are high.

This is also the case in which Theorem 14 provides stronger guarantees.

Observe also that since matrices are weighted by Hk, the condition numbers of A, Σ0, and Wk

play an important role in the guarantees. Indeed, if Hk is poorly conditioned, there may be a

large difference between the minimum and maximum eigenvalues in (7.62). This is illustrated in

Figure 7.10a, which shows that when the decay rate of the system modes are considerably different,

i.e., the state transition matrix has large condition number κ(A), the guarantees from Theorem 14

worsen. Figure 7.10b illustrates this phenomenon for the LQG controller, showing how the value

of α decreases when the process noise does not affect the states homogeneously, i.e., the condition
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(a) (b)

Figure 7.10: Bound on α from (7.59) for a schedule of length N = 4: (a) deterministic dynamical
system (Wk = 0, LQR) and (b) dynamical system with disturbance (LQG). Shaded regions span
two standard deviations from the mean.

number of Wk grows.

In the sequel, we provide details on the experiments presented in this section and illustrate the

use of greedy control scheduling under multiple non-trivial constraints using an agent dispatching

application.

7.4.2.2 Numerical experiments

We start by detailing the experiments in Figure 7.10. We considered dynamical systems with n = 100

states for which the elements of A were drawn randomly from a standard Gaussian distribution, the

input matrix B = I, i.e., direct state actuation, and Π0 = 10−2I. The state transition matrix A

was normalized so that its spectral radius is 1.1, i.e., the dynamical systems are unstable. In

Figure 7.10a, the dynamical systems are deterministic, i.e., Wk = 0. In Figure 7.10b, Wk is a

diagonal matrix whose elements were drawn uniformly at random from [κ(W )−1, 1] so that their

condition number is κ(W ). The figures show the result for 100 independently drawn dynamical

systems considering (PXIII) for Q = I, ri,k = γ for all i and k, and N = 4.

While Figure 7.10, along with Theorem 14, illustrate the wide range of parameters over which

good performance certificates can be provided, it is worth noting that these are worst-case guarantees

and that better results are common in practice. To illustrate this point, we evaluate the relative
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(a) P = 1 (b) P = 2

(c) P = 3

Figure 7.11: Relative suboptimality of greedy scheduling for different constraints (100 system real-
izations). (a) I1 (less than 2 actuators per time step); (b) I1 and I2 (less than 5 control actions
over the horizon); (c) I1, I2, and I3 (inputs cannot be used on consecutive time slots).

suboptimality of greedily selected schedules over 100 system realizations. Explicitly, we evaluate

ν?(Sg) =
J(Sg)
J(S?) ,

where Sg and S? are the greedy (Algorithm 4) and optimal solutions of (PXIII) respectively. Since ν?

depends on the optimal schedule, which can only be obtained by exhaustive search, we restrict

ourselves to smaller dynamical systems with n = 7 states. State space matrices A and B are as

before, with κ(A) = 1.2, and Wk = 0 (LQR case). We again take Q = I and ri,k = γ.

In Figure 7.11, we design schedules for N = 4 steps horizons with different numbers of matroid

constraints P . In Figure 7.11a, we select at most 2 actuators per time step (I1 = {S ⊆ V | |S ∩ Vk| ≤

2}). In addition to I1, Figure 7.11b also imposes that at most 5 control actions can be taken over

the horizon (I2 = {S ⊆ V | |S| ≤ 5}). Finally, Figure 7.11c includes a restriction on using the
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Agent 2

Figure 7.12: Amazon basin, amazon river (dark blue trace), system states (light grey circles), and
chemical spill origins (red circles).

same input on consecutive time steps on top of I1 and I2. Despite the fact that the lower bounds

on ν? (recall that J is a non-positive function) from Theorem 14 range from 0.03 to 0.25, Figure 7.11

show that the typical performance of greedy scheduling in practice is considerably better. Though it

did not often find the optimal schedule (between 15% and 23% of the realizations for γ = 1 and 40%

and 46% for γ = 10), the resulting schedule performances were at most 5% lower than the optimum.

Note, however, that there exist specific dynamical systems for which greedy performs close to the

guarantee in Theorem 14. Indeed, consider A = I and

B =


2 1 0

2 0 1

1 1 1

 .

Under constraint I1, i.e., if we schedule up to 2 inputs per time step, over a N = 2 steps horizon

with γ = 100, the guarantee in (7.61) yields ν?(Sg) ≥ 0.392, whereas in practice we achieve ν?(Sg) ≈

0.423.

To provide a more practical application of these results, we illustrate the use of greedy control

scheduling in an agent dispatching application to control the effect of spills on the Amazon river.

Two agents navigate up and down the river (dark blue curve in Figure 7.12) over a preset route

and use a chemical component to counteract damaging spills. Due to the limited capacity of each
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vessel and to avoid overusage, each agent is allowed to dump the component at most 5 times. What

is more, at least 2 steps must be allowed between each action so the crew has time to setup. The

goal of this dispatch is to reduce how much of the spill reaches the ocean (light blue water mass in

Figure 7.12).

The Amazon drainage basin, showed in green in Figure 7.12, covers 7.5 million km2 and is

composed of over 7000 tributaries. We use a simplified description of the basin (blue traces in

Figure 7.12) obtained by smoothing the original map [212]. Using this river network, we construct

a weighted directed tree G whose vertices are the circles from in Figure 7.12 with the addition of a

node midway between each circle. These vertices compose the n = 127 states xk of the dynamical

system. In G, two vertices are connected if water flows between them, i.e., if there is a blue line

between them in Figure 7.12. We assume that all river flow toward the ocean, denoted in Figure 7.12

by a light blue water mass. The adjacency matrix of G is then defined as

[G]ij =


‖zi − zj‖ , if (i, j) ∈ E

0, otherwise

(7.64)

where zi ∈ R2 is the position of node i on the map. We define its Laplacian as L = D−G, where D

is a diagonal matrix whose elements are the sum of the columns of G, and its symmetrized Laplacian

as L′ = D′ − (G+GT ), where D′ is a diagonal matrix whose elements are the sum of the columns

of G+GT .

Using these Laplacians, we define the state transition matrix of the dynamical system in (7.55)

as

A = 0.901 exp(−L∆t) + 0.099 exp(−L′∆t), (7.65)

where ∆t = 5 is the sampling period. The dynamics in (7.65) are a combination of two processes:

the first term corresponds to the advection process by which water flows to the ocean and the second

term corresponds to a diffusion process. The combination coefficients are chosen so that the system

is marginally stable (‖A‖ = 1). In these experiments, we assume there is no process noise, i.e.,

Wk = 0 for all k, and direct state actuation. The two spills are modeled by spikes in the initial

state, namely x0 is zero except at the red nodes in Figure 7.12.
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Figure 7.13: Greedy schedule and actuation energy of the spill control agents.

Agent 1 navigates the Amazon river (dark blue curve) left-to-right and Agent 2 navigates right-

to-left (starting near the ocean). They can only actuate on their current position and are only

allowed to do so on the states marked as circles in Figure 7.12. Thus, a centralized greedy scheduler

designs a N = 20 steps action plan for the two agents taking into account their positions at each

time step and their total number of actions and duty cycle constraints. To do so, it assumes Q = I

for both agents, but takes r
(1)
i,k = 10 for Agent 1 and r

(2)
i,k = 20 for Agent 2. In other words, Agent 1

is allowed to dump more cleaning component. The results of this dispatch are shown in Figures 7.13

and 7.14.

Notice that in the final schedule (Figure 7.13), the agents effectively act on top of the spills

and towards the middle of the river to try and stop their spreading. Agent 1, in particular, saves

cleaning reagent for one last action next to ocean. What is more, since it pays a lower price for

actuation (r
(1)
i,k < r

(2)
i,k ), it is able to use more reagent than Agent 2, which ends up concentrating

its efforts in the beginning of its route (Figures 7.14). In the end, the vessels are able to mitigate

the impact of the spills on the ocean waters, reducing contamination levels by 60% compared to

the no-actuation solution. The final level achieved with these punctual actions is comparable to

using an 64 agents that actuate every state at every time step with cost matrices Q = I and ri,k =

2500 (Figure 7.14).
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Figure 7.14: Agents actions and chemical concentrations in the ocean (light blue mass in Figure 7.12)
for the autonomous system (no agent), greedy schedule, and full actuation.

7.4.3 Experimental design

We conclude this section with an experimental design application to showcase the multiset results we

derived. Let E be a pool of possible experiments. The outcome of experiment e ∈ E is a multivariate

measurement ye ∈ Rne defined as

ye = Aeθ + ve, (7.66)

where θ ∈ Rp is a parameter vector with a prior distribution such that E [θ] = θ̄ and E(θ − θ̄)(θ −

θ̄)T = Rθ � 0; Ae is an ne × p observation matrix; and ve ∈ Rne is a zero-mean random variable

with arbitrary covariance matrix Re = EvevTe � 0 that represents the experiment uncertainty.

The {ve} are assumed to be uncorrelated across experiments, i.e., EvevTf = 0 for all e 6= f , and

independent of θ. These experiments aim to estimate

z = Hθ, (7.67)

whereH is an m×p matrix. Appropriately choosingH is important given that the best experiments

to estimate θ are not necessarily the best experiments to estimate z. For instance, if θ is to be used

for classification, then H can be chosen so as to optimize the design with respect to the output of
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the classifier. Alternatively, transductive experimental design can be performed by taking H to be

a collection of data points from a test set [213]. Finally, H = I, the identity matrix, recovers the

classical θ-estimation case.

The experiments to be used in the estimation of z are collected in a multiset D called a design.

Note that D contains elements of E with repetitions. Given a design D, it is ready to compute

an optimal Bayesian estimate ẑD. The estimation error of ẑD is measured by the error covariance

matrixK(D). An expression for the estimator and its error matrix in terms of the problem constants

is given in the following proposition.

Proposition 17 (Bayesian estimator). Let the experiments be defined as in (7.66). For Me =

AT
eR
−1
e Ae and a design D ∈ P(E), the unbiased affine estimator of z with the smallest error

covariance matrix in the PSD cone is given by

ẑD = H

[
R−1
θ +

∑
e∈D

Me

]−1 [∑
e∈D

AT
eR
−1
e ye +R−1

θ θ̄

]
. (7.68)

The corresponding error covariance matrix K(D) = E
[
(z − ẑD)(z − ẑD)T | θ, {Me}e∈D

]
is given

by the expression

K(D) = H

[
R−1
θ +

∑
e∈D

Me

]−1

HT . (7.69)

Proof. See appendix B.3.7. �

The experimental design problem consists of selecting a design D of cardinality at most k that

minimizes the overall estimation error. This can be explicitly stated as the problem of choosing D

with |D| ≤ k that minimizes the error covariance K(D) whose expression is given in (7.69). Note

that (7.69) can account for unregularized (non-Bayesian) experimental design by removing Rθ and

using a pseudo-inverse [178]. However, the error covariance matrix is no longer monotone in this

case—see Lemma 4. Providing guarantees for this scenario is the subject of future work.

The minimization of the PSD matrix K(D) in experimental design is typically attempted using

scalarization procedures generically known as alphabetical design criteria, the most common of which

are A-, D-, and E-optimal design [214]. These are tantamount to selecting different figures of merit

to compare the matrices K(D). Our focus in this section is mostly on A- and E-optimal designs,
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but we also consider D-optimal designs for comparison. A design D with k experiments is said to be

A-optimal if it minimizes the estimation MSE which is given by the trace of the covariance matrix,

minimize
|D|≤k

Tr
[
K(D)

]
− Tr

[
HRθH

T
]

(P-A)

Notice that is customary to say a design is A-optimal when H = I in (P-A), whereas the notation

V-optimal is reserved for the case when H is arbitrary [214]. We do not make this distinction here

for conciseness.

A design is E-optimal if instead of minimizing the MSE as in (P-A), it minimizes the largest

eigenvalue of the covariance matrix K(D), i.e.,

minimize
|D|≤k

λmax

[
K(D)

]
− λmax

[
HRθH

T
]
. (P-E)

Since the trace of a matrix is the sum of its eigenvalues, we can think of (P-E) as a robust version

of (P-A). While the design in (P-A) seeks to reduce the estimation error in all directions, the

design in (P-E) seeks to reduce the estimation error in the worst direction. Equivalently, given

that λmax(X) = max‖u‖2=1 u
TXu, we can interpret (P-E) with H = I as minimizing the MSE for

an adversarial choice of z.

A D-optimal design is one in which the objective is to minimize the log-determinant of the

estimator’s covariance matrix,

minimize
|D|≤k

log det
[
K(D)

]
− log det

[
HRθH

T
]
. (P-D)

The motivation for using the objective in (P-D) is that the log-determinant of K(D) is proportional

to the volume of the confidence ellipsoid when the data are Gaussian. Note that the trace, maximum

eigenvalue, and determinant of HRθH
T in (P-A), (P-E), and (P-D) are constants and do not affect

the respective optimization problems. They are subtracted so that the objectives vanish when D = ∅,

i.e., so they are normalized set functions.

Remark 6. Besides its intrinsic value as a minimizer of the volume of the confidence ellipsoid, (P-D)

is often used as a surrogate for (P-A), when A-optimality (MSE) is considered the appropriate metric.
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It is important to point out that this is only justified when the problem has some inherent structure

that suggests the minimum volume ellipsoid is somewhat symmetric. Otherwise, since the volume of

an ellipsoid can be reduced by decreasing the length of a single principal axis, using (P-D) can lead

to designs that perform well—in the MSE sense—along a few directions of the parameter space and

poorly along all others. Formally, this can be seen by comparing the variation of the log-determinant

and trace functions with respect to the eigenvalues of the PSD matrix K,

∂ log det(K)

∂λj(K)
=

1

λj(K)
and

∂ Tr(K)

∂λj(K)
= 1.

The gradient of the log-determinant is largest in the direction of the smallest eigenvalue of the error

covariance matrix. In contrast, the MSE gives equal weight to all directions of the space. The latter

therefore yields balanced, whereas the former tends to flatten the confidence ellipsoid unless the

problem has a specific structure.

Although the problem formulations in (P-A), (P-E), and (P-D) are integer programs known to

be NP-hard, the use of greedy methods for their solution is widespread with good performance in

practice. In the case of D-optimal design, this is justified theoretically because the objective of (P-D)

is supermodular, which implies greedy methods are (1− e−1)-optimal [166,168,196]. The objectives

in (P-A) and (P-E), on the other hand, are not be supermodular in general [197, 215, 216] and it is

not known why their greedy optimization yields good results in practice—conditions for the MSE

to be supermodular exist but are restrictive [216]. We can settle these questions using the results

from Section 7.3.

Notice that the objectives of (P-A) and (P-E) are normalized by construction and that, due

since K in (7.69) matches the form of (7.12), they are also monotone decreasing due to Lemma 4.

To employ the results from Theorems 11 and 12, suffices to refine the bounds on α/ε from Theorems 6

and 7. We start by showing that the objective of (P-A) is α-supermodular as in Definition 8.

Theorem 15. The objective of (P-A) is α-supermodular with

α(a, b) ≥ 1

κ(H)2
· λmin

[
R−1
θ

]
λmax

[
R−1
θ

]
+ a · `max

, for all b ∈ N, (7.70)
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where `max = maxe∈E λmax(Me), Me = AT
eR
−1
e Ae, and κ(H) = σmax / σmin is the `2-norm con-

dition number of H, with σmax and σmin denoting the largest and smallest singular values of H

respectively.

Proof. See appendix B.3.8. �

Theorem 15 bounds the α-supermodularity of the objective of (P-A) in terms of the condition

number of H, the prior covariance matrix, and the measurements SNR. To facilitate the interpre-

tation of this result, let the SNR of the e-th experiment be γe = Tr[Me] and suppose Rθ = σ2
θI,

H = I, and γe ≤ γ for all e ∈ E . Then,for ` = k greedy iterations, (7.70) implies

ᾱ ≥ 1

1 + 2kσ2
θγ

,

for ᾱ as in Theorem 11. This deceptively simple bound reveals that the MSE behaves as a supermod-

ular function at low SNRs. Formally, α→ 1 as γ → 0. In contrast, the performance guarantee from

Theorem 15 degrades in high SNR scenarios. In this case, however, greedy methods are expected

to give good results since designs yield similar estimation errors. The greedy solution of (P-A) also

approaches the 1 − 1/e guarantee when the prior on θ is concentrated (σ2
θ � 1), i.e., when the

problem is heavily regularized.

These observations also hold for a generic H as long as it is well-conditioned. Even if κ(H)� 1,

we can replace H by H̃ = DH for some diagonal matrix D � 0 without affecting the design,

since z is arbitrarily scaled. The scaling D can be designed to minimize the condition number of H̃

by leveraging preconditioning and balancing methods [217,218].

Proceeding, we derive guarantees for E-optimal designs using the refined concept of ε-supermodularity

in Definition 9.

Theorem 16. The cost function of (P-E) is ε-supermodular with

ε(a, b) ≤ (b− a)σmax(H)2 λmax (Rθ)
2
`max, (7.71)

where `max = maxe∈E λmax(Me), Me = AT
eR
−1
e Ae, and σmax(H) is the largest singular value of H.

Proof. See appendix B.3.9. �
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Figure 7.15: A-optimal design: (a) Thm. 15; (b) A-optimality (low SNR); (c) A-optimality (high
SNR). The plots show the unnormalized A-optimality value for clarity.
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Figure 7.16: E-optimal design: (a) Thm. 16; (b) E-optimality (low SNR); (c) E-optimality (high
SNR). The plots show the unnormalized E-optimality value for clarity.

Under the same assumptions as above, Theorem 16 gives

ε̄ ≤ 2kσ4
θγ,

for ε̄ as in Theorem 12. Thus, ε→ 0 as γ → 0. In other words, the behavior of the objective of (P-E)

approaches that of a supermodular function as the SNR decreases. The same holds for concentrated

priors, i.e., limσ2
θ→0 ε̄ = 0. Once again, it is worth noting that when the SNRs of the experiments

are large, almost every design has the same E-optimal performance as long as the experiments are

not too correlated. Thus, greedy design is also expected to give good results under these conditions.

Notice that the proofs of Theorems 15 and 16 suggest that better bounds can be found when

the designs are constructed without replacement, i.e., when only one of each experiment is allowed

in the design (set function optimization case).

To illustrate these results, we draw the elements of Ae from an i.i.d. zero-mean Gaussian random

128



variable with variance 1/p and p = 20. The noise {ve} are also Gaussian random variables withRe =

σ2
vI. We take σ2

v = 10−1 in high SNR and σ2
v = 10 in low SNR simulations. The experiment pool

contains |E| = 200 experiments.

Starting with A-optimal design, we display the bound from Theorem 15 in Figure 7.15a for

multivariate measurements of size ne = 5 and designs of size k = 40. Here, “equivalent α” is

the single α̂ that gives the same near-optimal certificate (7.22) as using (7.70). As expected, α̂

approaches 1 as the SNR decreases. In fact, for −10 dB is is already close to 0.75 which means that

by selecting a design of size ` = 55 we would be within 1− 1/e of the optimal design of size k = 40.

Figures 7.15b and 7.15c compare greedy A-optimal designs with the convex relaxation of (P-A) in

low and high SNR scenarios. The designs are obtained from the continuous solutions using the hard

constraint, with replacement method of [219] and a simple design truncation as in [130]. Therefore,

these simulations consider univariate measurements (ne = 1). For comparison, a design sampled

uniformly at random with replacement from E is also presented. Note that, as mentioned before,

the performance difference across designs is small for high SNR—notice the scale in Figures 7.15c

and 7.16c—, so that even random designs perform well.

For the E-optimality criterion, the bound from Theorem 16 is shown in Figure 7.16a, again for

multivariate measurements of size ne = 5 and designs of size k = 40. Once again, “equivalent ε”

is the single value ε̂ that yields the same guarantee as using (7.71). In this case, the bound degra-

dation in high SNR is more pronounced. This reflects the difficulty in bounding the approximate

supermodularity of the E-optimality cost function. Still, Figures 7.16b and 7.16c show that greedy

E-optimal designs have good performance when compared to convex relaxations or random designs.

Note that, though it is not intended for E-optimal designs, we again display the results of the sam-

pling post-processing from [219]. In Figure 7.16b, the random design is omitted due to its poor

performance.

For a more concrete application, consider the problem of cold-start in recommender systems.

Recommender systems use semi-supervised learning methods to predict user ratings based on few

rated examples. These methods are useful, for instance, to streaming service providers who are

interested in using predicted ratings of movies to provide recommendations. For new users, these

systems suffer from a “cold-start problem,” which refers to the fact that it is hard to provide accurate
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recommendations without knowing a user’s preference on at least a few items. For this reason, ser-

vices explicitly ask users for ratings in initial surveys before emitting any recommendation. Selecting

which movies should be rated to better predict a user’s preferences can be seen as an experimen-

tal design problem. In the following example, we use a subset of the EachMovie dataset [220] to

illustrate how greedy experimental design can be applied to address this problem.

We randomly selected a training and test set containing 9000 and 3000 users respectively. Each

experiment in E represents a movie (|E| = 1622) and the observation vector Ae collects the ratings

of movie e for each user in the training set. The parameter θ is used to express the rating of a

new user in term of those in the training set. Our hope is that we can extrapolate the observed

ratings, i.e., {ye}e∈D, to obtain the rating for a movie f /∈ D as ŷf = Af θ̂. Since the mean absolute

error (MAE) is commonly used in this setting, we choose to work with the A-optimality criterion.

We also let H = I and take a non-informative prior θ̄ = 0 and Rθ = σ2
θI with σ2

θ = 100.

As expected, greedy A-optimal design is able to find small sets of movies that lead to good

prediction. For k = 10, for example, MAE = 2.3, steadily reducing until MAE < 1.8 for k ≥ 35.

These are considerably better results than a random movie selection, for which the MAE varies

between 2.8 and 3.3 for k between 10 and 50. Instead of focusing on the raw ratings, we may

be interested in predicting the user’s favorite genre. This is a challenging task due to the heavily

skewed dataset. For instance, 32% of the movies are dramas whereas only 0.02% are animations.

