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Resilient Submodular Maximization For Control And Sensing

Abstract

Fundamental applications in control, sensing, and robotics, motivate the design of systems by selecting system
elements, such as actuators or sensors, subject to constraints that require the elements not only to be a few in
number, but also, to satisfy heterogeneity or interdependency constraints (called matroid constraints). For
example, consider the scenarios:

- (Control) Actuator placement: In a power grid, how should we place a few generators both to guarantee its
stabilization with minimal control effort, and to satisfy interdependency constraints where the power grid
must be controllable from the generators?

- (Sensing) Sensor placement: In medical brain-wearable devices, how should we place a few sensors to ensure
smoothing estimation capabilities?

- (Robotics) Sensor scheduling: At a team of mobile robots, which few on-board sensors should we activate at
each robot ---subject to heterogeneity constraints on the number of sensors that each robot can activate at
each time--- so both to maximize the robots' battery life, and to ensure the robots' capability to complete a
formation control task?

In the first part of this thesis we motivate the above design problems, and propose the first algorithms to
address them. In particular, although traditional approaches to matroid-constrained maximization have met
great success in machine learning and facility location, they are unable to meet the aforementioned problem of
actuator placement. In addition, although traditional approaches to sensor selection enable Kalman filtering
capabilities, they do not enable smoothing or formation control capabilities, as required in the above
problems of sensor placement and scheduling. Therefore, in the first part of the thesis we provide the first
algorithms, and prove they achieve the following characteristics: provable approximation performance: the
algorithms guarantee a solution close to the optimal; minimal running time: the algorithms terminate with the
same running time as state-of-the-art algorithms for matroid-constrained maximization; adaptiveness: where
applicable, at each time step the algorithms select system elements based on both the history of selections. We
achieve the above ends by taking advantage of a submodular structure of in all aforementioned problems ---
submodularity is a diminishing property for set functions, parallel to convexity for continuous functions.

But in failure-prone and adversarial environments, sensors and actuators can fail; sensors and actuators can
get attacked. Thence, the traditional design paradigms over matroid-constraints become insufficient, and in
contrast, resilient designs against attacks or failures become important. However, no approximation
algorithms are known for their solution; relevantly, the problem of resilient maximization over matroid
constraints is NP-hard.

In the second part of this thesis we motivate the general problem of resilient maximization over matroid
constraints, and propose the first algorithms to address it, to protect that way any design over matroid
constraints, not only within the boundaries of control, sensing, and robotics, but also within machine
learning, facility location, and matroid-constrained optimization in general.

In particular, in the second part of this thesis we provide the first algorithms, and prove they achieve the
following characteristics: resiliency: the algorithms are valid for any number of attacks or failures;
adaptiveness: where applicable, at each time step the algorithms select system elements based on both the
history of selections, and on the history of attacks or failures; provable approximation guarantees: the
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algorithms guarantee for any submodular or merely monotone function a solution close to the optimal;
minimal running time: the algorithms terminate with the same running time as state-of-the-art algorithms for
matroid-constrained maximization. We bound the performance of our algorithms by using notions of
curvature for monotone (not necessarily submodular) set functions, which are established in the literature of
submodular maximization.

In the third and final part of this thesis we apply our tools for resilient maximization in robotics, and in
particular, to the problem of active information gathering with mobile robots. This problem calls for the
motion-design of a team of mobile robots so to enable the effective information gathering about a process of
interest, to support, e.g., critical missions such as hazardous environmental monitoring, and search and rescue.
Therefore, in the third part of this thesis we aim to protect such multi-robot information gathering tasks
against attacks or failures that can result to the withdrawal of robots from the task. We conduct both numerical
and hardware experiments in multi-robot multi-target tracking scenarios, and exemplify the benefits, as well
as, the performance of our approach.
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ABSTRACT

RESILIENT SUBMODULAR MAXIMIZATTION FOR CONTROL AND SENSING

Vasileios Tzoumas
George J. Pappas
Ali Jadbabaie

Fundamental applications in control, sensing, and robotics, motivate the design of systems
by selecting system elements, such as actuators or sensors, subject to constraints that require
the elements not only to be a few in number, but also, to satisfy heterogeneity or interde-
pendency constraints (called matroid constraints). For example, consider the scenarios:

e (Control) Actuator placement: In a power grid, how should we place a few generators
both to guarantee its stabilization with minimal control effort, and to satisfy interde-
pendency constraints where the power grid must be controllable from the generators?

e (Sensing) Sensor placement: In medical brain-wearable devices, how should we place
a few sensors to ensure smoothing estimation capabilities?

e (Robotics) Sensor scheduling: At a team of mobile robots, which few on-board sensors
should we activate at each robot —subject to heterogeneity constraints on the number
of sensors that each robot can activate at each time— so both to maximize the robots’
battery life, and to ensure the robots’ capability to complete a formation control task?