Still, we use the simplest possible classifier by selecting the category with highest average estimated

ratings. By using greedy design, we can obtain a misclassification rate of approximately 25% by

observing 100 ratings, compared to over 45% error rate for a random design.
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Chapter 8

Risk-aware minimum mean square error

estimation

Critical applications require that stochastic decisions be made not only on the basis of minimizing

average losses, but also safeguarding against less probable, though possibly catastrophic, events.

Examples appear naturally in many areas, including wireless industrial control, energy [112, 113],

finance [114–116], robotics [117,118], LIDAR [119], and networking [120]. In such cases, the ultimate

goal is to obtain risk-aware decision policies that hedge against statistically significant extreme losses,

even at the cost of slightly sacrificing performance under nominal operating conditions.

To illustrate this effect, consider the problem of estimating a random state x from observations

corrupted by state-dependent noise, namely y | x ∼ N (x, 9x2) (see Section 8.4). Recall that we

are now in the inference setting where we seek to estimate the value of x based on observations y

and a conditional model y | x. In this setting, either small or large values of y provide highly

ambiguous evidence, since they can arise from either small or large values of x. This is corroborated

by Figure 8.1, which displays the posterior distribution px|y for two values of y. While the MMSE

estimator may incur severe losses, the risk-aware estimator we develop in this work (shown in red)

hedges against this observation ambiguity, therefore avoiding extreme prediction errors. This risk-

averse behavior is achieved by biasing estimates towards the tail of the posterior px|y. Although the

risk-aware estimator may incur larger losses on average, it performs statistically more consistently
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Figure 8.1: Comparison between risk-neutral and risk-aware estimates.

across realizations of y (see, e.g., risk curve in Figure 8.2). It is also worth contrasting risk-awareness

with statistical robustness, whose goal is to protect against deviations from a nominal model. Robust

estimators (green lines in Figure 8.1) promote insensitivity to tail events, which they designate

as statistically insignificant (“outliers”). On the other hand, estimators resulting from risk-aware

formulations treat these events as statistically significant, though relatively infrequent (see Table 8.1).

Over the last three decades, risk-aware optimization has grown increasingly popular and has been

studied in the contexts of both decision making and learning [122,221–226].In risk-aware optimiza-

tion, expectations are replaced by more general functionals, called risk measures [227],whose purpose

is to quantify the statistical volatility of random losses, as well as mean performance. Popular ex-

amples include mean-variance functionals [114, 227], mean-semideviations [122], and Conditional

Value-at-Risk (CVaR) [123].

In Bayesian estimation, risk awareness is typically achieved by replacing the classical quadratic

cost with its exponentiation [228–232]. However, although sometimes effective, this approach is not

without limitations. First, the need for finiteness of the moment generating function of the quadratic

cost excludes heavy-tailed distributions, which are precisely those that incur high risk. Second, the

exponential approach does not provide an interpretable way to control the trade-off between mean

performance and risk, making it hard to use in settings where explicit risk levels must be met.

Third, it does not result in a simple, general solution as in classical MMSE estimation, hindering its

practical applicability. Finally, it does not effectively quantify observation-induced risk, inherent in

problems where measurements provide ambiguous evidence.
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Table 8.1: Classification of statistical uncertainty.

Uncertainty Frequent Infrequent

Significant Model Risk

Insignificant Noise Outliers

8.1 The risk-constrained MMSE problem

Following Section 2.2.2.3, we consider here a constrained inference approach to risk-awareness using

the formulation in (P-RISK). Explicitly, let (Ω,F , p) be a probability space and consider an arbitrary

pair of random elements x : Ω → Rd and y : Ω → Rk on (Ω,F). Our goal is to estimate x from a

single realization of y in a Bayesian setting, namely by assuming knowledge of the joint probability

distribution p(x,y). As we illustrated before, we may conveniently think of y as observations based

on which we wish to make predictions about the hidden state x.

An established approach to this problem is to choose an estimator φ as a solution to the stochastic

variational MMSE program

minimize
φ∈H

E
[
‖x− φ(y)‖2

]
(P-MMSE)

where H denotes the space of y measurable vector-valued functions φ : σ(y) → Rp. Prob-

lem (P-MMSE) is well-understood under rather general conditions. In fact, if we assume x is

integrable over the sub-σ-algebra of F generated by y, then an optimal solution to (P-MMSE) is

obtained from by any conditional expectation of x relative to y, i.e.,

φ?MMSE(y) = E [x|y] (8.1)

However, despite the simplicity of MMSE estimation, its effectiveness is often questionable.

Indeed, minimizing the squared error ‖x − φ(y)‖22 in expectation does not provide stability or

robustness, in the sense that statistically significant variability of the resulting optimal prediction

error is uncontrolled. In other words, the MMSE problem (P-MMSE) is risk-neutral. This has

important consequences from a practical perspective, since the error realization ‖x − φ?MMSE(y)‖22
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experienced in practice may be far from the expected value E[‖x − φ?MMSE(y)‖22}, or even the

predictive statistic E{‖x − φ?MMSE(y)‖22 | y}. It is then clear that achieving small error variability

is at least as desirable as achieving minimal errors on average.

Motivated by the previous discussion, we consider a nontrivial variation of the risk-neutral MMSE

problem (P-MMSE) that strikes a balance between mean performance and risk, namely (P-RISK).

For ease of reference, we restate the problem here:

minimize
φ∈H

E
[
‖x− φ(y)‖2

]
subject to E

[
var
(
‖x− φ(y)‖2

∣∣ y)] ≤ ε (P-RISK)

where H is now the space of square-integrable, y measurable functions, i.e., φ(y) ∈ L2,

var
(
‖x− φ(y)‖2

∣∣ y) , E
[(
‖x− φ(y)‖2 − E

[
‖x− φ(y)‖2

])2 ∣∣∣ y] (8.2)

is the predictive variance of the squared loss ‖x− φ(y)‖2 with respect to y, and ε > 0 is a fixed risk

tolerance. In words, problem (P-RISK) constrains the expected predictive variance of the quadratic

cost ‖x− φ(y)‖2, known in the statistics literature as the unexplained component of the variance due

to the law of total variance. Hence, the constraint quantifies the uncertainty of the MMSE prediction

of the quadratic cost actually achieved by the estimate φ(y) on the basis of the observations y.

Naturally, E
[
var
(
‖x− φ(y)‖2

∣∣ y)] is a measure of risk. Therefore, we suggestively refer tothe

task fulfilled by problem (P-RISK) as risk-aware MMSE estimation.

Problem (P-RISK) confines the search for an optimal MMSE estimator within the family of

estimators exhibiting risk (in the sense described above) within a tolerance ε. Naturally, an opti-

mal solution to the risk-aware (P-RISK) in general achieves larger MSE as compared to the risk-

neutral (P-MMSE). However, the statistical variability of the squared errors achieved by the former

will be explicitly controlled resulting in more stable statistical prediction.
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8.2 Convex Variational QCQP Reformulation

The risk-aware MMSE problem (P-RISK) is a non-convex, infinite dimensional problem, making

it rather challenging to study, let alone solve. Nevertheless, it admits an equivalent Quadratically

Constrained Quadratic Program (QCQP) reformulation under mild condition stated below.

Assumption 7. The conditional moment E
[
‖x‖32 | y

]
∈ L2, i.e., it is square-integrable with respect

to the sub-σ-algebra of F generated by y.

In words, Assumption 7 states that the third-order moment filter E
[
‖x‖32 | y

]
has finite energy.

Using Assumption 7, problem(P-RISK) may be conveniently reformulated as shown next.

Lemma 6 (QCQP Reformulation of (P-RISK)). Define the posterior covariance

Σx|y , E
[
(x− E [x | y])(x− E [x | y])T | y

]
� 0. (8.3)

Under Assumption 7, (P-RISK) is well-defined and equivalent to the convex variational QCQP

P ?RISK = min
φ∈H

1

2
E
[
‖φ(y)‖2 − 2E

[
x | y

]T
φ(y) + E

[
‖x‖2 | y

]]
subject to E

[
φ(y)TΣx|yφ(y)−

(
E
[
‖x‖2 x | y

]
− E

[
‖x‖2 | y

]
E [x | y]

)T
φ(y)

]
≤
ε− E

[
var
(
‖x‖2

∣∣ y)]
4

(PXIV)

where all expectations and involved operations are well-defined.

Proof. See Appendix B.4.1. �

Lemma 6 is very useful because it shows the equivalence of problem (P-RISK) to the convex

QCQP (PXIV), which is well-defined and favorably structured. In particular, this reformulation

allows us to effectively study (P-RISK) by looking at its variational Lagrangian dual. As we discuss

next, working in the dual domain allows us to solve (P-RISK) in closed-form. Of course, such a

closed form is important, not only because it provides an analytical, textbook-level solution to a

functional risk-aware problem, which happens rather infrequently in such settings, but also because
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the solution itself provides intuition, highlights connections, and enables comparison of (P-RISK)

with its risk-neutral counterpart (P-MMSE).

8.3 Risk-Aware MMSE Estimators

In our development, we exploit a variational version of Slater’s condition, which is one the most

widely used constraint qualifications in both deterministic and stochastic optimization.

Assumption 8. Given ε > 0, there exists φ† ∈ H such that E{‖x− φ†(y)‖22} <∞ and

E
[
var
(∥∥x− φ†(y)

∥∥2 ∣∣ y)] < ε.

Under both Assumptions 7 and 8, it follows that the QCQP (PXIV) satisfies Slater’s condi-

tion [130]. Then, it must be the case that E
[
var
(
‖x‖2

∣∣ y)] < ∞, otherwise Assumption 8 could

not hold. Furthermore, (PXIV) must be feasible.

To proceed, define the variational Lagrangian of the primal problem (PXIV) as

L(φ, µ) ,
1

2
E
[
‖φ(y)‖22 − 2(E

[
x | y

]
)Tφ(y) + E

[
‖x‖22 | y

]]
+ µE

[
φ(y)TΣx|yφ(y)−

(
E
[
‖x‖22x | y

]
− E

[
‖x‖22 | y

]
E [x | y]

)T
φ(y)

]
− µ

ε− E
[
var
(
‖x‖2

∣∣ y)]
4

,

(8.4)

where µ ∈ R+ is a multiplier associated with the constraint of (PXIV). Its dual function is accord-

ingly defined as

d(µ) , inf
φ∈H

L
(
φ, µ

)
. (8.5)

If P ?RISK ∈ [0,∞] denotes the optimal value of problem (PXIV), it is true that d ≤ P ?RISK on R+.

Then, the optimal value of the concave, dual problem

D?
RISK = max

µ≥0
d(µ) (PXV)

is the tightest under-estimate of P ?RISK.
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Exploiting Assumptions 7 and 8, we may now formulate the following fundamental theorem,

which establishes that the convex variational problem (PXIV) exhibits zero duality gap. This es-

sentially follows as an application of standard results in variational Lagrangian duality; see, for

instance, [233, Sec. 8.3, Thm. 1]. The proof is therefore omitted.

Theorem 17 (Strong duality of (PXIV)). Suppose Assumptions 7 and 8 are in effect. Then, strong

duality holds for problem (PXIV), that is, 0 ≤ D?
RISK ≡ P ?RISK < ∞. Additionally, the set of dual

optimal solutions, arg maxµ≥0 d(µ), is nonempty. Further, if φ?(y) is primal optimal for (PXIV),

it follows that φ?(y) ≡ φ?(y) ∈ arg minφ∈H L
(
φ, µ?

)
, where 0 ≤ µ? ∈ arg maxµ≥0 d(µ).

Leveraging Theorem 17, it is possible to show that, under Assumptions 7 and 8, the QCQP

(PXIV) and, therefore, the original risk-aware MMSE problem (P-RISK), admit a common closed-

form solution. In this respect, we have the next theorem, which constitutes the main result of this

chapter.

Theorem 18 (Closed-form solution of (PXIV)). Suppose that Assumptions 7 and 8 are in effect.

Then,

φ?(y) = K−1
(
E [x|y] + b

)
(8.6)

is an optimal solution to problem (PXIV) for

K = I + 2µ?Σx|y (8.7a)

b = µ?
(
E
[
‖x‖2 x | y

]
− E

[
‖x‖2 | y

]
E [x | y]

)
(8.7b)

where µ? is any optimal solution to the concave dual problem (PXV). Additionally, the optimal

risk-aware filter φ?(y) is unique p-a.e.

Theorem 18 provides the solution of (P-RISK) as an explicit expression for the risk-aware MMSE

estimator φ?(y), defined in terms of the dual optimal solution µ?, a scalar value. The latter always

exists, thanks to Theorem 17, and may be computed by leveraging our knowledge of the distribu-

tion p(x,y) via either some gradient-based method, probabilistic bisection, or empirically. Note that

the dual function d in (8.5) is a concave function on the positive line.

The fact that a closed-form optimal solution of (PXIV) exists is remarkable and provides insight
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into the intrinsic structure of constrained Bayesian risk-aware estimation. Most importantly, it

enables an explicit comparison of the optimal risk-aware filter φ?(y) with its risk-neutral counterpart.

Indeed, by looking at the explicit form of the optimal risk-aware filter φ?(y), we readily see that it

is a function involving the MMSE estimator E [x|y], its predictive covariance matrix Σx|y, as well

as the second and third order filters E
[
‖x‖2 | y

]
and E

[
‖x‖2 x | y

]
. All of these quantities are

elementary and, in principle, can be evaluated by utilizing a single observation of y and exploiting

our knowledge of the conditional measure px|y, just as in risk-neutral MMSE estimation.

Also, we see that φ?(y) may be regarded as a biased MMSE estimator, drawing parallels to

James-Stein estimators, obtained in another statistical context. While James-Stein estimators use

biasing to reduce the MSE, φ?(y) reduces the risk. Therefore, optimal risk aversion, in the sense of

problem (P-RISK), may be interpreted as the result of bias injection in MMSE estimators.

Additionally, we observe that the solution is regularized, in the sense that the term 2µ?Σx|y is

diagonally loaded with an identity matrix. As a result, φ?(y) is always well-defined and numerically

stable. In fact, if the tolerance ε is large enough, µ? = 0 and φ?(y) = E [x|y]. But this is not

the only case where the two estimators match. In fact, there exists a family of models for which

risk-neutral and risk-aware MMSE estimation coincide.

Theorem 19 (When do Risk-Neutral/Aware Filters Coincide?). Suppose that the conditional mea-

sure px|y is such that

E
[(

[x]i − E
[
[x]i | y

])2(
x− E

[
x | y

])
| y
]

= 0, for i = 1, . . . , d. (8.8)

Then, under Assumptions 7 and 8, the risk-neutral MMSE estimator is also risk-aware for any

feasible value of ε > 0, i.e., φ?(y) ≡ E [x | y] for any value of µ?. This occurs, for instance,

whenever px|y is joint Gaussian.

Proof of Theorem 19. Start by expanding (8.8) to obtain (note that all involved conditional expec-

tations in the expression above assume finite values due to Assumption 7)

0 = E
[(

[x]i − E
{

[x]i | y
})2(

x− E [x|y]
)
| y
]

= E
[(

[x]2ix
)
| y
]
− E [x|y]E

[
[x]2i | y

]
− 2E

[
[x]i | y

]
E
[
[x]ix | y

]
+ 2

(
E
[
[x]i | y

])2 E [x | y] ,
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which implies that

E
[(

[x]2ix
)
| y
]

= E [x | y]E
[
[x]2i | y

]
+ 2E

[
[x]i | y

](
E
[
x[x]i | y

]
− E

[
[x]i | y

]
E [x | y]

)
. (8.9)

Therefore, we have

E
[
‖x‖2 x | y

]
− E

[
‖x‖2 | y

]
E [x | y] =

d∑
i=1

E
[
[x]2ix | y

]
− E

[
[x]2i | y

]
E [x | y]

= 2

d∑
i=1

E
[
[x]i | y

](
E
[
[x]ix | y

]
− E

[
[x]i | y

]
E [x | y]

)
= 2Σx|y E [x | y] ,

which in turn implies that (8.7b) yields, for every µ? ≥ 0, b† = 2µ?Σx|y E [x | y]. Substituting

into (8.6) we get Suppose that Assumptions 7 and 8 are in effect. Then,

φ?(y) = K−1
(
E [x|y] + 2Σx|y E [x | y]

)
= K−1

(
I + 2Σx|y

)
E [x|y]

which from (8.7a) implies that

φ?(y) = E [x|y] p− a.e. (8.10)

To conclude, notice that the fact that (8.9) is true when px|y is multivariate Gaussian follows from

the straightforward application of Stein’s Lemma on all pairs of jointly Gaussian random variables

([x]i, [x]j), i, j = 1, . . . , d, conditioned on y. �

8.4 Applications

In this section, we illustrate the performance of the risk-aware MMSE estimator in comparison with

that of the usual, risk-neutral MMSE estimator. We evaluate the behavior of the estimator in (8.6)

in two scenarios. The first consists of the problem of estimating an exponentially distributed hidden

state x, E[x] = 2, from the observation y = x+ v, where v is a zero-mean Gaussian random variable

conditionally independent on x with varianceE[v2] = 9x2. This model is often referred to as state-

dependent noise. In the second scenario, the goal is to jointly estimate the random vector x = [z h]
T
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Figure 8.2: Mean squared error and risk for different values of µ in the state-dependent noise scenario.

from the observation y = hz + w, where z is a zero-mean Gaussian random variable with variance

E[z2] = 2, h has a Rayleigh distribution with rate 2, and w is a zero-mean Gaussian noise with

variance E[w2] = 10−1. This scenario is prototypical for estimation problems in communications,

where z is the signal of interest and h represents the channel fading. Throughout the simulations,

we also show results for the risk-neutral MMSE estimator and the Minimum Mean Absolute Error

(MMAE) estimator, or, equivalently, the conditional median relative to the respective observations,

the latter being used as an example of a robust location parameter estimator.

In Figure 8.1, we saw that the risk-aware estimator yields larger estimatesthan the MMSE esti-

mator, in order to account for the certain statistical ambiguities of the state-dependent noise model.

Though this difference may seem extreme in some instances, e.g., for small values of y (as in Fig-

ure 8.1), it is in fact quite effective in reducing the conditional variance. Indeed, for y = 0.1, the

risk-aware estimator in Figure 8.1 optimally reduces the (conditional) risk by approximately 26%

as compared to the risk of the risk-neutral estimator and this is achieved by sacrificing average

performance, also by a factor of 26%. Of course, this is only one of the operation points of the

risk-aware estimator. In Figure 8.2, we show results for different values of µ, where we average

over the distribution of y. Observe that the risk-aware estimator obtained using the constrained

optimization problem (P-RISK) achieves a sharp trade-off between average performance (that is,

MSE) and risk, which can be tuned according to the needs of the application. Additionally, note
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Figure 8.3: Mean squared error and risk for different values of µ in the communication scenario.

that the decrease in risk is considerably faster than the increase in MSE.

Interestingly, a similar phenomenon is observed in the communication scenario (Figure 8.3).

Again, the risk-aware estimator displays a much faster initial rate of decrease with respect to µ than

the rate at which the MSE increases. This is more pronounced in the estimation of the component

z, for which the risk-aware estimator can provide reductions of almost 60% in risk for a 35% increase

in average MSE. Note that, as per Theorem 19, the Gaussian noise has indeed no bearing on risk-

awareness, as evidenced by the performance in the noiseless case, i.e., for w = 0 (dashed lines). To

achieve the behavior of Fig. 8.3, the risk-aware estimator overestimates both z and h as compared

to the MMSE estimator, as illustrated in Fig. 8.4. In fact, for small values ofy, the former hedges

against the event of a deep fade (h ≈ 0) by maintaining its estimates for z away from zero.
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Chapter 9

Concluding remarks

This thesis set out to tackle learning and inference under requirements by leveraging constrained

statistical optimization. It started by addressing the issue of constrained learning by formalizing the

notion of PACC learning and showing that, from a learning theoretical point-of-view, constrained

learning is as hard as its unconstrained learning (Chapter 3). To overcome the challenges involved

in solving ECRM problems, it put forward a dual learning rule and proved that it also enable PACC

learning (Chapter 4). These results were illustrated in fairness and robustness applications (Chap-

ter 5), showing that if we learning under requirements can be achieved as long as it is possible to

solve classical, unconstrained learning tasks.

The second part of this thesis dealt with the issue of inference under unconventional constraints.

First, it tackled the issue of fitting sparse nonlinear functional models by defining a new class of

infinite dimensional, non-convex optimization problems, namely SFPs. By showing that, under mild

conditions, SFPs are strongly dual, it enabled them to be solved exactly and efficiently, leading

to solutions to problems such as nonlinear line spectrum estimation and robust functional regres-

sion (Chapter 6). Then, it proceeded to investigate inference problems involving quadratic objectives

and combinatorial constraints on the observations, involving cardinality (maximum number of ob-

servations) or matroids (e.g., restrictions on sequential observations). By developing a theory of

approximately supermodular minimization and showing that cost functions such as the MSE and

the LQR/LQG objectives are approximately supermodular, it derived near-optimal certificates for
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greedy solutions of these problems. These results were showcased in applications involving graph

signal sampling, actuator scheduling, and experimental design (Chapter 7). Finally, it leveraged

functional optimization and duality theory to obtain a closed-form solution to the problem of risk-

aware minimum MSE estimation (Chapter 8).
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Appendix A

Proofs of Part I

A.1 Proof of Theorem 1

Start by noticing from the definition of PACC learnability [more specifically, from (3.2) in Def. 3]

that any PACC learnable class H is necessarily PAC learnable.

To prove the converse, recall that if H is PAC learnable, then H has finite VC dimension [19,

Sec. 3.4]. More precisely, for N > Cζ−1(ε, δ, dH), where C is an absolute constant and ζ−1 is as

in (3.4), and any bounded function g it holds with probability 1− δ that

∣∣∣∣∣E(x,y)∼D

[
g
(
φ(x), y

)]
− 1

N

N∑
n=1

g
(
φ(xn), yn

)∣∣∣∣∣ ≤ ε (A.1)

for all function φ ∈ H, distributions D, and samples (xn, yn) ∼ D. Now, let φ̂? be a solution

of (P-ECRM). From (A.1) and the boundedness hypothesis on `0, we immediately obtain that φ̂?

is probably approximately optimal as in (3.2). Additionally, φ̂? must be feasible for (P-ECRM).

Hence,

1

Ni

Ni∑
ni=1

`i
(
φ̂?(xni), yni

)
≤ ci, for i = 1, . . . ,m, and (A.2a)

`j
(
φ̂?(xnj ), ynj

)
≤ cj , for all nj = 1, . . . , Nj and j = m+ 1, . . . ,m+ q. (A.2b)
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To show (A.2) implies that φ̂? is a probably approximately feasible, note that we can write,

using (A.1),

E(x,y)∼Di

[
`i
(
φ̂?(x), y

)]
≤ 1

Ni

Ni∑
ni=1

`i
(
φ̂?(xni), yni

)
+ ε and (A.3a)

Pr
(x,y)∼Dj

[
`j
(
φ̂?(x), y

)
≤ bj

]
= E(x,y)∼Dj

[
I
[
`j
(
φ̂?(x), y

)
≤ bj

] ]
≥ 1

Nj

Nj∑
nj=1

I
[
`j
(
φ̂?(xnj ), ynj

)
≤ bj

]
− ε, (A.3b)

each of which hold with probability 1− δ over the samples (xni , yni) as long as Ni > Cζ−1(ε, δ, dH).

Combining (A.2) and (A.3) we conclude that, with probability 1− (m+ q)δ, it holds simultaneously

that

E(x,y)∼Di

[
`i
(
φ̂?(x), y

)]
≤ ci + ε and

`j
(
φ̂?(x), y

)
≤ cj for all (x, y) ∈ Kj ⊆ X × Y,

where each Kj is a set of Dj-measure at least 1− ε.

Hence, if H is PAC learnable, then there exists N such that, if φ̂? is a solution of (P-ECRM)

obtained using Ni ≥ N samples from each Di, then φ̂? is probably approximately optimal as in (3.2)

and probably approximately feasible as in (3.3). �

A.2 Proof of Theorem 2

As we have argued before, we cannot rely on the duality between (PIV) and (D̂-CSL) to obtain this

result because of its non-convexity. Hence, this proof proceeds directly from (P-CSO) by applying

three transformations that yield (D̂-CSL), but whose approximation and estimation errors can be

controlled. First, we obtain the dual problem of (P-CSO) and show that this transformation incurs

in no error. This stems from the convexity of (P-CSO) under Assumptions 1 and 2 and is a straight-

forward strong duality result from semi-infinite programming theory (Proposition 18). Second, we

approximate the function class H using the finite dimensional parametrization fθ and bound the
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approximation error ε0 (Proposition 19). Third, we obtain (D̂-CSL) by replacing the expectations

with their empirical versions. Since the problem is now unconstrained, we can use classical learning

theory to evaluate the estimation error ε (Proposition 20). We then combine these results to obtain

Theorem 2.

We begin by showing that Assumptions 1–3 imply that (P-CSO) is strongly dual:

Proposition 18. Under Assumptions 1–3, the semi-infinite program (P-CSO) and the saddle-point

problem (D-CSL) are strongly dual, i.e., P ? = D?.

Proof. Start by noticing that (P-CSO) can be equivalently formulated as

P ? = min
φ∈H

E(x,y)∼D0

[
`0
(
φ(x), y

)]
subject to E(x,y)∼Di

[
`i
(
φ(x), y

)]
≤ ci, i = 1, . . . ,m,

`j
(
φ(x), y

)
pDj(x, y) ≤ cjpDj(x, y), (x, y) ∈ X × Y,

j = m+ 1, . . . , n.

(PXVI)

In fact, both problem have the same objective function and feasibility set. Indeed, if D > 0, the

transformation in the pointwise constraints is vacuous. On the other hand, when D vanishes, the

constraint is not enforced in (PXVI). However, neither is it in (P-CSO) since the pointwise constraint

need not hold on sets of D-measure zero. Note that this is different from satisfying the constraint

with probability D.

From Assumptions 1 and 2 we obtain that (PXVI) is a semi-infinite convex program. What is

more, Assumption 3 implies it has a strictly feasible solution φ′ = fθ′ . This constraint qualification,

sometimes known as Slater’s condition, implies that is strongly dual, i.e., that P ? = D? [234]. �

A.2.1 The approximation gap

While there is no duality gap between (P-CSO) and (D-CSL), the latter remains a variational

problem. The next step is there to approximate the functional space H by P = {fθ | θ ∈ Rp},

the space induced by the finite dimensional parametrization fθ. Thus, (D-CSL) becomes the finite
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dimensional problem

D?
θ = max

µ∈Rm+ , λj∈L1,+

min
θ∈Rp

Lθ(θ,µ,λ) , L(fθ,µ,λ). (Dθ-CSL)

Since P ⊆ H (Assumption 2), it is clear that D?
θ ≥ D? = P ?. Yet, if the parametrization is rich

enough, we should expect the gap D?
θ −P ? to be small. This intuition is formalized in the following

proposition.

Proposition 19. Let θ? achieve the saddle-point in (Dθ-CSL). Under Assumptions 1–3, fθ? is a

feasible, near-optimal solution of (P-CSO). Explicitly,

P ? ≤ D?
θ ≤ P ? +

1 + ‖µ̃?‖1 +

m+q∑
j=m+1

‖λ̃?j‖L1

Lν, (A.4)

for P ? and D?
θ defined as in (P-CSO) and (Dθ-CSL) respectively and where (µ̃?, λ̃?) are the dual

variables of (P-CSO) with the constraints tightened to ci −Mν for i = 0, . . . ,m+ q.

Proof. See Appendix A.2.4. �

A.2.2 The estimation gap

All that remains, is to turn the statistical Lagrangian (4.3) into the empirical (4.4). The incurred

estimation error is described in the next proposition.

Proposition 20. Let θ̂? achieve the saddle-point in (D̂-CSL). Under Assumptions 1–3, it holds

with probability 1− δ over the samples drawn from the distributions Di that

∣∣D?
θ − D̂?

∣∣ ≤ VN0
, (A.5)

E(x,y)∼Di

[
`i
(
fθ̂?(x), y

)]
≤ ci + VNi , and (A.6)

`j
(
fθ̂?(x), y

)
≤ cj for (x, y) ∈ Kj, (A.7)

where Kj ⊆ X × Y is a set of Dj-measure at least 1− VNj for all j = m + 1, . . . ,m + q, where VN

is defined as in (4.6).
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Proof. See appendix A.2.5. �

A.2.3 The PACC solution

The proof concludes by combining the parametrization and estimation gap results from Proposi-

tions 19 and 20. Namely, notice that (A.6) and (A.7) imply that the minimizer θ̂? that achieves the

saddle-point in (D̂-CSL) is probably approximately feasible [see (4.2)] for (P-CSO). Then, combin-

ing (A.4) and (A.5) using the triangle inequality yields the near-PACC gap from Def. 4. Fixing N

such that VN ≤ ε yields the result in Theorem 2. �

A.2.4 Proof of Proposition 19: The Approximation Gap

We first prove that fθ? is feasible for (P-CSO) and then bound the gap between D?
θ and P ?.

Feasibility. Suppose that fθ? is infeasible. Then, there exists at least one i > 0 such that

E(x,y)∼Di

[
`i
(
fθ?(x), y

)]
> ci or `i

(
fθ?(x), y

)
> ci over some set A ⊆ X ×Y of positive Di-measure.

Since µ and λ are unbounded above, we obtain that D?
θ → +∞. However, Assumptions 1 and 3

imply that D?
θ < +∞. Indeed, consider the dual function

d(µ,λ) = min
θ∈H

Lθ(θ,µ,λ)

= min
θ∈H

E(x,y)∼D0

[
`0
(
fθ(x), y

)]
+

m∑
i=1

µi

[
E(x,y)∼Di

[
`i
(
fθ(x), y

)]
− ci

]
+

m+q∑
j=m+1

∫
λj(x, y)

[
`j
(
fθ(x), y

)
− cj

]
pDj

(x, y)dxdy,

for the Lagrangian defined in(Dθ-CSL). Using the fact that `0 is B-bounded (Assumption 1) and

that there exists a strictly feasible θ′ (Assumption 3), d(µ,λ) is upper bounded by

d(µ,λ) ≤ E(x,y)∼D0

[
`0
(
fθ′(x), y

)]
+

m∑
i=1

µi

[
E(x,y)∼Di

[
`i
(
fθ†(x), y

)]
− ci

]
+

m+q∑
j=m+1

∫
λj(x, y)

[
`j
(
fθ′(x), y

)
− cj

]
pDj

(x, y)dxdy < B,
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where we used the fact that µi ≥ 0 and λj ≥ 0 Dj-a.e. Hence, it must be that fθ? is feasible

for (P-CSO).

Near-optimality. First, recall that under Assumptions 1–3, (P-CSO)–(D-CSL) form a strongly

dual pair of mathematical programs (Proposition 18). For the Lagrangian in (4.3), we therefore

obtain the saddle-point relation

L(φ?,µ′,λ′) ≤ max
µ,λ

min
φ∈H

L(φ,µ,λ) = D? = P ? = min
φ∈H

max
µ,λ

L(φ,µ,λ) ≤ L(φ′,µ?,λ?) (A.8)

which holds for all φ′ ∈ H, µ′ ∈ Rm+ , and λ′j ∈ L1,+, where φ? is a solution of (P-CSO) and (µ?,λ?)

are solutions of (D-CSL). We omit the spaces that (µ,λ) belong to for conciseness. Additionally,

we have from (Dθ-CSL) that

D?
θ ≥ min

θ∈Rp
L(θ,µ,λ), for all µ ∈ Rm+ and λj ∈ L1,+. (A.9)

Immediately, we obtain the lower bound in (4.12). Explicitly,

D?
θ ≥ min

θ∈Rp
L(θ,µ,λ) ≥ min

φ∈H
L(φ,µ?,λ?) = P ?, (A.10)

where the second inequality comes from the fact that P ⊆ H (Assumption 2).

The upper bound is obtained by relating the parameterized dual problem (Dθ-CSL) to a per-

turbed (tightened) version of the original (P-CSO). To do so, start by adding and subtract-

ing L(φ,µ,λ) from (Dθ-CSL) to get

D?
θ = max

µ,λ
min
θ∈Rp

L(φ,µ,λ) + E(x,y)∼D0

[
`0
(
fθ(x), y

)
− `0(φ(x), y)

]
+

m∑
i=1

µi E(x,y)∼Di

[
`i
(
fθ(x), y

)
− `i(φ(x), y)

]
+

m+q∑
j=m+1

E(x,y)∼Dj

[
λj(x, y)

(
`j
(
fθ(x), y

)
− `j

(
φ(x), y

))]
,

(A.11)

where we wrote the integral against pDj
as an expectation for conciseness. Then, using the fact

that `i is M -Lipschitz continuous (Assumption 1), we bound the expectations in the first two terms
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of (A.11) as

E(x,y)∼Dj

[
`i
(
fθ(x), y

)
− `i

(
φ(x), y

)]
≤ E(x,y)∼Dj

[∣∣`i(fθ(x), y
)
− `i

(
φ(x), y

)∣∣]
≤M E(x,y)∼Dj

[∣∣fθ(x)− φ(x)
∣∣], for i = 0, . . . ,m.

(A.12)

To bound the last expectation in (A.11), we first use Hölder’s inequality to get

E(x,y)∼Dj

[
λj(x, y)

(
`j
(
fθ(x), y

)
− `j

(
φ(x), y

))]
≤

E(x,y)∼Dj

[
λj(x, y)

] ∥∥`j(fθ(x), y
)
− `j

(
φ(x), y

)∥∥
L∞

,

where we recall that ‖g‖L∞ is the essential supremum of |g|. Then, the M -Lipschitz continuity

of `j (Assumption 1) implies that

E(x,y)∼Dj

[
λj(x, y)

(
`j
(
fθ(x), y

)
− `j

(
φ(x), y

))]
≤

M ‖fθ(x)− φ(x)‖L∞ E(x,y)∼Dj

[
λj(x, y)

]
. (A.13)

Using (A.12) and (A.13), together with the approximation property of the class H (Assumption 2),

we upper bound the minimum over θ in (A.11) to obtain

D?
θ ≤ max

µ,λ
L(φ,µ,λ) +

1 +

m∑
i=1

µi +

m+q∑
j=m+1

E(x,y)∼Dj

[
λj(x, y)

]Mν. (A.14)

Notice that since (A.14) holds uniformly for all φ ∈ H, it also holds for the minimizer

D?
θ ≤ min

φ∈H
max
µ,λ

L(φ,µ,λ) +

1 +

m∑
i=1

µi +

m+n∑
j=m+1

E(x,y)∼Dj

[
λj(x, y)

]Mν , P̃ ? (A.15)

and that the right-hand side of (A.15), namely P̃ ?, is in fact a perturbed version of (P-CSO). Hence,

we obtain another saddle-point relation similar to (A.8) relating P̃ ?, and consequently D?
θ , to P ?.
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Formally, (A.15) can be rearranged as

P̃ ? = min
φ∈H

max
µ,λ

E(x,y)∼D0

[
`0
(
φ(x), y

)
+Mν

]
+

m∑
i=1

µi

[
E(x,y)∼Di

[
`i
(
φ(x), y

)]
− ci +Mν

]
+

m+q∑
j=m+1

∫
λj(x, y)

[
`j
(
φ(x), y

)
− cj +Mν

]
pDj(x, y)dxdy,

where we recognize the optimization problem of

P̃ ? = min
φ∈H

E(x,y)∼D0

[
`0
(
φ(x), y

)]
+Mν

subject to E(x,y)∼Di

[
`i
(
φ(x), y

)]
≤ ci −Mν, i = 1, . . . ,m,

`j
(
φ(x), y

)
≤ cj −Mν Dj-a.e., j = m+ 1, . . . ,m+ q.

(PXVII)

Under Assumptions 1–3, (PXVII) is also strongly dual (Proposition 1), so that

P̃ ? = min
φ∈H

L(φ, µ̃?, λ̃?) +

1 +

m∑
i=1

µ̃?i +

m+n∑
j=m+1

E(x,y)∼Dj

[
λ̃?j (x, y)

]Mν, (A.16)

where (µ̃?, λ̃?) are the dual variables of (PXVII), i.e., the (µ,λ) that achieve

D̃? = max
µ,λ

min
φ∈H

E(x,y)∼D0

[
`0
(
φ(x), y

)
+Mν

]
+

m∑
i=1

µi

[
E(x,y)∼Di

[
`i
(
φ(x), y

)]
− ci +Mν

]
+

m+q∑
j=m+1

∫
λj(x, y)

[
`j
(
φ(x), y

)
− cj +Mν

]
pDj

(x, y)dxdy.

Going back to (A.15) we can now conclude the proof. First, use (A.16) to obtain

D?
θ ≤ P̃ ? ≤ L(φ?, µ̃?, λ̃?) +

1 + ‖µ̃?‖1 +

m+q∑
j=m+1

∥∥∥λ̃?j∥∥∥
L1

Lν, (A.17)

where we used φ?, the solution of (P-CSO), as a suboptimal solution in (A.16) and exploited the
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fact that the dual variables are non-negative to write their sum (integral) as an `1-norm (L1-norm).

The saddle point relation (A.8) gives L(φ?, µ̃?, λ̃?) ≤ P ?, from which we obtain the desired upper

bound in (A.4). �

A.2.5 Proof of Proposition 20: The Estimation Gap

Feasibility. The proof follows by first showing that θ̂? must be feasible for the parametrized

ECRM (PIV) using the same argument as in Section (A.2.4). We then proceed as in the proof of

Theorem 1.

Formally, suppose there exists at least one i > 0 such that

1

Ni

Ni∑
ni=1

`i
(
fθ̂?(xni), yni

)
> ci or `i

(
fθ̂?(xni), yni

)
> ci for some ni.

Then, since µ and λj are unbounded above, we obtain that D̂? → +∞. However, Assumptions 1

and 3 imply that D̂? < +∞. Indeed, consider the empirical dual function

d̂(µ,λj) = min
θ∈Rp

L̂(θ,µ,λj).

Using the fact that `0 is B-bounded (Assumption 1) and that there exists a strictly feasible θ† (As-

sumption 3), d̂(µ,λ) < B. Hence, it must be that

1

Ni

Ni∑
ni=1

`i
(
fθ̂?(xni), yni

)
≤ ci, for i = 1, . . . ,m, and (A.18a)

`j
(
fθ̂?(xnj ), ynj

)
≤ cj , for all nj and j = m+ 1, . . . ,m+ q. (A.18b)

We now proceed to use the classic VC bound [19, Sec. 3.4] to show that fθ̂? is a probably

approximately feasible solution of (P-CSO). To do so, recall from (A.1) that since the `i are

153



bounded (Assumption 1) and P has finite VC dimension dP , we obtain that

E(x,y)∼Di

[
`i
(
fθ(x), y

)]
≤ 1

Ni

Ni∑
ni=1

`i
(
fθ(xni), yni

)
+ VNi and (A.19a)

Pr
(x,y)∼Dj

[
`j
(
fθ(x), y

)
≤ cj

]
= E(x,y)∼Dj

[
I
[
`j
(
fθ(x), y

)
≤ cj

] ]
≥ 1

Nj

Nj∑
nj=1

I
[
`j
(
fθ(xnj ), ynj

)
≤ cj

]
− VNj (A.19b)

hold with probability 1 − δ over the datasets {(xni), yni)}i for VN as in (4.6). Combining (A.18)

and (A.19) and using the union bound, we conclude that, with probability 1− (m+ q)δ,

E(x,y)∼Di

[
`i
(
fθ̂?(x), y

)]
≤ ci + VNi and

`j
(
fθ̂?(x), y

)
≤ cj for all (x, y) ∈ Kj ⊆ X × Y,

where Kj is a set of Dj-measure at least 1− VNj .

Near-optimality. Let (θ?,µ?,λ?) and (θ̂?, µ̂?, λ̂?) be variables that achieve D?
θ in (Dθ-CSL)

and D̂? in (D̂-CSL) respectively. Then, it holds that

µ?j

(
E [`i(f(θ?,x), y)]− cj

)
= 0, (A.20a)

λ?j (x, y)
(
`j(f(θ?,x), y)− cj

)
= 0, Dj-a.e., (A.20b)

µ̂i

(
1

N

N∑
n=1

`i(f(θ̂?,xn), yn)− ci
)

= 0, and (A.20c)

λ̂j,nj

(
`i(f(θ̂?,xn), yn)− cj

)
= 0, (A.20d)

known as complementary slackness conditions. While these are part of the classical KKT condi-

tions [130, Sec. 5.5.3], it should be noted that the non-convex nature of both (Dθ-CSL) and (D̂-CSL)

implies that these are only necessary and not sufficient for optimality. Nevertheless, feasibility is

enough to establish (A.20).

Indeed, recall from Proposition 19 and (A.18) that the constraint slacks in parentheses in (A.20)

are non-positive. Hence, the left-hand sides in (A.20) are also non-positive and if (A.20a) does not

154



hold for some i or if (A.20b) does not hold for some j and a set Zj of positive Dj measure, then

letting µ?i = 0 or making λj(x, y) vanish over Zj would increase the value of D?
θ , contradicting its

optimality. Note that since Zj is measurable, the modified λj would still be measurable. A similar

argument applies to (A.20c) and (A.20d).

Immediately, (A.20) implies that both (Dθ-CSL) and (D̂-CSL) reduce to

D?
θ = E [`0 (f(θ?,x), y)] , F0(θ?) and (A.21a)

D̂? =
1

N0

N0∑
n0=1

`0

(
f(θ̂?,xn0), yn0

)
, F̂0(θ̂?). (A.21b)

To proceed, use the optimality of θ? and θ̂? for F0 and F̂0 respectively to write

F0(θ?)− F̂0(θ?) ≤ F0(θ?)− F̂0(θ̂?) ≤ F0(θ̂?)− F̂0(θ̂?).

Then, (A.21) yields the bound

∣∣∣D?
θ − D̂?

∣∣∣ =
∣∣∣F0(θ?)− F̂0(θ̂?)

∣∣∣ ≤ max

{∣∣∣F0(θ?)− F̂0(θ?)
∣∣∣, ∣∣∣F0(θ̂?)− F̂0(θ̂?)

∣∣∣} (A.22)

and applying the VC generalization bound from [19, Sec. 3.4] to (A.22), yields that, uniformly

over θ, ∣∣∣F0(θ)− F̂0(θ)
∣∣∣ ≤ VN0 , (A.23)

with probability 1−2δ and for VN as in (4.6). Combining (A.22) and (A.23) concludes the proof. �

A.3 Proof of Proposition 1

Start by recalling that the dual problem (D-CSL) is a relaxation of its primal (P-CSO) and therefore

provides a lower bound on its optimal value. Explicitly, D? ≤ P ? [18, Chap. 5]. Hence, it suffices

to prove that D? ≥ P ?. We do so by showing that even though (P-CSO) is a non-convex program,

the range of its cost and constraints forms a convex set under the hypotheses of the proposition.
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Explicitly, let the cost-constraints epigraph set be defined as

C =
{

(s0, s) ∈ Rm+1
∣∣∣ ∃φ ∈ H such that E [`0(φ(x), y)] ≤ s0 and E [`i(φ(x), y)] ≤ si

}
, (A.24)

where the vector s ∈ Rm collects the si, i = 1, . . . ,m. For conciseness, we omit the distributions

over which the expectations are taken whenever they can be inferred from the context. Then, the

following holds:

Lemma 7. If the conditional random variables x|y induced by the distributions Di are non-atomic

and Y is finite, then the cost-constraints set C in (A.24) is a non-empty convex set.

Before proving Lemma 7, let us show how it implies strong duality for (P-CSO) by leveraging

the following result from convex geometry:

Proposition 21 (Supporting hyperplane theorem [18, Prop. 1.5.1]). Let A ⊂ Rn be a nonempty

convex set. If x̃ ∈ Rn is not in the interior of A, then there exists a hyperplane passing through x̃

such that A is in one of its closed halfspaces, i.e., there exists p 6= 0 such that pT x̃ ≤ pTx for

all x ∈ A.