In the first part of this thesis we motivate the above design problems, and propose the
first algorithms to address them. In particular, although traditional approaches to matroid-
constrained maximization have met great success in machine learning and facility location,
they are unable to meet the aforementioned problem of actuator placement. In addition,
although traditional approaches to sensor selection enable Kalman filtering capabilities,
they do not enable smoothing or formation control capabilities, as required in the above
problems of sensor placement and scheduling. Therefore, in the first part of the thesis
we provide the first algorithms, and prove they achieve the following characteristics: prov-
able approximation performance: the algorithms guarantee a solution close to the optimal;
minimal running time: the algorithms terminate with the same running time as state-of-
the-art algorithms for matroid-constrained maximization; adaptiveness: where applicable,
at each time step the algorithms select system elements based on both the history of se-
lections. We achieve the above ends by taking advantage of a submodular structure of in
all aforementioned problems —submodularity is a diminishing property for set functions,
parallel to convexity for continuous functions.

But in failure-prone and adversarial environments, sensors and actuators can fail; sensors
and actuators can get attacked. Thence, the traditional design paradigms over matroid-
constraints become insufficient, and in contrast, resilient designs against attacks or failures
become important. However, no approximation algorithms are known for their solution;
relevantly, the problem of resilient maximization over matroid constraints is NP-hard.
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In the second part of this thesis we motivate the general problem of resilient maximization
over matroid constraints, and propose the first algorithms to address it, to protect that way
any design over matroid constraints, not only within the boundaries of control, sensing,
and robotics, but also within machine learning, facility location, and matroid-constrained
optimization in general. In particular, in the second part of this thesis we provide the first
algorithms, and prove they achieve the following characteristics: resiliency: the algorithms
are valid for any number of attacks or failures; adaptiveness: where applicable, at each
time step the algorithms select system elements based on both the history of selections,
and on the history of attacks or failures; provable approzrimation guarantees: the algorithms
guarantee for any submodular or merely monotone function a solution close to the optimal;
minimal running time: the algorithms terminate with the same running time as state-of-
the-art algorithms for matroid-constrained maximization. We bound the performance of
our algorithms by using notions of curvature for monotone (not necessarily submodular) set
functions, which are established in the literature of submodular maximization.

In the third and final part of this thesis we apply our tools for resilient maximization in
robotics, and in particular, to the problem of active information gathering with mobile
robots. This problem calls for the motion-design of a team of mobile robots so to enable the
effective information gathering about a process of interest, to support, e.g., critical missions
such as hazardous environmental monitoring, and search and rescue. Therefore, in the third
part of this thesis we aim to protect such multi-robot information gathering tasks against
attacks or failures that can result to the withdrawal of robots from the task. We conduct
both numerical and hardware experiments in multi-robot multi-target tracking scenarios,
and exemplify the benefits, as well as, the performance of our approach.

iv
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CHAPTER 1 : INTRODUCTION

1.1. Motivation of submodular maximization in control, sensing, and robotics

Researchers in control, sensing, and robotics envision the design of critical infrastructures
and autonomous systems in applications such as:

e (Control) Power-grid stabilization: Deploy new-technology HVDC generators in power
grids to guarantee their stabilization. [1]

o (Sensing) Search and rescue: Deploy mobile robots to localize people trapped in burn-
ing buildings. [2]

e (Robotics) Multi-target coverage: Deploy aerial micro-robots to monitor targets that
move in a cluttered urban environment. [3]

In particular, all the aforementioned applications motivate fundamental set function opti-
mization problems such as:

e (Control) Actuator placement: In a power grid, how should we place a few generators
both to guarantee its stabilization, and to satisfy global-interdependency constraints
where the power grid must be controllable from the generators? [4]

e (Sensing) Sensor scheduling: At a team of mobile robots, which few on-board sensors
should we activate at each robot —subject to heterogeneity constraints on the number
of sensors each robot can activate— so both to maximize the robots’ battery life, and
to ensure the robots’ capability to complete a formation control task? [5]

e (Robotics) Motion planning: At a team of aerial robots, how should we select the
robots’ motions to maximize the team’s capability for tracking targets moving in ur-
ban environments, subject to heterogeneity constraints where each robot has different
motion capabilities? [6]