To proceed, observe from (P-CSO) that (P ?, c), where c ∈ Rm collects the values of the ci,

cannot be in the interior of C, otherwise there would exist ε > 0 such that (P ? − ε, c) ∈ C, violating

the optimality of P ?. Proposition 21 then implies that there exists a non-zero vector (µ0,µ) ∈ Rm+1

such that

µ0s0 + µTs ≥ µ0P
? + µT c, for all (s0, s) ∈ C. (A.25)

Observe that the hyperplanes in (A.25) are defined using the same notation as the dual prob-

lem (D-CSL) to foreshadow the fact that they actually span the values of the Lagrangian (4.11).

To proceed, note from (A.24) that C is unbounded above, i.e., if (s0, s) ∈ C then (s′0, s
′) ∈ C for

all (s′0, s
′) � (s0, s). Hence, (A.25) can only hold if µi ≥ 0, i = 0, . . . ,m. Otherwise, there exists

a vector in C such that the left-hand side of (A.25) evaluates to an arbitrarily negative number,

eventually violating Proposition 21. Let us now show that furthermore µ0 6= 0.
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Indeed, suppose µ0 = 0. Then (A.25) reduces to

µTs ≥ µT c⇔ µT (s− c) ≥ 0, for all (s0, s) ∈ C. (A.26)

Recall from Proposition 21 that there exists at least one λ 6= 0 for which this inequality must

hold. However, this is contradicted by the existence of the strictly feasible point φ′. Explicitly, for

every µ 6= 0, there exists (s′0, s
′) ∈ C, achieved by φ′ from the hypotheses of the proposition, such

that s′i < ci for all i, contradicting (A.26).

However, if µ0 6= 0, (A.25) can be written as

s0 + µ̃Ts ≥ P ? + µ̃T c, for all (s0, s) ∈ C,

where µ̃ = µ/µ0, which from the definition of C in (A.24) implies that

E [`0(φ(x), y)] +

m∑
i=1

µ̃i (E [`i(φ(x), y)]− ci) ≥ P ?, (A.27)

for all φ ∈ H. Note, however, that the left-hand side of (A.27) is the Lagrangian (4.11), i.e.,

(A.27) implies that L(φ, µ̃) ≥ P ?. In particular, this hold for the minimum of L(φ, µ̃), implying

that D? ≥ P ? and therefore, that strong duality holds for (P-CSO). �

All that remains now is proving that the cost-constraint set C in (A.24) is convex.

Proof of Lemma 7. This proof follows along the lines of [38]. Let (s0, s), (s
′
0, s
′) ∈ C be arbitrary

points achieved for φ, φ′ ∈ H, i.e., for i = 0, . . . ,m,

E [`i(φ(x), y)] ≤ si and E [`i(φ
′(x), y)] ≤ s′i. (A.28)

It suffices then to show that λ(s0, s) + (1−λ)(s′0, s
′) ∈ C for all λ ∈ [0, 1] to obtain that C is convex.

Equivalently, we must obtain φλ ∈ H such that

E [`i(φλ(x), y)] ≤ λsi + (1− λ)s′i, i = 0, . . . ,m, (A.29)
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for all 0 ≤ λ ≤ 1. To do so, we rely on the following classical theorem about the range of non-atomic

vector measures:

Theorem 20 (Lyapunov’s convexity theorem [148, Chap. IX, Cor. 5]). Let v : B → Rn be a finite

dimensional vector measure over the measurable space (Ω,B). If v is non-atomic, then its range is

convex, i.e., the set {v(Z) : Z ∈ B} is a convex set.

To see how Theorem 20 allows us to construct the desired φλ, let Ω = Rd and B be its Borel

σ-algebra. Define the 2|Y|(m+ 1)× 1 vector measure q such that for every set Z ∈ B we have

q(Z) =

∫Z `i(φ(x), y)fi(x | y)dx∫
Z `i(φ

′(x), y)fi(x | y)dx


i=0,...,m; y∈Y

, (A.30)

where fi(x | y) denotes the conditional density of x given y induced by the joint distributions Di.

Once again, we assume that these density exist only to simplify the notation. The integrals in (A.30)

can be taken against the conditional (Radon-Nikodym) measures as long as the law of x is absolutely

continuous with respect to the law of y [125]. Hence, the entries of q contain integrals of the losses `i

of φ and φ′ with respect to every possible value of y ∈ Y. Immediately, we note that q(∅) = 0 and

q(Ω) =

E [`i(φ(x), y) | y]

E [`i(φ
′(x), y) | y]


i=0,...,m; y∈Y

. (A.31)

Due to the additive property of the Lebesgue integral, q in (A.30) is a proper vector measure.

What is more, the `i are bounded functions, so the fact that x|y is non-atomic implies that q is also

non-atomic. Hence, from Theorem 20, there exists a set Tλ ∈ B such that

q(Tλ) = λq(Ω) + (1− λ)q(∅) = λq(Ω), (A.32)

for λ ∈ [0, 1]. Since B is a σ-algebra, it holds that Ω \ Tλ ∈ B and by additivity we obtain

q(Ω \ Tλ) = (1− λ)q(Ω). (A.33)
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From (A.32) and (A.33), we then construct φλ as

φλ(x) =


φ(x), for x ∈ Tλ

φ′(x), for x ∈ Ω \ Tλ
(A.34)

It is straightforward from the decomposability hypothesis on H, that φλ ∈ H. We claim that it also

satisfies (A.29).

To see this is the case, use the construction in (A.34) to obtain

E
[
`i(φλ(x), y) | y

]
=

∫
Tλ
`i(φ(x), y)fi(x | y)dx

+

∫
Ω\Tλ

`i(φ
′(x), y)fi(x | y)dx.

Note from (A.30), that these integral can be written as entries of the vector measure q, namely

E
[
`i(φλ(x), y) | y

]
=
[
p(Tλ)

]
φ; i; y

+
[
p(Ω \ Tλ)

]
φ′; i; y

. (A.35)

In (A.35), we use the notation
[
q
]
φ; i; y

to denote the entry of q relative to the function φ, the i-th

loss, and the variable y ∈ Y. From (A.32) and (A.33), we know that (A.35) evaluates to

E [`i(φλ(x), y) | y] = [λp(Ω)]φ; i; y + [(1− λ)p(Ω)]φ′; i; y

= λE [`i(φ(x), y) | y]

+ (1− λ)E [`i(φ
′(x), y) | y] ,

for all i = 0, . . . ,m and y ∈ Y. Use the tower (total expectation) property, we immediately conclude

that for i = 0, . . . ,m,

E [`i(φλ(x), y)] = Ey
[
λE [`i(φ(x), y) | y]

+ (1− λ)E [`i(φ
′(x), y) | y]

]
= λE [`i(φ(x), y)] + (1− λ)E [`i(φ

′(x), y)] ,
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which using (A.28) yields

E [`i(φλ(x), y)] ≤ λsi + (1− λ)s′i.

Hence, there exists φλ ∈ H such that (A.29) holds for all λ ∈ [0, 1] and (s0, s), (s
′
0, s
′) ∈ C. The

set C is therefore convex. Moreover, the strictly feasible φ′ from the hypotheses of the proposition

implies that C is not be empty. �

A.4 Duality Gap for Regression

The Lyapunov convexity theorem (Theorem 20) turns out to be quite sensitive to the hypothesis

that the vector measure takes values in a finite dimensional Banach space [148, Ch. IX]. When Y

is compact, we can overcome this issue without resorting to super-atomless (saturated) spaces by

assuming the losses are continuous in y and slicing Y to approximate regression by a sequence

of increasingly fine classification problems. Once again, we consider the measurable space (Ω,B)

where Ω = Rd and B is a Borel σ-algebra.

Proposition 22. Consider the dual problem (D-CSL). Under assumptions 3 and 4, (P-CSO) is

strongly dual, i.e., P ? = D?, if Y is compact, the conditional distributions x|y induced by the Di are

non-atomic, and y 7→ `i(φ(·), y)fi(· | y) is continuous in the total variation topology for each φ ∈ H,

where fi(x | y) denotes the density of the conditional random variable induced by Di. Explicitly, for

every ε > 0 there exists δ > 0 such that for all |y − ỹ| ≤ δ it holds that

sup
Z∈B

∫
Z

∣∣`i(φ(x), y)fi(x | y)− `i(φ(x), ỹ)fi(x | ỹ)
∣∣dx ≤ ε,

The proof of Proposition 22 follows that of the finite Y case in Appendix A.3 by replacing

Lemma 7 with

Lemma 8. Under the assumptions of Proposition 22, the cost-constraints set C in (A.24) is a

non-empty convex set.

Proof of Lemma 8. Without loss of generality, assume Y = [0, 1]. Once again, let (s0, s), (s
′
0, s
′) ∈ C

be achieved by φ, φ′ ∈ H. Our goal, as before, is to construct φλ such that (A.29) holds for

all λ ∈ [0, 1].
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To do so, fix ε > 0 and let δ be such that

sup
Z∈B

∫
Z

∣∣`i(φ(x), y)fi(x | y)− `i(φ(x), ỹ)fi(x | ỹ)
∣∣dx ≤ ε

3

for all |y − ỹ| ≤ δ. The continuity hypothesis guarantees that such a δ exists. Then, partition Y

into d1/δe intervals Ik = [(k − 1)δ, kδ] and let

Ỹ =
{
ỹk ,

(
k − 1/2

)
δ for k = 1, . . . , d1/δe

}
. (A.36)

To proceed, construct the 2
∣∣∣Ỹ∣∣∣(m+ 1)× 1 vector measure

qε(Z) =

∫Z `i(φ(x), ỹ)fi(x | ỹ)dx∫
Z `i(φ

′(x), ỹ)fi(x | ỹ)dx


i=0,...,m; ỹ∈Ỹ

(A.37)

and, using the non-atomicity of qε, obtain from Theorem 20 a set Tλ,ε ∈ B such that

q(Tλ,ε) = λqε(Ω) and q(Ω \ Tλ,ε) = (1− λ)qε(Ω). (A.38)

From (A.38), we construct φλ,ε as

φλ,ε(x) =


φ(x), for x ∈ Tλ,ε

φ′(x), for x ∈ Ω \ Tλ,ε
(A.39)

Since H is decomposable, we again have φλ,ε ∈ H. Let us show that it satisfies (A.29) up to an

additive error ε.

Indeed, notice from (A.39) that

E [`i(φλ,ε(x), y)] = Ey
[
E [`i(φλ,ε(x), y) | y]

]
= Ey

[ ∫
Tλ,ε

`i(φ(x), y)fi(x | y)dx

]
+ Ey

[ ∫
Ω\Tλ,ε

`i(φ
′(x), y)fi(x | y)dx

]
.

(A.40)
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Focusing on the first expectation, we start by constructing a simple function approximation of the

integrand using the intervals from (A.36). From the continuity of `i(φ(x), y)fi(x | y), we then obtain

the bound

Ey
[ ∫
Tλ,ε

`i(φ(x), y)fi(x | y)dx

]
≤
|Ỹ|∑
k=0

Ey
[
I[y ∈ Ik]

] ∫
Tλ,ε

`i(φ(x), ỹk)fi(x | ỹk)dx+
ε

3
. (A.41)

Notice from the definition of the vector measure in (A.37) that the value of the integrals in (A.41)

are entries of the vector qε(Tλ,ε). Using the property of Tλ,ε in (A.38), we then get

Ey
[ ∫
Tλ,ε

`i(φ(x), y)fi(x | y)dx

]
≤ λ
|Ỹ|∑
k=0

Ey
[
I[y ∈ Ik]

] ∫
`i(φ(x), ỹk)f(x | ỹk)dx+

ε

3
. (A.42)

Using once again the continuity hypothesis and the fact that since Di is a probability measure,∑|Ỹ|
k=0 Ey

[
I[y ∈ Ik]

]
= 1, yields

Ey
[ ∫
Tλ,ε

`i(φ(x), y)fi(x | y)dx

]
≤ λEy

[
E[`i(φ(x), y) | y]

]
+

(1 + λ)ε

3

= λE [`i(φ(x), y)] +
(1 + λ)ε

3
.

(A.43)

A similar argument yields

Ey
[ ∫

Ω\Tλ,ε
`i(φ(x), y)fi(x | y)dx

]
≤ (1− λ)E [`i(φ

′(x), y)] +
(2− λ)ε

3
. (A.44)

Combining (A.43) and (A.44) in (A.40), we obtain that for all ε > 0 and λ ∈ [0, 1], there exists φλ,ε ∈

H such that

E [`i(φλ,ε(x), y)] ≤ λsi + (1− λ)s′i + ε, (A.45)

for all i = 0, . . . ,m.

Suppose now that there is no φλ ∈ H such that E [`i(φλ(x), y)] ≤ λsi + (1 − λ)s′i. Then, there

exists τ > 0 such that

E [`i(φ(x), y)] > λsi + (1− λ)s′i + τ

for φ ∈ H. However, this violates (A.45) for ε = τ leading to a contradiction. Since H is closed, we
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therefore obtain that for all (s0, s), (s
′
0, s
′) ∈ C and λ ∈ [0, 1], there exists φλ ∈ H such that (A.29),

showing that C is convex. The strictly feasible φ′ from assumption 3 implies that C is also not

empty. �

A.5 Proof of Proposition 2: The Approximation Gap

We first prove that fθ? is feasible for (P-CSO) and then bound the gap between D?
θ and P ?.

Feasibility. Suppose that fθ? is infeasible. Then, there exists at least one index i for which

E(x,y)∼Di

[
`i
(
fθ?(x), y

)]
> ci. Since µ is unbounded above, we obtain that D?

θ → +∞. However,

assumption 3 implies that D?
θ < +∞. Indeed, consider the dual function

d(µ) = min
θ∈Rp

Lθ(θ,µ)

= min
θ∈H

E(x,y)∼D0

[
`0
(
fθ(x), y

)]
+

m∑
i=1

µi

[
E(x,y)∼Di

[
`i
(
fθ(x), y

)]
− ci

]
,

(A.46)

for the parametrized Lagrangian Lθ defined in (Dθ-CSL). Using the fact that `0 is B-bounded and

that there exists a strictly feasible θ′ (assumption 3), d(µ) is upper bounded by

d(µ) ≤ E(x,y)∼D0

[
`0
(
fθ′(x), y

)]
+

m∑
i=1

µi

[
E(x,y)∼Di

[
`i
(
fθ′(x), y

)]
− ci

]
≤ B,

(A.47)

where we used the fact that µi ≥ 0. Hence, it must be that fθ? is feasible for (P-CSO).

Near-optimality. First, recall from Proposition 1 that (P-CSO)–(D-CSL) form a strongly dual

pair of mathematical programs under the assumptions of Proposition 2. The Lagrangian in (4.11)

therefore obeys the saddle-point relation

L(φ?,µ′) ≤ max
µ∈Rm+

min
φ∈H

L(φ,µ) = D? = P ? = min
φ∈H

max
µ∈Rm+

L(φ,µ) ≤ L(φ′,µ?) (A.48)
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for all φ′ ∈ H and µ′ ∈ Rm+ , where φ? is a solution of (P-CSO) and µ? is a solution of (D-CSL).

Additionally, we have from (Dθ-CSL) that

D?
θ ≥ min

θ∈Rp
Lθ(θ,µ), for all µ ∈ Rm+ . (A.49)

Immediately, we obtain the lower bound in (4.12). Explicitly,

D?
θ ≥ min

θ∈Rp
Lθ(θ,µ

?) ≥ min
φ∈H

L(φ,µ?) = P ?, (A.50)

where the second inequality comes from the fact that P ⊆ H (Assumption 5).

The upper bound is obtained by relating the parameterized dual problem (Dθ-CSL) to a per-

turbed (tightened) version of the original (P-CSO). To do so, start by adding and subtracting L(φ,µ)

from (Dθ-CSL) to get

D?
θ = max

µ∈Rm+
min
θ∈Rp

L(φ,µ)

+ E(x,y)∼D0

[
`0
(
fθ(x), y

)
− `0(φ(x), y)

]
+

m∑
i=1

µi E(x,y)∼Di

[
`i
(
fθ(x), y

)
− `i(φ(x), y)

]
.

(A.51)

Then, use the fact that `i is M -Lipschitz continuous (assumption 4) to bound the expectations

in (A.51) as

E(x,y)∼Di

[
`i
(
fθ(x), y

)
− `i

(
φ(x), y

)]
≤ E(x,y)∼Di

[∣∣`i(fθ(x), y
)
− `i

(
φ(x), y

)∣∣]
≤M E(x,y)∼Di

[∣∣fθ(x)− φ(x)
∣∣], (A.52)

for all i = 0, . . . ,m. Using (A.52) and the approximation property of P (assumption 5), the mini-

mization in (A.51) can be upper bounded to obtain

D?
θ ≤ max

µ∈Rm+
L(φ,µ) +

(
1 + ‖µ‖1

)
Mν, (A.53)
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where we used the fact that µi ≥ 0 to write
∑
µi = ‖µ‖1.

Notice that since (A.53) holds uniformly for all φ ∈ H, it also holds for the minimizer

D?
θ ≤ min

φ∈H
max
µ∈Rm+

L(φ,µ) +
(
1 + ‖µ‖1

)
Mν , P̃ ? (A.54)

and that the right-hand side of (A.54), namely P̃ ?, is in fact a perturbed version of (P-CSO). Hence,

we obtain another saddle-point relation similar to (A.48) relating P̃ ?, and consequently D?
θ , to P ?.

Formally, (A.54) can be rearranged as

P̃ ? = min
φ∈H

max
µ∈Rm+

E(x,y)∼D0

[
`0
(
φ(x), y

)
+Mν

]
+

m∑
i=1

µi

[
E(x,y)∼Di

[
`i
(
φ(x), y

)]
− ci +Mν

] (A.55)

where we recognize the primal optimization problem

P̃ ? = min
φ∈H

E(x,y)∼D0

[
`0
(
φ(x), y

)]
+Mν

subject to E(x,y)∼Di

[
`i
(
φ(x), y

)]
≤ ci −Mν,

i = 1, . . . ,m.

(PXVIII)

Notice from Proposition 1 and assumption 3 that (PXVIII) is also strongly dual, so that

P̃ ? = min
φ∈H

L(φ, µ̃?) +
(
1 + ‖µ̃?‖1

)
Mν, (A.56)

where µ̃? are the dual variables of (PXVIII), i.e., the µ that achieve

D̃? = max
µ∈Rm+

min
φ∈H

E(x,y)∼D0

[
`0
(
φ(x), y

)
+Mν

]
+

m∑
i=1

µi

[
E(x,y)∼Di

[
`i
(
φ(x), y

)]
− ci +Mν

]
.

(A.57)

Going back to (A.54) we can now conclude the proof. First, use (A.56) to obtain

D?
θ ≤ P̃ ? ≤ L(φ?, µ̃?) +

(
1 + ‖µ̃?‖1

)
Lν, (A.58)
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where we used φ?, the solution of (P-CSO), as a suboptimal solution in (A.56). The saddle point

relation (A.48) gives L(φ?, µ̃?) ≤ P ?, from which we obtain the upper bound in (4.12). �

A.6 Proof of Proposition 3: The Estimation Gap

Feasibility. The proof follows by first showing that θ̂? must be feasible for the parametrized

ECRM (PIV) using the same argument as in Section A.5. Then, leveraging the fact that P is PAC

learnable (Assumption 5), we can apply the generalization bounds from classical learning theory.

Formally, suppose there exists at least one i > 0 such that

1

Ni

Ni∑
ni=1

`i
(
fθ̂?(xni), yni

)
> ci,

for the samples (xni , yni) ∼ Di. Then, since µ is unbounded above, we obtain that D̂? → +∞.

However, assumption 3 implies that D̂? < +∞. Indeed, consider the empirical dual function

d̂(µ) = min
θ∈Rp

L̂(θ,µ) (A.59)

for the empirical Lagrangian L̂ from (4.4). Using the fact that `0 is B-bounded and that there exists

a strictly feasible θ† (assumption 3), we can use the same argument leading to (A.47) to obtain

that d̂(µ) < B. Hence, it must be that

1

Ni

Ni∑
ni=1

`i
(
fθ̂?(xni), yni

)
≤ ci, for i = 1, . . . ,m. (A.60)

We now proceed to use the classical VC bound [19, Sec. 3.4] to show that fθ̂? must approximately

satisfy each constraint of (P-CSO) with high probability. To do so, recall that since P is PAC

learnable, it must have a finite VC dimension dP [20, Thm. 6.7]. Since the `i are bounded, it holds

with probability 1− δ over the samples (xni , yni) that [19, Sec. 3.4]

E(x,y)∼Di

[
`i
(
fθ(x), y

)]
≤ 1

Ni

Ni∑
ni=1

`i
(
fθ(xni), yni

)
+ VNi (A.61)
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for each i = 1, . . . ,m, where VN is as in (4.6).

Near-optimality. Let (θ̃?, µ̃?) and (θ̂?, µ̂?) be variables that achieve D?
θ in (Dθ-CSL) and D̂?

in (D̂-CSL) respectively. Then, it holds that

µ̃?i

(
E
[
`i(f(θ̃?,x), y)

]
− cj

)
= 0 and (A.62a)

µ̂?i

(
1

N

N∑
n=1

`i(f(θ̂?,xn), yn)− ci
)

= 0, (A.62b)

known as complementary slackness conditions. While these are part of the classical KKT condi-

tions [130, Sec. 5.5.3], it should be noted that the non-convex nature of both (Dθ-CSL) and (D̂-CSL)

implies that these are only necessary and not sufficient for optimality. Nevertheless, feasibility is

enough to establish (A.62).

Indeed, recall from Proposition 2 and (A.60) that the constraint slacks in parentheses in (A.62)

are non-positive. Hence, the left-hand sides in (A.62) are also non-positive and if (A.62a) does not

hold for some i, then letting µ̃?i = 0 would increase the value of D?
θ , contradicting its optimality. A

similar argument applies to (A.62b).

Immediately, (A.62) implies that both (Dθ-CSL) and (D̂-CSL) reduce to

D?
θ = E

[
`0

(
f(θ̃?,x), y

)]
, F0(θ̃?) and (A.63a)

D̂? =
1

N0

N0∑
n0=1

`0

(
f(θ̂?,xn0), yn0

)
, F̂0(θ̂?). (A.63b)

To proceed, use the optimality of θ̃? and θ̂? for F0 and F̂0 respectively to write

F0(θ̃?)− F̂0(θ̃?) ≤ F0(θ̃?)− F̂0(θ̂?) ≤ F0(θ̂?)− F̂0(θ̂?).

Then, (A.63) yields the bound

∣∣∣D?
θ − D̂?

∣∣∣ =
∣∣∣F0(θ̃?)− F̂0(θ̂?)

∣∣∣ ≤ max

{∣∣∣F0(θ̃?)− F̂0(θ̃?)
∣∣∣, ∣∣∣F0(θ̂?)− F̂0(θ̂?)

∣∣∣} (A.64)

and applying the VC generalization bound from [19, Sec. 3.4] to (A.64), yields that, uniformly
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over θ, ∣∣∣F0(θ)− F̂0(θ)
∣∣∣ ≤ VN0 , (A.65)

with probability 1− 2δ and for VN as in (4.6).

Union bound. To conclude, we use the union bound to combine (A.61) for i = 1, . . . ,m with (A.64)

and (A.65). Doing so, we obtain that

∣∣∣D?
θ − D̂?

∣∣∣ ≤ VN0

E(x,y)∼Di

[
`i
(
fθ̂?(x), y

)]
≤ ci + VNi

occur simultaneously with probability at least 1 − (m + 2)δ. Choosing the appropriate confidence

level δ concludes the proof. �

A.7 Proof of Theorem 4

We proceed by proving that

D̂? − ρ− η

2
S − β ≤ L̂

(
θ(T ),µ(T ),λ(T )

)
≤ D̂? + ρ, (A.66)

for a fixed precision β > 0, from which we obtain (4.15) by recalling that D̂? is near-PACC (Theo-

rems 2 and 3). The result stated in Theorem 4 is based on taking β = Mν.

Start by defining the empirical dual function of (P-CSO) for q ≥ 0

d̂(µ,λj) , min
θ
L̂(θ,µ,λj). (A.67)

The upper bound in (A.66) then holds trivially from the fact that d̂(µ,λj) ≤ D̂? for all (µ,λj).

Then, from the characteristics of the approximate minimizer θ(t) = θ†(µ(t),λ(t)) in Assumption 6

we obtain that

L̂
(
θ(t),µ(t),λ(t)

)
≤ D̂? + ρ, for all t ≥ 0. (A.68)

For the lower bound, we rely on the following relaxation of Dankin’s classical theorem [77, Ch. 3]:
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Lemma 9. Let θ† be the approximate minimizer of the empirical Lagrangian (4.4) at (µ,λj) from

Assumption 6. Then, the constraint slacks are approximate subgradients of the dual function (A.67),

i.e.,

d̂(µ,λj) ≥ d̂(µ′,λ′j) +

m∑
i=1

(µi − µ′i)
[

1

Ni

Ni∑
ni=1

`i
(
fθ†(xni), yni

)
− ci

]

+

m+q∑
j=m+1

 1

Nj

Nj∑
nj=1

(
λj,nj − λ′j,nj

) (
`j
(
fθ†(xnj ), ynj

)
− cj

)− ρ (A.69)

for all (µ′,λ′j).

Proof. From Assumption 6, we obtain that

d(µ′,λ′j) ≤ d(µ′,λ′j) + d(µ,λj)− L̂
(
θ†(µ,λj),µ,λj

)
+ ρ. (A.70)

Additionally, we can upper bound (A.70) by replacing the optimal minimizer in d(µ′,λ′j) by any θ.

In particular, we can choose θ†(µ,λj) to get

d(µ′,λ′j) ≤ L̂
(
θ†(µ,λj),µ

′,λ′j
)

+ d(µ,λj)− L̂
(
θ†(µ,λj),µ,λj

)
+ ρ. (A.71)

Notice from (4.4) that the first term of the Lagrangians in (A.71) are identical. By expanding them,

(A.71) can then be rearranged as in (A.69). �

To proceed, let (µ?,λ?j ) be solutions of the dual problem (D̂-CSL). We show next that for at

least T = O(1/β), the total distance

Ut =
∥∥∥µ(t) − µ?

∥∥∥2

+

m+q∑
j=m+1

∥∥∥λ(t)
j − λ?

∥∥∥2

(A.72)

decreases to at least O(β). To do so, use the updates from Algorithm 1 to write (A.72) as

Ut =

m∑
i=1

{[
µ

(t−1)
i + η

(
1

Ni

Ni∑
ni=1

`i
(
fθ(t−1)(xni), yni

)
− ci

)]
+

− µ?i

}2

+

m+q∑
j=m+1

Nj∑
nj=1

{[
λ

(t−1)
j,nj

+
η

Nj

(
`j
(
fθ(t−1)(xnj ), ynj

)
− cj

)]
+
− λ?j,nj

}2

.
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Since both µ? and λ? belong to the non-negative orthant, we can then use the non-expansiveness

of the projection [·]+ [18] to obtain

Ut =

m∑
i=1

[
µ

(t−1)
i + η

(
1

Ni

Ni∑
ni=1

`i
(
fθ(t−1)(xni), yni

)
− ci

)
− µ?i

]2

+

m+q∑
j=m+1

Nj∑
nj=1

[
λ

(t−1)
j,nj

+
η

Nj

(
`j
(
fθ(t−1)(xnj ), ynj

)
− cj

)
− λ?j,nj

]2

. (A.73)

By expanding the norms in (A.73), we get that

Ut ≤ Ut−1 + 2η

[∑
i

(
µ

(t−1)
i − µ?i

)( 1

Ni

Ni∑
ni=1

`i
(
fθ(t−1)(xni), yni

)
− ci

)

+
∑
j

Nj∑
nj=1

1

Nj

(
λ

(t−1)
j,nj

− λ?j,nj
)(

`j
(
fθ(t−1)(xnj ), ynj

)
− cj

)]

+ η2

[
m∑
i=1

[
1

Ni

Ni∑
ni=1

`i
(
fθ(t−1)(xni), yni

)
− ci

]2

+

m+q∑
j=m+1

Nj∑
nj=1

1

N2
j

[
`j
(
fθ(t−1)(xnj ), ynj

)
− cj

]2]
.

(A.74)

Using the fact that the `i are bounded, the last term in (A.74) is upper bounded by

S =

m∑
i=1

(B − ci)2 +

m+q∑
j=m+1

1

Nj
(B − cj)2 = O

(
B2
)
.

What is more, Lemma 9 can be used to bound the second term in (A.74) and write

Ut ≤ Ut−1 + 2η

[
d̂
(
µ(t−1),λ

(t−1)
j

)
− D̂? + ρ

]
+ η2S,

where we used the fact that D̂? = d̂
(
µ?,λ?j

)
. Solving the recursion then yields

Ut ≤ U0 + 2η

t−1∑
t=0

∆t, (A.75)

for

∆t = d̂
(
µ(t−1),λ

(t−1)
j

)
− D̂? + ρ+

η

2
S. (A.76)
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To conclude, notice that d̂(µ,λj) ≤ D̂? for all (µ,λj). Hence, when µ(t) and λ
(t)
j are sufficiently

far from the optimum and the step size η is sufficiently small, we have ∆t ≤ 0 and (A.75) shows

that the distance to the optimum Ut decreases. Formally, fix a precision β > 0 and let T = min{t |

∆t > −β}. Then, from the definition of ∆t we obtain the desired lower bound

∆T > −β ⇔ d̂
(
µ(t−1),λ

(t−1)
j

)
> D̂? − ρ− η

2
S − β

What is more, (A.75) yields

T ≤ U0

2ηβ
+ 1 = O

(
β−1

)
.

�
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Appendix B

Proofs of Part II

B.1 Chapter 6: Nonconvex functional models

B.1.1 Proof of Lemma 2

Let (c,u,kR,kI), (c
′,u′,k′R,k

′
I) be arbitrary points in C achieved for (X, z), (X ′, z′) ∈ X × Cp. In

other words, it holds that X(β), X ′(β) ∈ P a.e., f0(X) ≤ c, f0(X ′) ≤ c′, gi(z) ≤ [u]i, gi(z
′) ≤ [u′]i,

∫
Ω

F [X(β),β] dβ − z = kR + jkI , k,∫
Ω

F [X ′(β),β] dβ − z′ = k′R + jk′I , k
′,

where we have defined the shorthands k and k′ for conciseness. To show that C is convex, it suffices

to show that θ(c,u,kR,kI) + (1 − θ)(c′,u′,k′R,k′I) ∈ C for any θ ∈ [0, 1]. Equivalently, we must

obtain (Xθ, zθ) ∈ X × Cp such that Xθ(β) ∈ P a.e.,

f0(Xθ) ≤ θc+ (1− θ)c′, (B.1a)

gi(zθ) ≤ [θu+ (1− θ)u′]i, (B.1b)∫
Ω

F [Xθ(β),β] dβ − zθ = θk + (1− θ)k′, (B.1c)
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for any 0 ≤ θ ≤ 1. To do so, we will rely on the following classical theorem about the range of

non-atomic vector measures:

Theorem 21 (Lyapunov’s convexity theorem [148]). Let v : B → Cn be a vector measure over the

measurable space (Ω,B). If v is non-atomic, then its range is convex, i.e., the set {v(A) : A ∈ B} is

a convex set.

To see how Theorem 21 allows us to construct the desired Xθ, start by defining a 2(p + 1) × 1

vector measure q over (Ω,B) such that for every set Z ∈ B we have

q(Z) =



∫
Z F [X(β),β] dβ

∫
Z F [X ′(β),β] dβ

∫
Z [F0 (X(β),β) + λ I (X(β) 6= 0)] dβ

∫
Z [F0 (X ′(β),β) + λ I (X ′(β) 6= 0)] dβ


. (B.2)

Notice that q is a proper vector measure, so that q(∅) = 0. Also, observe that evaluating q on the

whole space Ω yields

q(Ω) =



∫
Ω
F [X(β),β] dβ

∫
Ω
F [X ′(β),β] dβ

f0(X)

f0(X ′)


⇒ q(Ω) =



k + z

k′ + z′

f0(X)

f0(X ′)


. (B.3)

Finally, observe that since F0 and F do not contain Dirac deltas, they induce non-atomic measures.

Consequently, q is non-atomic.

To proceed, use Theorem 21 to find a set Tθ ∈ B such that

q(Tθ) = θq(Ω) + (1− θ)q(∅) = θq(Ω) (B.4)
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for θ ∈ [0, 1]. Since B is a σ-algebra, it holds that Ω \ Tθ ∈ B and by the additivity of measures we

get

q(Ω \ Tθ) = (1− θ)q(Ω). (B.5)

From (B.4) and (B.5), construct Xθ as

Xθ(β) =


X(β), for β ∈ Tθ

X ′(β), for β ∈ Ω \ Tθ
(B.6)

and let zθ = θz + (1 − θ)z′. We claim that this pair satisfies (B.1). It is straightforward from the

fact that X is decomposable and that P is a pointwise constraint, that Xθ ∈ X and Xθ(β) ∈ P a.e.

Let us start by showing that Xθ satisfies (B.1a). Evaluating f0 at Xθ yields

f0(Xθ) =

∫
Ω

[F0 (Xθ(β),β) + λ I (Xθ(β) 6= 0)] dβ

=

∫
Tθ

[F0 (X(β),β) + λ I (X(β) 6= 0)] dβ

+

∫
Ω\Tθ

[F0 (X ′(β),β) + λ I (X ′(β) 6= 0)] dβ.

From (B.2), we can write these terms using the last two rows of the vector measure q as

f0(Xθ) = [p(Tθ)]2p+1 + [p(Ω \ Tθ)]2p+2 . (B.7)

Then, using (B.4) and (B.5) we obtain that

f0(Xθ) = [θp(Ω)]2p+1 + [(1− θ)p(Ω)]2p+2

= θf0(X) + (1− θ)f0(X ′) ≤ θc+ (1− θ)c′.

To proceed, notice that since the gi are convex functions, (B.1b) obtains immediately. Explicitly,

gi(zθ) = gi(θz + (1− θ)z′) ≤ θgi(z) + (1− θ)gi(z′)

≤ [θu+ (1− θ)u′]i.
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Finally, we can use the same machinery as in (B.7) to obtain (B.1c). Indeed,

∫
Ω

F [Xθ(β),β] dβ =

∫
Tθ
F [X(β),β] dβ

+

∫
Ω\Tθ

F [X ′(β),β] dβ

= [q(Tθ)]S1 + [q(Ω \ Tθ)]S2
= [θq(Ω)]S1 + [(1− θ)q(Ω)]S2

= θk + (1− θ)k′ + zθ,

where S1 = {1, . . . , p} and S2 = {p + 1, . . . , 2p} select rows 1 through p and p + 1 through 2p,

respectively, of the vector measure q.

To conclude, since there exists a pair (Xθ, zθ) ∈ X ×Cp with Xθ(β) ∈ P a.e. and such that (B.1)

holds for any θ ∈ [0, 1] and (c,u,kR,kI), (c
′,u′,k′R,k

′
I) ∈ C, the set C is convex. Moreover, the

strictly feasible pair (X ′, z′) from the hypotheses implies that C cannot be empty. �

B.1.2 A step-by-step guide to solving SFPs

Start with a problem of the form (P-SFP). Initialize µ0 and νi,0 > 0; compute dz,0 = minz
∑
i νi,0gi(z)−

Re[µH0 z] and let z0 be its minimizer; evaluate

γo0(β) = min
x∈P

F0(x,β) + Re
[
µH0 F (x,β)

]
(B.8)

and let X̄0(β) be its minimizer; define the initial solution support to be S0 = {β ∈ Ω : γo0(β) <

γ(0)(µ0,β)− λ} for γ(0) defined as in Proposition 4; obtain the primal solution

X0(β) =


X̄0(β), β ∈ S0

0, otherwise
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and evaluate the initial dual objective using

d0 = dz,0 + I
[
(λ+ γo0(β))× I (β ∈ S0)

]
+ I

[
γ(0)(µ0,β)× I (β ∈ Ω \ S0)

]
,

where I denotes a numerical integration method. Then, proceed using one of the following solvers.

Approximate supergradient ascent. Consider a numerical integration procedure represented

by I(·) such that ∣∣∣∣I(f)−
∫

Ω

f(β)dβ

∣∣∣∣ ≤ δ, (B.9)

for δ > 0 and assume that I applies element-wise to vectors. Let X?
0 = X0 and for t = 1, . . . , T :

i) compute the supergradients

pµ,t−1 = I
[
F (Xt−1(β),β)

]
− zt−1

pνi,t−1 = gi [zt−1] ,

ii) update the dual variables

µt = µt−1 + ηtpµ,t−1

νi,t = [νi,t−1 + ηtgi (zt−1)]+ ,

iii) evaluate dz,t = minz
∑
i νi,tgi(z)− Re[µHt z] and let zt be its minimizer,

iv) evaluate

γot (β) = min
x∈P

F0(x,β) + Re
[
µHt F (x,β)

]
,

and let X̄t(β) be its minimizers,

176



v) evaluate the dual function

dt = dz,t + I
[
(λ+ γot (β))× I (β ∈ St)

]
+ I

[
γ(0)(µt,β)× I (β ∈ Ω \ St)

]
,

for St = {β ∈ Ω : γot (β) < γ(0)(µt,β)− λ}, and

vi) if dt > dt−1 + 2δ, obtain the primal solution

Xt(β) =


X̄t(β), β ∈ St

0, otherwise

and let X?
t = Xt. Otherwise, X?

t = X?
t−1.

The solution of (P-SFP) is given by X?
T .

Stochastic supergradient ascent. Choose the mini-batch size N ≥ 1 and initialize the solution

set X0 = ∅. For t = 1, . . . , T :

i) draw {βj}, j = 1, . . . , N , uniformly at random from Ω and compute the stochastic supergra-

dients

pµ,t−1 =
1

N

N∑
j=1

F [Xt−1(βj),β] dβ − zt−1

pνi,t−1 = gi [zt−1] ,

ii) update the dual variables

µt = µt−1 + ηtpµ,t−1

νi,t = [νi,t−1 + ηtgi (zt−1)]+ ,

iii) evaluate dz,t = minz
∑
i νi,tgi(z)− Re[µHt z] and let zt be its minimizer,
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iv) evaluate

γot (β) = min
x∈P

F0(x,β) + Re
[
µHt F (x,β)

]
and let X̄t(β) be its minimizer,

v) evaluate the dual function

dt = dz,t +

∫
St

[λ+ γot (β)] dβ +

∫
Ω\St

γ(0)(µt,β)dβ,

for St = {β ∈ Ω : γot (β) < γ(0)(µt,β)− λ}, and

vi) if dt > dt−1, obtain the primal solution

Xt−1(β) =


X̄t−1(β), β ∈ St−1

0, otherwise

and let Xt = Xt−1 ∪Xt. Otherwise, Xt = Xt−1.

The final solution is obtained by averaging the elements of XT , i.e.,

X?(β) =
1

|XT |
∑
X∈XT

X(β).

B.1.3 Proof of Proposition 7

We actually prove the following quantitative version of Proposition 7:

Proposition 23. Under the conditions of Proposition 7, |P ? − P ?δ | ≤ cδ + o(δ2) for

c =
F̄0 + λm(Ω)

αε
max

(∣∣∣∣∣∑
i

gi(−α1)

∣∣∣∣∣,
∣∣∣∣∣∑
i

gi(α1)

∣∣∣∣∣
)

, (B.10)

where P ? is the optimal value of (P-SFP) and P ?δ is the value of the solution obtained by Algorithm 2

when evaluating the integral in the supergradient (6.23a) with approximation error 0 < δ � 1 [as

in (B.9)].
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Proof. Start by noticing that evaluating the integral in (6.23a) numerically introduces an error term

in the supergradient. Explicitly, (6.23a) becomes

g̃µ(µ′, ν′i) =

∫
Ω

F [Xd(µ
′,β),β] dβ − zd(µ′, ν′i) + δ, (B.11)

where δ is an error vector whose magnitude is bounded by δ, i.e., |[δ]i| < δ. Then, observe that (B.11)

is the supergradient of the dual function of a perturbed version of (P-SFP), namely

minimize

∫
Ω

F0 [X(β),β] dβ + λ ‖X‖L0

subject to gi(z) ≤ 0

z =

∫
Ω

F [X(β),β] dβ + δ

X ∈ X .

(PXIX)

Hence, the value P ?δ of the solution obtained by the using approximate supergradient in Algorithm 2

is the optimal value of (PXIX). We can therefore use perturbation theory to relate the values of P ?δ

and P ?.

Formally, using the fact that the perturbation function of (P-SFP) is differentiable around

zero [hypothesis (i)], we obtain the Taylor expansion P ?δ = P ? − µ?T δ + o(‖δ‖22), where o(t) is

a term such that o(t)/t → 0 as t → 0 [130]. Hence, using the triangle inequality and the upper

bound on the elements of |δ|, we can write

|P ? − P ?δ | =
∣∣∣µ?T δ + o(‖δ‖22)

∣∣∣ ≤ ∣∣∣µ?T1∣∣∣δ + o(δ2). (B.12)

It suffices now to bound
∣∣∣µ?T1∣∣∣, which we do in two steps.

First, we obtain an upper bound on µ?T1 by recalling from (6.4) that the dual function d is the

value of a minimization problem. Thus, taking the suboptimal X ≡ 0 and z = α1, α > 0, under

hypothesis (ii) yields

d(µ?, ν?i ) ≤
∑
i

ν?i gi(α1)− αµ?T1.
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From Theorem 5, d(µ?, ν?i ) = P ? ≥ 0, which gives

µ?T1 ≤
∑
i ν
?
i gi(α1)

α
. (B.13)

Proceeding in a similar manner, we derive a lower bound by taking X ≡ 0 and z = −α1 in (6.4),

leading to

µ?T1 ≥ −
∑
i ν
?
i gi(−α1)

α
. (B.14)

Using the Cauchy-Schwartz inequality, the bounds in (B.13) and (B.14) yield

∣∣∣µ?T1∣∣∣ ≤ ‖ν?‖1
α

max

(∣∣∣∣∣∑
i

gi(−α1)

∣∣∣∣∣,
∣∣∣∣∣∑
i

gi(α1)

∣∣∣∣∣
)

, (B.15)

where ν? = [ν?i ] is a vector that collects the optimal dual variables ν?i . Note that since ν?i ≥ 0, we

have that |∑i ν
?
i | = ‖ν?‖1. All that remains to evaluate (B.15) is to bound ‖ν?‖1 using a classical

result from optimization theory.

Explicitly, consider the strictly feasible pair (X†, z†) from hypothesis (iv) and recall that gi(z
†) ≤

−ε for some ε > 0. Plugging these suboptimal values in (6.4) yields

d(µ?, ν?i ) ≤
∫

Ω

F0

[
X†(β),β

]
dβ + λ

∥∥X†∥∥
L0
−
∑
i

ν?i ε. (B.16)

Recall that ν?i ≥ 0, ε > 0, and d(µ?, ν?i ) ≥ 0 (from Theorem 5). Thus, using the fact that
∥∥X†∥∥

L0
≤

m(Ω), we readily obtain from (B.16) that

‖ν?‖1 ≤
∫

Ω
F0

[
X†(β),β

]
dβ + λm(Ω)

ε
. (B.17)

Combining (B.15) and (B.17) in (B.12) we obtain that |P ? − P ?δ | ≤ cδ + o(δ2) for c as in (B.10).