Specifically, all the above applications motivate the design of systems by selecting system
elements, such as actuators, sensors, or movements, subject to complex design constraints
that require the system elements not only to be a few in number, but also to possibly satisfy
heterogeneity or global-interdependency constraints. Other general fundamental problems
that involve such complex design constraints are:

e (Control) Sparse actuation design for state reachability or low-control effort [4], or
merely for controllability 7] or structural controllability [8]; and synchronization in
complex networks for tasks of motion coordination [9].

e (Sensing) Sparse sensing design for optimal Kalman filtering [5, 10].

o (Robotics) Task allocation in collaborative multi-robot systems for surveillance in ur-
ban environments [11].



In more detail, all the aforementioned problems and applications require the solution to an
optimization problem of the form:

acnax f(A), (1.1)

where the set V represent a set of available elements to choose from; the set Z represents the
collection of complex design constraints —called matroids [12]— that enforce heterogeneity
or global-interdependency across the elements in A; and the objective function f is non-
decreasing and (possibly) submodular; submodularity is a diminishing returns property. For
example, Z may constrain the cardinality of each feasible set in the problem in eq. (1.1),
e.g., when Z = {A: A CV, |A|l < «a}, given some positive integer «; an interpretation of
the number « is that it captures a resource constraint, such as a limited battery for sensor
activation, which limits the number of elements one can select in A (under the implicit
assumption that all the elements in V consume the same amount of the limited resource).
In some cases, however, different elements may consume different amounts of the limited
resource; for example, different sensors may have different battery consumption. In such
heterogeneity scenarios, Z may constrain the cost of each feasible set in the problem in
eq. (1.1), e.g., by being Z = {A: A C V,c(A) < b}, given some cost function ¢(.A) over all
the possible subsets A C V, and given some budget constraint b; that is, the cost function ¢
captures the heterogeneity in the cost of each element in V. More generally, Z may also
enforce heterogeneity to the elements in A by partitioning the elements in V, and permitting
the selection of only a few elements from each partition, e.g., when V =V, U--- UV, and
I={A: ACV,c;(ANV;) <b;, foralli=1,...,n}, given a positive integer n, a partition
Vi,...,Vy of V, cost functions cy,...,c,, and budget constraints by,...,b,. In particular,
we may give two interpretations of the heterogeneity introduced by the sets Vi, ..., Vy,: the
first interpretation considers that the sets Vy,..., )V, correspond to the available elements
across n different types (buckets) of elements, and correspondingly, the budgets by, ..., b,
constrain the total cost of the elements one can use from each type 1,...,n; and the second
interpretation considers that the sets V,...,V, correspond to the available elements across
n different ¢imes, and correspondingly, the budget constraints by, ..., b, constrain the total
cost of the elements one can use at each time 1,...,n. Finally, in other complex design
scenarios, that call for global-interdependency among the selected elements, Z may require
the elements in A to form, e.g., a spanning tree on a graph associated to V), such as in the
aforementioned scenario of leader selection for structural controllability [8].

1.2. State-of-the-art approaches for submodular maximization

Overall, the optimization problem in eq. (1.1) is combinatorial, and, in particular, it is NP-
hard [13]; notwithstanding, greedy-like algorithms have been proposed for its solution [12,
14], such as the greedy presented in Algorithm 1. Specifically, Algorithm 1 builds sequentially
an approximate solution for the problem in eq. (1.1), by starting with an empty set A (line 1
of Algorithm 1), and then by adding in A one element at a time (lines 2-8 of Algorithm 1);
in particular, any element that achieves the highest value of f(AU{y}) among the elements
y € V that not chosen so far (line 5 of Algorithm 1) and for which the feasibility constraint
AU {y} € T is satisfied (lines 4 of Algorithm 1). Similarly, the rest of the state-of-the-art
algorithms for the problem in eq. (1.1), i.e., the proposed algorithms in [14], follow similar



Algorithm 1 Greedy algorithm for problem in eq. (1.1) [12].

Input: Per problem in eq. (1.1), Algorithm 19 receives the inputs:
e a matroid (V,7);
e a non-decreasing set function f : 2V — R.