Furthermore, hypotheses (iii) and (iv), together with m(Ω) <∞ (since Ω is compact), imply that c <

∞, so that indeed |P ? − P ?δ | ≤ O(δ). �
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B.2 Chapter 7: Combinatorial constraints

B.2.1 Proof of Lemma 5

Start by simplifying ∆ut(X ) = t(X )− t(X ∪{u}) using the matrix inversion lemma. To do so, write

Y (X ∪ {u}) = [R(X ) +Mu]
−1

, (B.18)

letting once again R(X ) = M∅ +
∑
u∈XMu. Since R(X ) � 0, but the matrices Mu need not be

invertible, we use an alternative form of the matrix inversion lemma [235] to get

Y (X ∪ {u}) = Y (X )− Y (X )MuY (X ∪ {u}) . (B.19)

where we used (B.18) to write Y (X ) = R(X )−1. Using (B.19) and the linearity of the trace [178],

we can write ∆ut(X ) as

∆ut(X ) = Tr [Y (X )MuY (X ∪ {u})] . (B.20)

To proceed, let M̃u = Mu + εI � 0 for ε > 0 and define the perturbed version of (B.20) as

∆̃ut(X ) = Tr

[
Y (X )M̃u

(
R(X ) + M̃u

)−1
]

. (B.21)

Notice that ∆̃ut→ ∆ut as ε→ 0. Using the invertibility of M̃u and R(X ), we obtain

∆̃ut(X ) = Tr

[
Y (X )

(
Y (X ) + M̃

−1

u

)−1

Y (X )

]
.

Since Y (X ) � 0, its square-root Y (X )1/2 is well-defined and unique [178]. We can therefore use the

circular commutation property of the trace to get

∆̃ut(X ) = Tr [Y (X )Z(X , u)] , (B.22)

with Z(X , u) = Y (X )1/2
[
Y (X ) + M̃

−1

u

]−1

Y (X )1/2. Since both matrices in (B.22) are positive
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definite, we can use the bound from [236] to get

λmin [Y (X )] Tr (Z) ≤ ∆̃ut(X ) ≤ λmax [Y (X )] Tr (Z) .

Reversing the manipulations used to obtain (B.22) yields

λmin [Y (X )] Tr

[
M̃u

(
Y (X ) + M̃u

)−1
]
≤ ∆̃ut(X ) ≤ λmax

[
Y (X )−1

]
Tr

[
M̃u

(
Y (X ) + M̃u

)−1
]

.

The result in (7.17) is obtained by continuity as ε→ 0. �

B.2.2 Proof of Lemma 7

The proof follows a homotopy argument, i.e., we define a continuous map between ∆ue(A) and ∆ue(B)

and bound its derivative using spectral bounds on the sum of Hermitian matrices. The inequality

in (7.21) then follows from the fundamental theorem of calculus.

Start by defining the homotopy, with t ∈ [0, 1],

hAB(t) =
∥∥Z(t)−1

∥∥− ∥∥∥(Z(t) +Mu)
−1
∥∥∥ (B.23)

for A ⊂ B ⊆ V, Z(t) = R(A) + t [R(B)−R(A)], and R(X ) = M∅ +
∑
u∈XMu. Note that

since Y (X ) = R(X )−1, we have hAB(0) = ∆ue(A) and hAB(1) = ∆ue(B). If ḣAB(t) is the derivative

of hAB with respect to t, it therefore holds that

∆ue(B) = ∆ue(A) +

∫ 1

0

ḣAB(t)dt. (B.24)

Comparing (B.24) to the definition of ε in (7.11), we obtain

ε = max
A⊂B⊆V
u∈V\B

∫ 1

0

ḣAB(t)dt. (B.25)

We now proceed by evaluating ḣ. We omit the dependence on A and B for conciseness. First,
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recall from matrix analysis that for any X � 0 we have

d

dt

∥∥X(t)−1
∥∥ = q(t)T

[
d

dt
X(t)−1

]
q(t) = −q(t)TX(t)−1Ẋ(t)X(t)−1q(t), (B.26)

where q(t) is the eigenvector relative to the maximum eigenvalue of X(t). To obtain (B.26), we

used the fact that ‖X‖ = λmax(X) for X � 0 and d
dt λmax[X(t)] = q(t)T Ẋ(t)q(t). We then

used d
dtX(t)−1 = −X(t)−1Ẋ(t)X(t)−1 [179]. In view of (B.23) and (B.26), we obtain

ḣ(t) = w(t)T [Z(t) +Mu]
−1 [

R(B)−R(A)
]

[Z(t) +Mu]
−1
w(t)

− u(t)TZ(t)−1
[
R(B)−R(A)

]
Z(t)−1u(t),

(B.27)

where u(t) andw(t) are the eigenvectors relative to the maximum eigenvalues ofZ(t)−1 and [Z(t) +Mu]
−1

respectively.

We now proceed by finding a bound for ḣ in (B.27) that is independent of t. To do so, observe

thatR(B) � R(A), sinceA ⊆ B andR is monotone increasing (Lemma 4). By the Loewner ordering,

the second term in (B.27) is therefore non-positive. Thus, using Rayleigh’s spectral inequality and

the fact ‖w(t)‖ = 1 for all t yields

ḣ(t) ≤
∥∥∥(Z(t) +Mu

)−1
[R(B)−R(A)]

(
Z(t) +Mu

)−1
∥∥∥ .

Next, we once again use the fact that R(B) � R(A) to obtain Z(t) � Z(0) = R(A), effectively

removing the dependence on t. Using Cauchy-Schwartz then yields

ḣ(t) ≤ λmax

[
(R(A) +Mu)

−2
]
λmax [R(B)−R(A)] ,

which can be used in (B.25) to get

ε ≤ max
A⊆B⊆V
u∈V\B

λmax [R(B)−R(A)]

λmin [R(A) +Mu]
2 , (B.28)

The inequality in (7.21) can then be obtained by using ‖R(B)−R(A)‖ ≤ λmax(
∑
u∈VMu) and

λmin [R(A) +Mu] ≥ λmin [M∅]. �
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B.2.3 Proof of Theorem 8

Since f is monotone decreasing, it holds for every set Xt that

f(X ?) ≥ f(X ? ∪ Xt)

= f(Xt)−
s∑
i=1

[f(Ti−1)− f(Ti−1 ∪ v?i )] , (B.29)

where T0 = Xt, Ti = Xt ∪ {v?1 , . . . , v?i }, i = 1, . . . , s, and v?i is the i-th element of X ?. Notice that

this holds regardless of the order in which the v?i are taken. Since f is α-supermodular and Xt ⊆ Ti
for all i, the incremental gains in (B.29) can be bounded using (7.2) to get

f(X ?) ≥ f(Xt)− α−1
s∑
i=1

[f(Xt)− f(Xt ∪ v?i )] . (B.30)

To proceed, we use the fact that Xt+1 = Xt ∪ {u} is constructed by the greedy procedure in Algo-

rithm 3 so as to maximize the incremental gains in (B.30). It therefore holds that

f(X ?) ≥ f(Xt)− α−1s [f(Xt)− f(Xt+1)] . (B.31)

By adding and subtracting f(X ?) in the brackets of (B.31), (B.31) yields a recursion for the distance

to the optimal value δt = f(X ?)− f(Xt) given by

δt ≥ α−1s [δt − δt+1]⇒ δt+1 ≥
(

1− 1

α−1s

)
δt.

Note that since f is non-positive, δt ≤ 0 for all t by the optimality of X ?.

The expression in (7.22) yields directly from this recursion by noticing that since f is normalized,

we have that δ0 = f(X ?) − f(∅) = f(X ?). Immediately, since Algorithm 3 is used for r iterations,

we obtain

f(X ?)− f(Xr) ≥
(

1− α

s

)r
f(X ?). (B.32)

Using the fact that 1− x ≤ e−x, the expression in (B.32) can be rearranged into (7.22). �
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B.3 Proof of Theorem 9

Using the assumption that f is monotone decreasing, we write

f(X ?) ≥ f(X ? ∪ Xt)

= f(Xt)−
s∑
i=1

[f(Ti−1)− f(Ti−1 ∪ {v?i })] , (B.33)

where again T0 = Xt, Ti = Xt ∪ {v?1 , . . . , v?i }, for i = 1, . . . , s, and v?i is the i-th element of X ?.

Observe that the order in which the v?i occur in the telescopic sum is irrelevant. Since f is ε-

supermodular and Xt ⊆ Ti for all i, (7.10) can be used to bound the incremental gains in (B.33).

Explicitly,

f(X ?) ≥ f(Xt)−
s∑
i=1

[f(Xt)− f(Xt ∪ {v?i }) + ε] .

Since Xt+1 = Xt ∪ {u} is constructed by Algorithm 3 so as to minimize f(Xt+1), it holds that

f(X ?) ≥ f(Xt)− s [f(Xt)− f(Xt+1) + ε] . (B.34)

Finally, a recursion for the optimality gap δ′t = f(Xt)− f(X ?) is obtained from (B.34) by adding

and subtracting f(X ?) in the brakets. Explicitly,

δ′t ≤ s
(
δ′t − δ′t+1 + ε

)
⇒ δ′t+1 ≤

(
1− 1

s

)
δ′t + ε. (B.35)

Notice that since f is non-positive, δ′t ≥ 0 for all j due to the optimality of X ?. The solution

of (B.35) after r steps is

δ′r ≤
(

1− 1

s

)r
δ′0 + ε

r−1∑
j=0

(
1− 1

s

)j
(B.36)

Evaluating the geometric series in (B.36) yields

δ′r ≤
(

1− 1

s

)r
δ′0 + s

[
1−

(
1− 1

s

)r]
ε
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and under the assumption that f is normalized, i.e., for δ′0 = f(∅)−f(X ?) = −f(X ?) ≥ 0, we obtain

f(Xr) ≤
[
1−

(
1− 1

s

)r]
[f(X ?) + s · ε] .

Using once again the fact that 1− x ≤ e−x yields (7.23). �

B.3.1 Proof of Theorem 10

This proof follows similarly to the one for the cardinality constraint (uniform matroid) problem,

but relying on the exchange property of matroids through Proposition 12. It may be informative to

recall the proof technique in that simpler case first, e.g., by referring to [37, Thm. 1].

Let |X ?| = r. Partition the optimal solution in (P-MTRD) such that X ? =
⋃br/Pc
j=0 X ?j ,

∣∣X ?j ∣∣ ≤ P ,

and

Xt ∪ {x?} ∈ I for x? ∈ X ?t for all t = 0, . . . ,
⌊ r
P

⌋
. (B.37)

Observe that such a partition exists due to the matroid exchange property from Proposition 12. Fix

an arbitrary enumeration of each partition X ?t = {x?t1, . . . , x?tp}. The following proof is independent

of the specific enumeration.

Use the fact that f is monotone decreasing to write

f(X ?) ≥ f(XT ∪ X ?) = f(XT )−
br/Pc∑
t=0

|X?t |∑
j=1

∆x?tj
f(T j−1

t )

 , (B.38)

where the set T jt contains the greedy solution XT , the elements of all partitions X ?i up to t− 1, and

the first j elements of partition X ?t . They can be defined recursively as T 0
0 = XT , T 0

t = T 0
t−1 ∪ X ?t ,

and T jt = T 0
t−1 ∪ {x?t1, . . . , x?tj}. Then, we can bound (B.38) by distinguishing two cases: (i) if x?tj /∈

T j−1
t , the α-supermodularity of f yields

∆x?tj
f
(
T j−1
t

)
≤ α−1∆x?tj

f (Xt) , (B.39)

since Xt ⊆ XT ⊆ T jt for all t and j; (ii) if x?tj ∈ T j−1
t , then ∆x?tj

f
(
T j−1
t

)
= 0 and (B.39) holds
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trivially. Using (B.39) in (B.38) gives

f(X ?) ≥ f(XT )− α−1

br/Pc∑
t=0

|X?t |∑
j=1

∆x?tj
f(Xt)

 . (B.40)

The bound in (B.40) can be simplified using the greedy nature of Algorithm (4). Indeed, observe

that (B.37) implies that ∆x?tj
f(Xt) ≤ ∆gtf (Xt) for gt is the t-th element selected as in step 3.

Hence,

f(X ?) ≥ f(XT )− α−1

br/Pc∑
t=0

|X?t |∑
j=1

∆gtf(Xt)

 . (B.41)

Using the fact that the increments are always non-negative [see (7.20)] and since |X ?t | ≤ P , (B.41)

reduces to

f(X ?) ≥ f(XT )− α−1P

br/Pc∑
t=0

∆gtf(Xt). (B.42)

To conclude, observe from (7.20) that f(XT ) ≤ f(Xt) = −∑t−1
t=0 ∆gtf(Xt) and recall from Proposi-

tion 12 that T ≥ r/P . Thus,

f(X ?) ≥ (1 + α−1P )f(XT ),

which can be rearranged as in (7.27). �

B.3.2 Proof of Theorem 11

Since f is monotone decreasing, it holds for every Xt that

f(X ?) ≥ f(D? ∪ Xt) = f(Xt) +

s−1∑
k=0

f(Tk ∪ {e?k})− f(Tk), (B.43)

where Tk = Xt ∪{e?0, . . . , e?k−1}, with T0 = Xt, and e?k is the k-th element of X ?. The equality comes

from expressing the set function as a telescopic sum. Since f is α-supermodular and Xt ⊆ Tk for

all k, the incremental gains in (B.43) can be bounded using (7.28) to get

f(X ?) ≥ f(Xt) +

s−1∑
k=0

α(t, t+ k)−1 [f(Xt ∪ {e?k})− f(Xt)] .
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Given that Xt+1 is constructed from Xt so as to minimize f(Xt+1) [as per step 3 of Algorithm (3)],

it holds that

f(X ?) ≥ f(Xt) + [f(Xt+1)− f(Xt)]
s−1∑
k=0

α(t, t+ k)−1. (B.44)

A recursion is obtained by taking δt = f(Xt)− f(X ?), so that (B.44) can be written as

δt ≤ α′(t) (δt − δt+1)⇒ δt+1 ≤
(

1− 1

α′(t)

)
δt,

with α′(t) =
∑s−1
k=0 α(t, t + k)−1. Considering that f is normalized, δ0 = −f(X ?) and the solution

of this recursion is

f(Xr) ≤
[

1−
r−1∏
t=0

(
1− 1

α′(t)

)]
f(X ?).

Since ᾱ ≤ α(t, t + k) for t < r and k < s, it holds that α′(t) ≤ ᾱ−1t. Then, using the fact

that 1− x ≤ e−x yields (7.29). �

B.3.3 Proof of Theorem 12

Given that f is monotone decreasing,

f(X ?) ≥ f(D? ∪ Xt) = f(Xt) +

s−1∑
k=0

f(Tk ∪ {e?k})− f(Tk), (B.45)

where Tk = Xt ∪ {e?0, . . . , e?k−1}, with T0 = Xt, and e?k is the k-th experiment in D?. Since f is ε-

supermodular and Xt ⊆ Tk for all k, (7.30) can be used to bound the incremental gains in (B.45).

Explicitly,

f(X ?) ≥ f(Xt) +

s−1∑
k=0

[f(Xt ∪ {e?k})− f(Xt) + ε(t, t+ k)] .

Since Xt+1 is chosen greedily to minimize f(Xt+1) [see step 3 of Algorithm (3)], it holds that

f(X ?) ≥ f(Xt) + s [f(Xt+1)− f(Xt)] +

s−1∑
k=0

ε(t, t+ k). (B.46)
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The following recursion is obtained from (B.46) by letting δt = f(Xt)− f(X ?):

δt ≤ s (δt − δt+1)− ε′(t)⇒ δt+1 ≤
(

1− 1

s

)
δt +

ε′(t)

s

with ε′(t) =
∑s−1
k=0 ε(t, t+ k). Since f is normalized, δ0 = −f(X ?), and solving this recursion yields

f(Xr) ≤
[
1−

(
1− 1

s

)r]
f(X ?) +

1

s

r−1∑
t=0

ε′(t)

(
1− 1

s

)r−1−t

.

Using the fact that ε̄ ≥ ε(t, t+ k) for t < r and k < s then gives

f(Xr) ≤
[
1−

(
1− 1

s

)r]
f(X ?) + ε̄

r−1∑
t=0

(
1− 1

s

)t
,

from which (7.31) obtains using the closed form of the geometric series and 1− x ≤ e−x. �

B.3.4 Proof of Proposition 14

Part (i) is a corollary of Lemma 4. To prove part (ii), let Z(A) = Λ−1 +
∑
i∈A λ

−1
w,iviv

H
i so that

the increment in (7.6) reads

f(A ∪ {u})− f(A) = Tr
[
W
(
Z(A) + λ−1

w,uvuv
H
u

)−1 −WZ(A)−1
]

,

which using the matrix inversion lemma simplifies to

f(A ∪ {u})− f(A) = −Tr

[
W
Z(A)−1vuv

H
u Z(A)−1

λ−1
w,u + vHu Z(A)−1vu

]
= −v

H
u Z(A)−1WZ(A)−1vu

λ−1
w,u + vHu Z(A)−1vu

.

Using this expression, the expression for α in (7.6) becomes

α = min
A⊆B⊆V
u/∈B

λ−1
w,u + vHu Z(B)−1vu

λ−1
w,u + vHu Z(A)−1vu

vHu Z(A)−1WZ(A)−1vu
vHu Z(B)−1WZ(B)−1vu

. (B.47)

We now bound (B.47) by noticing that for any set X ⊆ V

µmin ≤ λmin

[
Λ−1

]
≤ λmin [Z(X )] ≤ λmax [Z(X )] ≤ λmax

[
Λ−1 + V H

K Λ−1
w VK

]
≤ µmax.
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Thus, using the Rayleigh quotient inequalities leads to

α ≥ λ−1
w,u + ‖vu‖22 λmax [Z(B)]

−1

λ−1
w,u + ‖vu‖22 λmin [Z(A)]

−1

λmin

[
Z(A)−1WZ(A)−1

]
λmax [Z(B)−1WZ(B)−1]

,

which can be simplified using the singular value bounds in [237, Thm. 9.H.1, p. 338] to yield

α ≥ λ−1
w,u + ‖vu‖22 µ−1

max

λ−1
w,u + ‖vu‖22 µ−1

min

µ−2
max

κ2(W )µ−2
min

, α′, (B.48)

where again κ2(W ) = λmax(W )/λmin(W ) is the 2-norm condition number of W . To obtain the

expression in (7.45), notice that (B.48) is decreasing with respect to ‖vu‖22 and λ−1
w,u. Indeed,

∂α′

∂ ‖vu‖22
=

µ−2
max

κ2(W )µ−2
min

λ−1
w,u

(
µ−1

max − µ−1
min

)(
λ−1
w,u + ‖vu‖22 µ−1

min

)2 ≤ 0

∂α′

∂λw,u
=

µ−2
max

κ2(W )µ−2
min

λ−2
w,u ‖vu‖22

(
µ−1

max − µ−1
min

)(
λ−1
w,u + ‖vu‖22 µ−1

min

)2 ≤ 0

are both non-positive because 0 < µmin ≤ µmax and κ2(W ) ≥ 1 [178]. We then use the fact

that ‖vu‖22 ≤ 1 to get (7.45). �

B.3.5 Proof of Proposition 15

This result follows directly from the classical dynamic programming argument for the LQG by

considering only the inputs in S (see, e.g., [238]). We display the derivations here for ease of

reference. Explicitly, we proceed by backward induction, first defining the cost-to-go function

Vj(S) = min
Uj(S)

E

[
N−1∑
k=j

(
xTkQkxk +

∑
i∈S∩Vk

ri,ku
2
i,k

)
+ xTNQNxN

]
, (B.49)

where Uj(S) = {ui,k|i ∈ S ∩ Vk}N−1
k=j is the subsequence of control actions from time j to the end

of the control horizon. Notice due to the additivity of (B.49), it admits the equivalent recursive

definition

Vj(S) = min
Uj(S)

E

[
Vj+1(S) + xTj Qjxj +

∑
i∈S∩Vj

ri,ju
2
i,j

]
. (B.50)
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To proceed, we postulate that (B.49) has the form

Vj(S) = xTj Pj(S)xj + qj , (B.51)

for some Pj(S) � 0 and qj > 0 and show that this is indeed the case by recursion. To do so, observe

that for the base case j = N , (B.49) becomes VN (S) = xTNQNxN and (B.51) holds trivially by

taking PN (S) = QN � 0 and qN = 0. Now, assume that (B.51) holds for j + 1. Using the system

dynamics (7.55) in (B.51), we can expand Vj(S) to read

Vj(S) = min
Uj(S)

E

[
xTj
(
Qj +AT

j Pj+1Aj

)
xj +

 ∑
i∈S∩Vj

bi,jui,j

T

Pj+1(S)

 ∑
i∈S∩Vj

bi,jui,j


+ 2xTj A

T
j Pj+1(S)

 ∑
i∈S∩Vj

bi,jui,j

+ 2wT
j Pj+1(S)

 ∑
i∈S∩Vj

bi,jui,j


+ 2xTj A

T
j Pj+1(S)wj +wT

j Pj+1(S)wj +
∑

i∈S∩Vj

ri,ju
2
i,j + qj+1

]
. (B.52)

Recall that the expected value is taken over the process noises noise wk and the initial state x0.

Note that the terms linear in wj vanish since it is zero-mean and that (B.52) is actually a quadratic

optimization problem in the {ui,j}. This is straightforward to see by rewriting (B.52) in matrix

form:

Vj(S) = min
uj

uTj
(
Rj +BT

j Pj+1(S)Bj

)
uj + 2xTj A

T
j Pj+1(S)Bjuj

+ xTj
(
Qj +AT

j Pj+1Aj

)
xj + Tr (Pj+1(S)Wj) + qj+1,

(B.53)

where uj = [ui,j ]i∈S∩Vj is a |S ∩ Vj | × 1 vector that collects the control actions, Bj = [bi,j ]i∈S∩Vj is

an n×|S ∩ Vj | matrix whose columns contain the input vectors corresponding to each control action,

Rj = diag(ri,j), and we used the that E
[
wT
j Pj+1(S)wj

]
= Tr (Pj+1(S)Wj). Observe that (B.53)

is classical LQR problem, up to constant terms [238]. Its minimum is then of the form (B.51) with

Pj(S) = Qj +AT
j

P−1
j+1(S) +

∑
i∈S∩Vj

r−1
i,j bi,jb

T
i,j

−1

Aj ,

and qj = Tr (Pj+1(S)Wj) + qj+1. Unrolling the recursion and using the fact that E[x0x
T
0 ] = Σ0
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yields the result in (7.57). �

B.3.6 Proof of Proposition 16

Start by defining

Jk(S) = Tr [Πk−1Pk(S)] (B.54)

with Π−1 = Σ0 and Πk = Wk for k = 0, . . . , N − 2 and from (7.57), notice that the objective J

of (PXIII) can be written as

J(S) =

N−1∑
k=0

Jk(S) + Tr [WN−1QN ]− V ?(∅). (B.55)

Hence, using the non-negative affine combination property in Proposition 3, we can ignore the terms

constant in S and lower bound the approximate supermodularity of J in terms of the approximate

supermodularity of its components. Explicitly, if Jk in (B.54) is αk-supermodular, then J is min(αk)-

supermodular.

We can further reduce the problem by using (7.58) to get

Jk(S) = Tr

Hk

(
P−1
k+1(S) +

∑
i∈S∩Vk

r−1
i,kbi,kb

T
i,k

)−1
+ Tr [Πk−1Qk] . (B.56)

where we used the circular shift property of the trace to get Hk = AkΠk−1A
T
k . Thus, apply-

ing Lemma 3 again, we can ignore the constant term in (B.56) and restrict to studying the α-

supermodularity of

J̄k(S) = Tr

Hk

(
P−1
k+1(S) +

∑
i∈S∩Vk

r−1
i,kbi,kb

T
i,k

)−1
 . (B.57)

To proceed, notice that Hk � 0 since Πk � 0 and Ak is full rank for all k. Hence, it has a unique

positive definite square root H1/2 � 0 such that H = H1/2H1/2 [178]. Deploying the circular shift
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property of the trace and the invertibility of H1/2, (B.57) can be written as

J̄k(S) = Tr

(P̃−1

k+1(S) +
∑

i∈S∩Vk

r−1
i,k b̃i,kb̃

T

i,k

)−1
 . (B.58)

with P̃ k+1(S) = H
1/2
k Pk+1(S)H

1/2
k and b̃i,k = H

−1/2
k bi,k. The function J̄k in (B.58) has a form

that allows us to leverage Theorem 6.

Comparing (B.58) and (7.12), we can bound the αk for Jk as

αk ≥ min
S⊆V

λmin

[
P̃
−1

k+1(S)
]

λmax

[
P̃
−1

k+1(S) +
∑
i∈Vk r

−1
i,k b̃i,kb̃

T

i,k

] . (B.59)

Nevertheless, the bound in (B.59) depends on the choice of S. To obtain a closed-form expression,

we use the following proposition:

Proposition 24. For any S ⊆ V, it holds that

P̃ k(V) � P̃ k(S) � P̃ k(∅), for k = 1, . . . , N − 1. (B.60)

Using (B.60) in (B.59) and the fact that matrix inversion is operator antitone yields the bound

in (7.16). �

All that remains is therefore to prove Proposition 24.

Proof of Proposition 24. Start by noticing that since H1/2 is full rank, it is enough to establish (24)

directly for Pk. Indeed, A � B ⇔ xTAx ≤ xTBx for all x ∈ Rn and for M � 0, this is equivalent

to taking x = My for all y ∈ Rn.

We prove both inequalities by recursion. For the upper bound in (B.60), note from (7.58) that P̃ k

can be increased by using no actuators at instant k. Formally, for any choice of S ⊆ V,

Pk(S) = Qk +AT
k

(
P−1
k+1(S) +

∑
i∈S∩Vk

r−1
i,kbi,kb

T
i,k

)−1

Ak

� Qk +AT
kPk+1(S)Ak = Pk(S \ Vk).
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Additionally, if P̄ k+1 � Pk+1(S) for all S ⊆ V, it holds that

Pk(S) � Qk +AT
k P̄ k+1Ak , P̄ k. (B.61)

Starting from PN � QN , P̄N , we obtain that Pk is upper bounded by taking S = ∅, i.e., using no

actuators.

The lower bound is obtained in a similar fashion by using all possible actuators. Explicitly,

Pk(S) = Qk +AT
k

(
P−1
k+1(S) +

∑
i∈S∩Vk

r−1
i,kbi,kb

T
i,k

)−1

Ak

� Qk +AT
k

(
P−1
k+1(S) +

∑
i∈Vk

r−1
i,kbi,kb

T
i,k

)−1

Ak

= Pk(S ∪ Vk).

Moreover, if
¯
P k+1 � Pk+1(S) for all S ⊆ V, we have that

Pk(S) � Qk +AT
k

(
¯
P−1
k+1 +

∑
i∈Vk

r−1
i,kbi,kb

T
i,k

)−1

Ak ,
¯
P k. (B.62)

Starting from PN � QN ,
¯
PN yields the lower bound in (B.60). �

B.3.7 Proof of Proposition 17

Start by lifting the problem to make the proof more concise by defining the stacked quantities ỹD =

[ye]e∈D, an n× 1 vector, ÃD = [Ae]e∈D, an n× p matrix, ṽD = [ve]e∈D, an n× 1 vector, and R̃D =

blkdiag(Re)e∈D, an n× n block diagonal matrix, with n =
∑
j∈D nj . Since the design is fixed, the

dependence on D is omitted throughout the proof for clarity.

Note that all affine estimators of z can be written as ẑ = Lỹ + b, so that the problem reduces

to determining the optimal L? and b?. Using the model in (7.66), write Lỹ = L
(
Ãθ + ṽ

)
, so that
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the error covariance matrix of the estimator has the form

K = E
[
(Hθ −LÃθ −Lṽ − b)(Hθ −LÃθ −Lṽ − b)T | θ, R̃

]
= (H −LÃ)Rθ(H −LÃ)T +LR̃LT

+
[
(H −LÃ)θ̄ − b

] [
(H −LÃ)θ̄ − b

]T
,

where all terms linear in v̄ vanish since {ve,θ} are independent for all e ∈ E . It is ready that the

last term is minimized by taking

b? = (H −LÃ)θ̄.

Suffices now to minimize the sum of the first two terms.

To do so, note that for b = b?, we have K = (H − LÃ)Rθ(H − LÃ)T . Therefore, taking L =

L? + (L−L?) with

L? = H
(
R−1
θ + Ã

T
R̃
−1
Ã
)−1

Ã
T
R̃
−1

,

and expanding gives

K =
(
H −L?Ã

)
Rθ

(
H −L?Ã

)T
+L?R̃L?T

+ (L−L?)
(
ÃRθÃ

T
+ R̃

)
(L−L?)T

+ (L−L?)
[
L?R̄−

(
H −L?Ã

)
RθÃ

T
]T

+
[
L?R̃−

(
H −L?Ã

)
RθÃ

T
]

(L−L?)T

= K? + (L−L?)
(
ÃRθÃ

T
+ R̃

)
(L−L?)T , (B.63)

where the two last terms vanish and K? = (H − L?Ã)Rθ(H − L?Ã)T + L?R̃L?T . Clearly, the

minimum value of (B.63) is K?, attained for L = L?. Finally, ẑ = L?ỹ + b? and K? can be

unstacked and rearranged to yield (7.68) and (7.69). �
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B.3.8 Proof of Theorem 15

This proof relies on the fact that α depends only on rank-one updates of the covariance matrix.

Therefore, we can use the matrix inversion lemma to obtain a closed-form expression for the in-

crements required to evaluate (7.6). Spectral inequalities are then used to bound the increments

ratio.

Explicitly, start by expressing the error covariance matrix from (7.69) asK(D) = HY (D)−1HT ,

with Y (D) = R−1
θ +

∑
e∈DMe and define g(D) = Tr[K(D)]. Then, notice that α only depends on

the incremental gains ∆u(X ) = g(X )− g(X ∪ {u}). Indeed, we have from Definition 8 that

α(a, b) = min
A,B∈P(E)
A⊆B, u∈E
|A|=a, |B|=b

∆u(A)

∆u(B)
. (B.64)

Using the additivity of Y gives g(X ∪ {u}) = Tr
[
H (Y (X ) +Mu)

−1
HT

]
, which suggests that the

matrix inversion lemma can be used to obtain a simpler expression for ∆. However, although Y (X ) �

0 due to Rθ � 0, the matrices Mu need not be invertible. Thus, we use the inversion lemma version

from [235] to get

g(X ∪ {u}) = Tr
[
HY (X )−1HT −HY (X )−1Mu [Y (X ) +Mu]

−1
HT

]
.

Finally, the linearity of the trace operator implies

∆u(X ) = Tr
[
HY (X )−1Mu [Y (X ) +Mu]

−1
HT

]
. (B.65)

Our goal is now to explicitly lower bound (B.64) by exploiting the expression in (B.65) and

spectral bounds. We do so by using the following result:

Lemma 10. For all X ⊆ P(E) and u ∈ E, it holds that for ∆ as in (B.65)

λmin

[
HHT

]
λmin

[
Y (X )−1

]
Tr
[
Mu [Y (X ) +Mu]

−1
]
≤ ∆u(X ) ≤

≤ λmax

[
HHT

]
λmax

[
Y (X )−1

]
Tr
[
Mu [Y (X ) +Mu]

−1
]

. (B.66)
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Before proving Lemma 10, let us see how it leads to the desired result. Using (B.66) we can

bound (B.64) as in

α(a, b) ≥ min
A,B∈P(E)
A⊆B, u∈E
|A|=a, |B|=b

λmin

(
HHT

)
λmin

[
Y (A)−1

]
Tr
[
Mu [Y (A) +Mu]

−1
]

λmax (HHT )λmax [Y (B)−1] Tr
[
Mu [Y (B) +Mu]

−1
] .

Then, let κ(X) = σmax(X)/σmin(X) be the `2-norm condition number with respect to inversion,

where {σt(X)} are the singular values of X. Using the fact that λt(H
TH) = σ2

t (H) yields

α(a, b) ≥ κ(H)−2 min
A,B∈P(E)
A⊆B, u∈E
|A|=a, |B|=b

λmin [Y (B)]

λmax [Y (A)]
×

Tr
[
Mu [Y (A) +Mu]

−1
]

Tr
[
Mu [Y (B) +Mu]

−1
] . (B.67)

To proceed, recall from Lemma (4) that Y −1 is a decreasing set function, so that A ⊆ B ⇒

[Y (A) +Mu]
−1 � [Y (B) +Mu]

−1
. Since Mu � 0, the last term in (B.67) is lower bounded by one,

giving

α(a, b) ≥ κ(H)−2 min
A,B∈P(E)
A⊆B

|A|=a, |B|=b

λmin [Y (B)]

λmax [Y (A)]
, (B.68)

which no longer depends on u, i.e., on which experiment is added to the design. We now remove

the constraint A ⊆ B, which increases the feasible set and therefore reduces the value of the right-

hand side of (B.68). By also using the fact that λmin [Y (X )] ≥ λmin [Y (∅)] = λmin

[
R−1
θ

]
for

every X ∈ P(E), we can eliminate the dependence on B obtaining

α(a, b) ≥ κ(H)−2 min
|A|=a
|B|=b

λmin [Y (B)]

λmax [Y (A)]
≥ κ(H)−2 λmin

[
R−1
θ

]
max|A|=a λmax [Y (A)]

. (B.69)

Finally, the lower bound in (7.70) is obtained using Weyl’s inequality to get λmax [Y (A)] ≤ λmax

[
R−1
θ

]
+∑

e∈A λmax [Me] and letting
∑
e∈A λmax [Me] ≤ a`max.

Proof of Lemma 10. Start by defining the perturbed gain as

∆ε = Tr
[
HY (X )−1M̄u

(
Y (X ) + M̄u

)−1
HT

]
,
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for ε > 0, where M̄u = Mu + εI � 0. We omit the dependence on X and u for clarity. Note

that, ∆ε → ∆ as ε→ 0. Using the circular commutation property of the trace and the invertibility

of Y (X ) and M̄u, we obtain

∆ε = Tr
[
(HTH)Z

]
, (B.70)

where Z = Y (X )−1
(
Y (X )−1 + M̄

−1
i

)−1

Y (X )−1. Notice that (B.70) is a product of two PSD

matrices, so that we can use the bound from [236] to obtain

λmin(HTH) Tr(Z) ≤ ∆ε ≤ λmax(HTH) Tr(Z). (B.71)

Let us proceed by bounding Tr(Z). To do so, notice that Y (A)−1 � 0, its square-root Y (A)−1/2

is well-defined and unique [178]. We can therefore use the circular commutation property of the

trace to get

Tr(Z) = Tr

{
Y (X )−1

[
Y (X )−1/2

(
Y (X )−1 + M̄

−1
i

)−1

Y (X )−1/2

]}
. (B.72)

Since (B.72) depends again the product of PSD matrices, we can reapply the spectral bound

from [236] and obtain

λmin

[
Y (X )−1

]
Tr

[
Y (X )−1

(
Y (X )−1 + M̄

−1
i

)−1
]
≤ Tr(Z) ≤

≤ λmax

[
Y (X )−1

]
Tr

[
Y (X )−1

(
Y (X )−1 + M̄

−1
i

)−1
]

. (B.73)

Reversing the manipulations used to get to (B.70) and combining (B.71) and (B.73) finally yields

λmin(HTH)λmin

[
Y (X )−1

]
Tr
[
M̄u

[
Y (A) + M̄u

]−1
]
≤ ∆ε(X ) ≤

≤ λmax(HTH)λmax

[
Y (X )−1

]
Tr
[
M̄u

[
Y (X ) + M̄u

]−1
]

. (B.74)

The inequalities in (B.66) are obtained from (B.74) by continuity as ε→ 0. �
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B.3.9 Proof of Theorem 16

This proof follows from a homotopy argument, i.e., we define a continuous map between the incre-

ments at A and B in Definition 9 and bound its derivative. The inequality in (7.71) follows from

applying bounds on the spectrum of Hermitian matrices.

Let ∆u(X ) = λmax [K(X )]− λmax [K(X ∪ {u})] be the gain of adding u to X . Then, for A,B ∈

P(E), A ⊆ B, define the homotopy

hAB(t) = λmax

[
HZ(t)−1HT

]
− λmax

[
H (Z(t) +Mu)

−1
HT

]
(B.75)

with t ∈ [0, 1] and Z(t) = Y (A) + t [Y (B)− Y (A)]. Note that hAB(0) = ∆u(A) and hAB(1) =

∆u(B). Thus, if ḣ(t) is the derivative of h with respect to t, it is ready that ∆u(B) = ∆u(A) +∫ 1

0
ḣAB(t)dt. Using the definition of ε in (7.11) then yields

ε(a, b) = max
A,B∈P(E)
A⊆B, u∈E
|A|=a, |B|=b

∫ 1

0

ḣAB(t)dt. (B.76)

In the sequel, we proceed by upper bounding ḣ, thus getting the bound in (7.71). We omit the

dependence on A and B for conciseness. First, to find the derivative of (B.75), recall from matrix

analysis that d
dtX(t)−1 = −X(t)−1Ẋ(t)X(t)−1 and d

dt λmax[X(t)] = u(t)T d
dtẊ(t)u(t), with u(t)

the eigenvector relative to the maximum eigenvalue of X(t) [179]. Then,

d

dt
λmax[HZ(t)−1HT ] = u(t)T

[
d

dt
HZ(t)−1HT

]
u(t)

= −ũ(t)TZ(t)−1Ż(t)Z(t)−1ZT ũ(t)

where ũ(t) = HTu(t) and u(t) is the eigenvector for the maximum eigenvalue of HX(t)−1HT .

Thus,

ḣ(t) = w̃(t)T [Z(t) +Mu]
−1 [

Y (B)− Y (A)
]

[Z(t) +Mu]
−1
w̃(t)

− ṽ(t)TZ(t)−1
[
Y (B)− Y (A)

]
Z(t)−1ṽ(t),

(B.77)

where ṽ(t) = HTv(t), w̃(t) = HTw(t), and v(t) and w(t) are the eigenvectors relative to the max-
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imum eigenvalues of HZ(t)−1HT and H [Z(t) +Mu]
−1
HT respectively. To upper bound (B.77),

start by noticing that since Y (A) � Y (B), the second term in (B.77) is negative. Then, using the

Rayleigh’s inequality yields

ḣ(t) ≤ λmax

[(
Z(t) +Mu

)−1 (
Y (B)− Y (A)

) (
Z(t) +Mu

)−1
]
‖w̃(t)‖22 . (B.78)

We now find a bound for (B.78) that does not depend on t, so that we can apply (B.76). First,

given that w(t) is a unit-norm vector, ‖w̃(t)‖22 = w(t)THHTw(t) ≤ λmax(HHT ) = σ2
max(H),

where σmax(H) is the maximum singular value of H. Then, note that Z(t) � Z(0) = Y (A). Thus,

using the fact that forA,B � 0 it holds that λmax(ABA) = σ2
max(AB1/2) ≤ σ2

max(A)σ2
max(B1/2) =

λ2
max(A)λmax(B) yields

ḣ(t) ≤ σmax(H)2 λmin [Y (A) +Mu]
−2
λmax [Y (B)− Y (A)] ,

Thus, from (B.76),

ε(a, b) ≤ max
A,B∈P(E)
A⊆B, u∈E
|A|=a, |B|=b

σmax(H)2 λmax [Y (B)− Y (A)]

λmin [Y (A) +Mu]
2 , (B.79)

The inequality in (7.71) is obtained using λmax [Y (B)− Y (A)] ≤∑e∈B\A λmax(Me) ≤ (b− a)`max

for |A| = a and |B| = b and λmin [Y (A) +Mu] ≥ λmin

[
R−1
θ

]
. �

B.4 Chapter 8: Risk constraints

B.4.1 Proof of Lemma 6

We start with the objective of problem (P-RISK), for which it is obviously true that

E{‖x− φ(y)‖2} ≡ E
{
E
{
‖x‖22 − 2xTφ(y) + ‖φ(y)‖22|y

}}
, (B.80)
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since the expectation of ‖x− φ(y)‖2 always exists. Additionally, by invoking Cauchy-Schwarz twice,

we observe that

E
{
|xTφ(y)|

}
≤ E

{
‖x‖2‖φ(y)‖2

}
≡ E

{
E
{
‖x‖2|y

}
‖φ(y)‖2

}
≤
∥∥E{‖x‖2|y}∥∥L2

∥∥‖φ(y)‖2
∥∥
L2
, (B.81)

where
∥∥‖φ(y)‖2

∥∥
L2
<∞ ⇐⇒ φ(y) ∈ L2 by assumption, and Jensen implies that

∥∥E{‖x‖2|y}∥∥L2
≤
∥∥E{‖x‖2|y}∥∥L3

≤
(
E
{(

E
{
‖x‖32|y

})2·1/2})1/3
≤
(
E
{(

E
{
‖x‖32|y

})2})1/(2·3)

≤
∥∥E{‖x‖32|y}∥∥1/3

L2
<∞, (B.82)

as well. Then E
{
xTφ(y)

}
is finite, and it follows that

E{‖x− φ(y)‖2} ≡ E
{
‖φ(y)‖22 − 2(E [x|y])Tφ(y) + E

{
‖x‖22|y

}}
, (B.83)

as in the objective of (PXIV).

The constraint of (P-RISK) may be equivalently reexpressed in a similar fashion, although the

procedure is slightly more involved. Specifically, by definition of var
(
‖x− φ(y)‖2

∣∣ y), we may

initially expand as

(
‖x− φ(y)‖2 − E{‖x− φ(y)‖2 |y}

)2
≡ (‖x‖22 − E{‖x‖22|y})2 + 4φ(y)T (x− E [x | y])(x− E [x | y])Tφ(y)

− 4‖x‖22xTφ(y) + 4‖x‖22(E [x | y])Tφ(y)

+ 4E{‖x‖22|y}xTφ(y)− 4E{‖x‖22|y}(E [x | y])Tφ(y), (B.84)

where the first two terms of the right-hand side of (B.84) are nonnegative. Consequently, it suffices
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to concentrate on the respective last four dot product terms.

Using the same argument as in (B.81), in order to show that all these four terms have finite

expectations, it suffices to ensure that

∥∥E{‖‖x‖22x‖2|y}∥∥L2
≡
∥∥E{‖x‖32|y}∥∥L2

<∞, (B.85)

which is of course automatically true by Assumption 7, but also that

∥∥E{‖‖x‖22 E [x | y] ‖2|y}
∥∥
L2
≡
∥∥E{‖x‖22‖E [x | y] ‖2|y}

∥∥
L2

≡
∥∥‖E [x | y] ‖2E{‖x‖22|y}

∥∥
L2

<∞, (B.86)∥∥E{‖E{‖x‖22|y}x‖2|y}∥∥L2
≡
∥∥E{‖x‖2|y}E{‖x‖22|y}∥∥L2

<∞ and (B.87)∥∥E{‖E{‖x‖22|y}E [x | y] ‖2|y}
∥∥
L2
≡
∥∥‖E [x | y] ‖2E{‖x‖22|y}

∥∥
L2

(B.88)

<∞. (B.89)

Observe, though, that all three latter quantities are upper bounded by the quantity
∥∥E{‖x‖2|y}E{‖x‖22|y}∥∥L2

,

for which we may write (by Jensen)

∥∥E{‖x‖2|y}E{‖x‖22|y}∥∥2

L2
≡ E

{
(E{‖x‖2|y})2(E{‖x‖22|y})2

}
≤ E

{
E{‖x‖22|y}(E{‖x‖22|y})2

}
≡ E

{
(E{‖x‖22|y})3

}
≡ E

{
(E{‖x‖22|y})2·3/2}

≤ E
{

(E{‖x‖32|y})2
}
<∞, (B.90)

where the last line follows again by Assumption 7.