Output: Set A.

A0, R« 0

2: while R #V do

3: € argmaxyep\(aur) f(AU{y});
4: if AU{z} €T then
5 A+~ AU{x};

6: end if

7. R+ RU{x};

8: end while

steps to the ones in Algorithm 1, and differ only on how they choose which element to add
in A (i.e., they replace the criterion in line 3 of Algorithm 1 with some other).

Notably, the algorithms in [12, 14] are proved to be near-optimal for several instances of the
optimization problem in eq. (1.1) [13, 14, 15|, and are commonly used in, e.g., statistics,
such as, in machine learning [16], and optimization, such as, in facility location [17].

1.3. Need for novel approaches of submodular maximization in control

However, the algorithms in [12, 14|, cannot address with provable approximation perfor-
mance the fundamental control problems of actuator selection discussed above, such as the
ones in [4]. In particular, consider the fundamental problem of actuator placement for low
control effort in [4], where the objective is to place a few actuators in a dynamical system
to minimize the average control effort one needs to drive the system in the state space. In
this case, the algorithms in [12, 14] do not exhibit the near-optimal approximation proved
in [12, 15], even for average control-effort metrics (which are instances of the objective func-
tion f in eq. (1.1)) that are non-decreasing and submodular. To reveal the reason, we next
discuss in more detail when a system can be controlled with low effort from an actuator
set, and then discuss how the algorithms in [12, 14] may become insufficient in this context:
specifically, the control-effort one needs to drive a system in the state space is infinite if the
system is not controllable from the set of placed actuators, i.e., if there exists at least one
system state that is not reachable with a finite amount of control effort from the set of placed
actuators. In particular, for a system to be controllable typically more than one actuators
is needed [18|. Hence, given a system, and any set of placed actuators of low enough cardi-
nality, then any metric f that captures the average control effort needed to drive the system
in the state space [19] is infinity (has infinite value). The latter conclusion is sufficient to
reveal why the algorithms in [12, 14] may fail to provide a near-optimal actuator selection
for low-effort control: by focusing without loss of generality only on Algorithm 1, recall
that Algorithm 1 builds an approximate solution to the optimization problem in eq. (1.1)
greedily, by starting with an empty set A, and then by adding elements in A one-by-one,
using the criterion in line 5 of Algorithm 1 to differentiate among the candidate elements to



add; however, since the control effort metrics are infinity insofar only a few actuators have
been added in A, Algorithm 1 cannot differentiate among them, and as a result, it picks
randomly the element to add in A. The complication of this fact is that even though all the
elements finally picked in A affect the average control effort, a part of A has been picked
randomly, instead for minimizing the average control effort.

In sum, we have exemplified the necessity for novel tools of submodular maximization in
control, by presenting the above complications in applying the state-of-the-art algorithms
in [12, 14] to the fundamental problem of actuator placement for low control effort.

1.4. Need for novel approaches of submodular maximization in sensing and robotics

Traditional designs in sensing focus on selecting sensors in critical infrastructures, such as
in networks of satellites, or in power-grids, with the objective to enable state estimation
via Kalman filtering in the presence of resource constraints, such as of limited bandwidth
for simultaneous satellite sensor communication [20], or of limited monetary budget for
phasor-measurement-unit (PMU) placement in power grids [4].

However, recent advances in the miniaturization of sensors and robots trigger the vision of
using swarms of mobile robots to support missions of search and rescue, and of safety and
security |2], which all suggest a shift of focus in the sensor selection process beyond Kalman
filtering: in particular, a shift from sensor selection for merely state estimation (Kalman
filtering) to sensor selection for autonomous navigation. For example, for a swarm of robots
to participate in missions of search and rescue in burning buildings, where each robot in the
swarm can operate only a subset of its sensors due to limited battery, the primary goal of
the sensor selection process is to enable the swarm’s capability for autonomous navigation,
instead of its capability for only localization (state estimation); that is, such missions of
autonomous navigation exemplify the need for navigation-aware sensor selection emerges,
instead of merely localization-aware sensor selection.

At the same time, emergent medical applications require the design of multi-sensor devices,
such as of brain wearables, that enable smoothing estimation (trajectory estimation), instead
of Kalman filtering (state estimation); see [21] and the references therein. Similarly, research
in robotics weigh also on smoothing estimation to enable exploration missions in unknown
environments by the means of simultaneous localization and mapping (SLAM) [22].