Given the discussion above, we may now take conditional expectations on (B.84), to obtain the

expression (note that all operations involving conditional expectations are technically allowed under
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our assumptions)

var
(
‖x− φ(y)‖2

∣∣ y)
≡ E

{(
‖x− φ(y)‖2 − E{‖x− φ(y)‖2 |y}

)2|y}
≡ Vy{‖x‖22}+ 4φ(y)TΣx|yφ(y)

− 4
(
E{‖x‖22x|y} − E{‖x‖22|y}E [x | y]

)T
φ(y). (B.91)

Taking expectations on both sides of (B.91) and rearranging terms gives the desired expression for

the constraint of the QCQP (PXIV). �

B.4.2 Proof of Theorem 18

Let us first evaluate the dual function d in (8.5). Define the extended real-valued, random function

as

r(x,y) ,
1

2
xT
(
I + 2µΣx|y

)
x

−
(
E [x|y] + µ

(
E
{
‖x‖22x|y

}
− E

{
‖x‖22|y

}
E [x | y]

))T
x. (B.92)

Observe that the quadratic term xT
(
I + 2µΣx|y

)
x is finite py-almost everywhere; indeed, for every

x ∈ Rd, it is true that

0 ≤ xTΣx|yx ≤ ‖x‖22λmax(Σx|y)

≤ ‖x‖22tr(Σx|y)

≡ ‖x‖22E
{
‖x− E [x | y] ‖22|y

}
≡ ‖x‖22

(
E
{
‖x‖22|y

}
− ‖E [x | y] ‖22

)
≤ ‖x‖22E

{
‖x‖22|y

}
, (B.93)
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where

0 ≤
(
E
{
‖x‖22

})3 ≤ (E{‖x‖32})2
≤ E

{(
E
{
‖x‖32|y

})2}
<∞ =⇒ E

{
‖x‖22|y

}
<∞, py − a.e. (B.94)

Therefore, due to our assumptions, the function r(·,y) is trivially continuous and finite on Rd up

to sets of py-measure zero, those being independent of each choice of x ∈ Rd, on which r(·,y) may

be arbitrarily defined. Consequently, r(·,y) has a real-valued version, and thus may be taken as

Carathéodory on Rd×Ω [227, p. 421]. Equivalently, r may also be taken as Carathéodory on Rd×Rk,

jointly measurable relative to the Borel σ-algebra B
(
Rd × Rk

)
.

Under the above considerations, and given that Assumptions 7 and 8 are in effect, we may drop

additive terms which do not depend on the decision φ(y) in (8.5), resulting in the equivalent problem

d = min
φ∈H

E[r(φ(y),y)] (PXX)

where expectation may be conveniently taken directly over the Borel probability space
(
Rk,B

(
Rk
)
, py
)
.

Note that (PXX) is uniformly lower bounded over L2, through the definition of the Lagrangian L,

and also that, trivially, there is at least one choice of φ(y) ∈ L2 such that E{r(φ(y),y)} < ∞, say

E{r(0,y)} ≡ 0, for φ ≡ 0.

Problem (PXX) may now be solved in closed form via application of the Interchangeability

Principle [227, Theorem 7.92], which is a fundamental result in variational optimization. To avoid

unnecessary generalities, we state it here for completeness adapted to our setting, as follows.

Theorem 22 (Interchangeability Principle [227]). Let f : Rd × Rk → R be Carathéodory, and fix

p ∈ [1,∞]. It is true that

inf
φ∈Lp

E
{
f(φ(y),y)

}
≡ E

{
infx∈Rd f(x,y)

}
, (B.95)

provided that the left-hand side of (B.95) is less that +∞. If, additionally, either of the sides of

204



(B.95) is not −∞, it is also true that

φ?(y) ∈ arg minφ∈Lp E
{
f(φ(y),y)

}
(B.96)

⇐⇒ φ?(y) ∈ arg minx∈Rd f(x,y), for py-almost all y, and φ? ∈ Lp. (B.97)

Let us apply Theorem 22 to the variational problem (PXX), for p ≡ 2. Then, the (PXX) may

be exchanged by the pointwise (over constants) quadratic problem

infx∈Rd r(x,y), (B.98)

whose unique solution is, for every µ ∈ R+ and for every value of y ∈ Rk,

φ?(y) = (I + 2µΣx|y)−1
(
E [x|y] + µ

(
E
{
‖x‖22x|y

}
− E

{
‖x‖22|y

}
E [x | y]

))
, (B.99)

which is precisely the expression claimed in Theorem 18, for a generic µ. In order to show that

(B.99) is a solution of problem (PXX) and, in turn, (8.5), we also have to verify that φ? ∈ L2.

We may write, by Cauchy-Schwarz (note that ‖(I + 2µΣx|y)−1‖2 ≤ 1), the triangle inequality, and

Jensen,

‖φ?(y)(µ)‖2 ≤ ‖E [x | y] + µ
(
E
{
‖x‖22x|y

}
− E

{
‖x‖22|y

}
E [x | y]

)
‖2

≤ ‖E [x | y] ‖2 + µ‖E
{
‖x‖22x|y

}
‖2 + µ‖E

{
‖x‖22|y

}
E [x | y] ‖2

≤ E{‖x‖2|y}+ µE
{
‖x‖32|y

}
+ µE

{
‖x‖22|y

}
E{‖x‖2|y}, (B.100)

and we are done, since we have already shown that all three terms in the right-hand side of (B.100)

are in L2.

The final step in the proof of Theorem 18 is to exploit strong duality of the QCQP (PXIV)

by invoking Theorem 17. Indeed, it follows that the optimal value of the primal problem (PXIV)
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coincides with that of the dual problem (PXV), which may be expressed as

sup
µ≥0

d(µ)

≡ sup
µ≥0

inf
φ∈H

L
(
φ(y), µ

)
≡ sup
µ≥0

{
1

2
E
{
‖x‖22

}
+

1

4
µE
{
Vy{‖x‖22}

}
+ E

{1

2
‖φ?(y)(µ)‖22 + µφ?(y)(µ)TΣx|yφ

?(y)(µ)

− (E [x|y])Tφ?(y)(µ)− µ
(
E
{
‖x‖22x|y

}
− E

{
‖x‖22|y

}
E [x | y]

)T
φ?(y)(µ)

}
− µε

4

}
≡ 1

2
E
{
‖x‖22

}
+ sup
µ≥0

{
1

4
µE
{
Vy{‖x‖22}

}
+ E

{1

2
φ?(y)(µ)T (I + 2µΣx|y)φ?(y)(µ)

−
(
E [x|y] + µ

(
E
{
‖x‖22x|y

}
− E

{
‖x‖22|y

}
E [x | y]

))T
φ?(y)(µ)

}
− µε

4

}
≡ 1

2
E
{
‖x‖22

}
+ sup
µ≥0

{
1

4
µE
{
Vy{‖x‖22}

}
+ E

{1

2
φ?(y)(µ)T (I + 2µΣx|y)φ?(y)(µ)− φ?(y)(µ)T (I + 2µΣx|y)φ?(y)(µ)

}
− µε

4

}
≡ 1

2
E
{
‖x‖22

}
+

1

4
sup
µ≥0

{
µE
{
Vy{‖x‖22}

}
− 2E

{
φ?(y)T (µ)(I + 2µΣx|y)φ?(y)(µ)

}
− µε

}
. (B.101)

Finally, let µ? ≥ 0 be a maximizer of d over R+ such that D?
RISK ≡ P ?RISK < ∞, and suppose that

x̃∗ is primal optimal for (PXIV). By strong duality, it is true that

x̃∗ ≡ x̃∗(µ?) ∈ arg minφ∈H L
(
φ(y), µ?

)
. (B.102)

By uniqueness of φ?(y) in (B.99) (pointwise in y), all members of the possibly infinite set of optimal

solutions of (8.5) (for µ ≡ µ?) in (B.102) differ at most on sets of measure zero, and result in exactly

the same values for both the objective and constraints of (PXIV). Therefore, all such optimal

solutions to (8.5) are also optimal for (PXIV) and, in particular, φ?(y) is one of them. �

206



Bibliography

[1] A. Datta, M. C. Tschantz, and A. Datta, “Automated experiments on ad privacy settings,”

Proceedings on Privacy Enhancing Technologies, vol. 2015, no. 1, pp. 92–112, 2015.

[2] M. Kay, C. Matuszek, and S. A. Munson, “Unequal representation and gender stereotypes

in image search results for occupations,” in Proceedings of the 33rd Annual ACM Conference

on Human Factors in Computing Systems, ser. CHI ’15. New York, NY, USA: Association

for Computing Machinery, 2015, p. 3819–3828. [Online]. Available: https://doi.org/10.1145/

2702123.2702520

[3] J. Angwin, J. Larson, S. Mattu, and L. Kirchner, “Machine bias,”

ProPublica, 2016. [Online]. Available: https://www.propublica.org/article/

machine-bias-risk-assessments-in-criminal-sentencing

[4] P. Bright, “Tay, the neo-Nazi millennial chatbot, gets autopsied,” Ars Tech-

nica, 2016. [Online]. Available: https://arstechnica.com/information-technology/2016/03/

tay-the-neo-nazi-millennial-chatbot-gets-autopsied/

[5] National Transportation Safety Board, “HWY18MH010: Preliminary report,” National

Transportation Safety Board, Tech. Rep., 2018. [Online]. Available: https://www.ntsb.gov/

investigations/AccidentReports/Reports/HWY18MH010-prelim.pdf

[6] J. Dastin, “Amazon scraps secret ai recruiting tool that showed

bias against women,” Reuters, 2018. [Online]. Available: https:

//www.reuters.com/article/us-amazon-com-jobs-automation-insight/

amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G

207

https://doi.org/10.1145/2702123.2702520
https://doi.org/10.1145/2702123.2702520
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://arstechnica.com/information-technology/2016/03/tay-the-neo-nazi-millennial-chatbot-gets-autopsied/
https://arstechnica.com/information-technology/2016/03/tay-the-neo-nazi-millennial-chatbot-gets-autopsied/
https://www.ntsb.gov/investigations/AccidentReports/Reports/HWY18MH010-prelim.pdf
https://www.ntsb.gov/investigations/AccidentReports/Reports/HWY18MH010-prelim.pdf
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G


[7] R. Ge, J. D. Lee, and T. Ma, “Learning one-hidden-layer neural networks with landscape

design,” arXiv preprint arXiv:1711.00501, 2017.

[8] H. Lin and S. Jegelka, “Resnet with one-neuron hidden layers is a universal approximator,” in

Advances in Neural Information Processing Systems, 2018, pp. 6169–6178.

[9] M. Soltanolkotabi, A. Javanmard, and J. D. Lee, “Theoretical insights into the optimization

landscape of over-parameterized shallow neural networks,” IEEE Transactions on Information

Theory, vol. 65, no. 2, pp. 742–769, 2018.

[10] S. S. Du, X. Zhai, B. Poczos, and A. Singh, “Gradient descent provably optimizes over-

parameterized neural networks,” arXiv preprint arXiv:1810.02054, 2018.

[11] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,”

CoRR, 2014.

[12] R. Berk, H. Heidari, S. Jabbari, M. Joseph, M. Kearns, J. Morgenstern, S. Neel, and A. Roth,

“A convex framework for fair regression,” in Fairness, Accountability, and Transparency in

Machine Learning, 2017.

[13] J. Xu, Z. Zhang, T. Friedman, Y. Liang, and G. Van den Broeck, “A semantic loss function for

deep learning with symbolic knowledge,” in International Conference on Machine Learning,

2018.

[14] S. Zhao, J. Song, and S. Ermon, “The information autoencoding family: A Lagrangian per-

spective on latent variable generative models,” in Conference on Uncertainty in Artificial

Intelligence, 2018.

[15] A. Sinha, H. Namkoong, and J. Duchi, “Certifying some distributional robustness with prin-

cipled adversarial training,” in International Conference on Learning Representations, 2018.

[16] J. Chen and L. Deng, “A primal-dual method for training recurrent neural networks con-

strained by the echo-state property,” in International Conference on Learning Representations,

2014.

208



[17] S. N. Ravi, T. Dinh, V. S. Lokhande, and V. Singh, “Explicitly imposing constraints in deep

networks via conditional gradients gives improved generalization and faster convergence,” in

AAAI Conference on Artificial Intelligence, 2019, pp. 4772–4779.

[18] D. Bertsekas, Convex Optimization Theory. Athena Scientific, 2009.

[19] V. N. Vapnik, The Nature of Statistical Learning Theory. Springer, 2000.

[20] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From Theory to Al-

gorithms. Cambridge University Press, 2004.

[21] O. Ronneberger, P.Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image

segmentation,” in Medical Image Computing and Computer-Assisted Intervention (MICCAI),

ser. LNCS, vol. 9351. Springer, 2015, pp. 234–241.

[22] T. Cohen and M. Welling, “Group equivariant convolutional networks,” in Proceedings of The

33rd International Conference on Machine Learning, ser. Proceedings of Machine Learning

Research, M. F. Balcan and K. Q. Weinberger, Eds., vol. 48. New York, New York, USA:

PMLR, 2016, pp. 2990–2999.

[23] D. Marcos, M. Volpi, N. Komodakis, and D. Tuia, “Rotation equivariant vector field networks,”

in 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 5058–5067.

[24] J. F. Henriques and A. Vedaldi, “Warped convolutions: Efficient invariance to spatial trans-

formations,” in Proceedings of the 34th International Conference on Machine Learning, ser.

Proceedings of Machine Learning Research, D. Precup and Y. W. Teh, Eds., vol. 70. Inter-

national Convention Centre, Sydney, Australia: PMLR, 2017, pp. 1461–1469.

[25] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between capsules,” in Advances in

Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,

R. Fergus, S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc., 2017, pp. 3856–

3866.

209



[26] M. Weiler, F. A. Hamprecht, and M. Storath, “Learning steerable filters for rotation equiv-

ariant CNNs,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

IEEE, 2018.

[27] L. Ruiz, F. Gama, A. G. Marques, and A. Ribeiro, “Invariance-preserving localized activation

functions for graph neural networks,” IEEE Transactions on Signal Processing, vol. 68, pp.

127–141, 2020.

[28] V. Silva, L. Chamon, and A. Ribeiro, “Model predictive selection: A receding horizon scheme

for actuator selection,” in American Control Conference, 2019, pp. 347–353.

[29] L. Chamon, S. Paternain, and A. Ribeiro, “Learning gaussian processes with bayesian posterior

optimization,” in Asilomar, 2019.

[30] M. Eisen, C. Zhang, L. F. Chamon, D. D. Lee, and A. Ribeiro, “Learning optimal resource

allocations in wireless systems,” IEEE Transactions on Signal Processing, vol. 67, no. 10, pp.

2775–2790, 2019.

[31] S. Paternain, M. Calvo-Fullana, L. Chamon, and A. Ribeiro, “Safe policies for reinforcement

learning via primal-dual methods,” IEEE Trans. on Autom. Control (under review), 2019,

https://arxiv.org/abs/1911.09101.

[32] S. Paternain, L. Chamon, M. Calvo-Fullana, and A. Ribeiro, “Constrained reinforcement learn-

ing has zero duality gap,” in Advances in Neural Information Processing Systems, 2019, pp.

7553–7563.

[33] S. Paternain, M. Calvo-Fullana, L. F. Chamon, and A. Ribeiro, “Learning safe policies via

primal–dual methods,” in IEEE Conference on Decision and Control, 2019.

[34] L. Chamon, S. Paternain, and A. Ribeiro, “Counterfactual programming for optimal control,”

in Learning for Dynamics & Control (L4DC), 2020.

[35] L. Chamon, A. Amice, S. Paternain, and A. Ribeiro, “Resilient control: Compromising to

adapt,” in IEEE Control and Decision Conference (CDC), 2020, https://arxiv.org/abs/2004.

03726.

210

https://arxiv.org/abs/1911.09101
https://arxiv.org/abs/2004.03726
https://arxiv.org/abs/2004.03726


[36] L. Chamon and A. Ribeiro, “Probably approximately correct constrained learning,” Advances

in Neural Information Processing Systems (under review), 2020, https://arxiv.org/abs/2006.

05487.

[37] L. Chamon, A. Amice, and A. Ribeiro, “Approximately supermodular scheduling subject to

matroid constraints,” IEEE Trans. on Autom. Control (under review), 2020, https://arxiv.

org/abs/2003.08841.

[38] L. Chamon, Y. Eldar, and A. Ribeiro, “Functional nonlinear sparse models,” IEEE Trans.

Signal Process., vol. 68, no. 1, pp. 2449–2463, 2020.

[39] M. Peifer, L. Chamon, S. Paternain, and A. Ribeiro, “Sparse multiresolution representations

with adaptive kernels,” IEEE Trans. on Signal Process., vol. 68[1], pp. 2031–2044, 2020.

[40] L. Chamon, G. J. Pappas, and A. Ribeiro, “Approximate supermodularity of Kalman filter

sensor selection,” IEEE Trans. on Autom. Control., 2020.

[41] L. F. O. Chamon and A. Ribeiro, “Greedy sampling of graph signals,” IEEE Trans. Signal

Process., vol. 66[1], pp. 34–47, 2018.

[42] L. Chamon and A. Ribeiro, “Approximate supermodularity bounds for experimental design,”

in Advances in Neural Information Processing Systems, 2017, pp. 5403–5412.

[43] A. Tsiamis, D. Kalogerias, L. Chamon, A. Ribeiro, and G. Pappas, “Risk-constrained linear-

quadratic regulators,” in IEEE Control and Decision Conference (CDC), 2020, https://arxiv.

org/abs/2004.04685.

[44] L. Chamon, A. Amice, and A. Ribeiro, “Matroid-constrained approximately supermodular

optimization for near-optimal actuator scheduling,” in IEEE Control and Decision Confer-

ence (CDC), 2019, pp. 3391–3398.

[45] L. Chamon, G. Pappas, and A. Ribeiro, “The mean square error in Kalman filtering sensor

selection is approximately supermodular,” in Conf. on Decision and Contr., 2017, pp. 343–350.

211

https://arxiv.org/abs/2006.05487
https://arxiv.org/abs/2006.05487
https://arxiv.org/abs/2003.08841
https://arxiv.org/abs/2003.08841
https://arxiv.org/abs/2004.04685
https://arxiv.org/abs/2004.04685


[46] L. Chamon, S. Paternain, M. Calvo-Fullana, and A. Ribeiro, “The empirical duality gap of

constrained statistical learning problems,” in International Conference on Acoustics, Speech

and Signal Processing, 2020, pp. 2613–2616.

[47] D. Kalogerias, L. Chamon, G. J. Pappas, and A. Ribeiro, “Better safe than sorry: Risk-aware

nonlinear Bayesian estimation,” in IEEE International Conference in Acoustic, Speech, and

Signal Processing (ICASSP), 2020.

[48] L. Chamon, Y. C. Eldar, and A. Ribeiro, “Sparse recovery over nonlinear dictionaries,” in

ICASSP, 2019.

[49] M. Peifer, L. Chamon, S. Paternain, and A. Ribeiro, “Sparse learning of parsimonious repro-

ducing kernel Hilbert space models,” in IEEE International Conference in Acoustic, Speech,

and Signal Processing (ICASSP), 2019, pp. 3292–3296.

[50] M. Eisen, C. Zhang, L. Chamon, D. D. Lee, and A. Ribeiro, “Dual domain learning of opti-

mal resource allocations in wireless systems,” in IEEE International Conference in Acoustic,

Speech, and Signal Processing (ICASSP), 2019, pp. 4729–4733.

[51] M. Peifer, L. Chamon, S. Paternain, and A. Ribeiro, “Locally adaptive kernel estimation using

sparse functional programming,” in Asilomar Conference on Signals, Systems and Computers,

2018, pp. 2022–2026.

[52] M. Eisen, C. Zhang, L. Chamon, D. D. Lee, and A. Ribeiro, “Online deep learning in wireless

communication systems,” in Asilomar Conference on Signals, Systems and Computers, 2018,

pp. 1289–1293.

[53] L. Chamon, Y. C. Eldar, and A. Ribeiro, “Strong duality of sparse functional optimization,”

in ICASSP, 2018, pp. 4739–4743.

[54] L. Chamon and A. Ribeiro, “Universal bounds for the sampling of graph signals,” in Int. Conf.

on Acoust., Speech and Signal Process., 2016.

[55] ——, “Near-optimality of greedy set selection in the sampling of graph signals,” in Global

Conf. on Signal and Inform. Process., 2016, pp. 1265–1269.

212



[56] T. Kailath, A. Sayed, and B. Hassibi, Linear estimation. Prentice-Hall, 2000.

[57] G. Goh, A. Cotter, M. Gupta, and M. P. Friedlander, “Satisfying real-world goals with dataset

constraints,” in Advances in Neural Information Processing Systems, 2016, pp. 2415–2423.

[58] A. Agarwal, A. Beygelzimer, M. Dudik, J. Langford, and H. Wallach, “A reductions approach

to fair classification,” in International Conference on Machine Learning, 2018, pp. 60–69.

[59] M. Donini, L. Oneto, S. Ben-David, J. S. Shawe-Taylor, and M. Pontil, “Empirical risk mini-

mization under fairness constraints,” in Advances in Neural Information Processing Systems,

2018, pp. 2791–2801.

[60] M. Kearns, S. Neel, A. Roth, and Z. S. Wu, “Preventing fairness gerrymandering: Auditing

and learning for subgroup fairness,” in International Conference on Machine Learning, 2018,

pp. 2564–2572.

[61] M. B. Zafar, I. Valera, M. Gomez-Rodriguez, and K. P. Gummadi, “Fairness constraints: A

flexible approach for fair classification,” Journal of Machine Learning Research, vol. 20, no. 75,

pp. 1–42, 2019.

[62] A. Cotter, H. Jiang, M. Gupta, S. Wang, T. Narayan, S. You, and K. Sridharan, “Optimization

with non-differentiable constraints with applications to fairness, recall, churn, and other goals,”

Journal of Machine Learning Research, vol. 20, no. 172, pp. 1–59, 2019.

[63] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning models

resistant to adversarial attacks,” in International Conference on Learning Representations,

2018.

[64] H. Zhang, Y. Yu, J. Jiao, E. Xing, L. El Ghaoui, and M. Jordan, “Theoretically principled

trade-off between robustness and accuracy,” in International Conference on Machine Learning,

2019, pp. 7472–7482.
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