In sum, novel sensor selection schemes of submodular maximization are necessitated, that
go beyond Kalman filtering to enable a variety of critical applications such as medical ap-
plications of brain wearables, and autonomous navigation applications of swarms of robots.

1.5. Need for resilient submodular maximization

At the same time, in all the above critical infrastructures and complex autonomous systems,
actuators can fail [23]; sensors and robots can get attacked [24]. Hence, in such failure-
prone and adversarial scenarios, resilient designs against denial-of-service attacks or failures
become important. That is, one needs to introduce resilient re-formulations of the problem
in eq. (1.1), that go beyond the traditional problem in eq. (1.1), and guard against denial-



of-service attacks and failures, either in an off-line fashion (before any attack or failure
happens) or in an on-line fashion (while any attacks or failures happen).

Evidently, which of the two options is appropriate —off-line or on-line resilient design—
depends on the context of the design in hand. For example, off-line protection of designs
becomes important in critical infrastructures, such as in power grids, where the design
happens once, does not change in time, and needs to withstand future attacks or failures [1,
25]. In contrast, on-line protection of designs becomes important in critical tasks where
the design requirements may evolve in time, such as in sensor scheduling for autonomous
navigation in search and rescue, where, specifically, different sensors are activated at each
time step, and as a result, different sensors may fail or get attacked at each time step.

We discuss in more detail the two options of off-line and on-line resilient design below.
1.5.1. Off-line resilient submodular mazimization
An option for an off-line resilient re-formulation of the problem in eq. (1.1) is the following:

AV AT BOA, Ber FANB). (12)
where the set Z’ represents the collection of possible set-removals B —attacks or failures—
from A, each of some specified cardinality. Hence, the problem in eq. (1.2) maximizes f
despite worst-case failures that compromise the maximization in eq. (1.1). Therefore, it is
suitable in scenarios where there is no prior on the removal mechanism, as well as, in scenarios
where protection against worst-case removals is essential, such as in sensor selections for
expensive experiment designs.

Particularly, the optimization problem in eq. (1.2) may be interpreted as a 2-stage perfect
information sequential game between two players [26, Chapter 4|, namely, a “maximization”
player (designer), and a “minimization” player (attacker), where the designer plays first, and
selects A to maximize the objective function f, and, in contrast, the attacker plays second,
and selects B to minimize the objective function f. In particular, the attacker first observes
the designer’s selection A, and then, selects B such that B is a worst-case set removal from A.

1.5.2. On-line resilient submodular mazimization

As mentioned above, the optimization problem in eq. (1.2) enables the off-line protection of
system designs against attacks or failures (since in eq. (1.2) the set A is selected once, and
before any attack or failure B happens); however, for design requirements that evolve in time
(such as in sensor scheduling), one may want to go even beyond the off-line resilient objective
of the problem in eq. (1.2), and guard adaptively against real-time attacks or failures. To
this end, an option is to introduce the following on-line re-formulation of the problem in



eq. (1.2) (which for simplicity is presented for the case of merely cardinality constraints):

max min --- max min f(A;\Bi,...,Ar \ Br),
ACH BiCA, | ArCVr BrCAr AN B 7\ Br)
such that: (1.3)

|At| = Oy and |Bt| < ﬁt, for all t = ]., ,T,

where the number f; is the number of possible attacks or failures. Hence, the problem in
eq. (1.2) maximizes the function f despite real-time worst-case failures that compromise
the consecutive maximization steps in eq. (1.1). Therefore, similarly to the problem in
eq. (1.2), it is suitable in scenarios where there is no prior on the removal mechanism, and
in scenarios where protection against worst-case failures is essential, such as in missions of
adversarial-target tracking.

Particularly, and similarly to the problem in eq. (1.2), the problem in eq. (1.3) may be inter-
preted as a T-stage perfect information sequential game between two players [26, Chapter 4],
namely, a “maximization” player (designer), and a “minimization” player (attacker), who play
sequentially, both observing all past actions of all players, and with the designer starting the
game. That is, at each time ¢t = 1,..., T, both the designer and the attacker adapt their set
selections to the history of all the players’ selections so far, and, in particular, the attacker
adapts its selection also to the current (¢-th) selection of the designer (since at each step ¢,
the attacker plays after it observes the selection of the designer).

1.6. Thesis goal and approach
Goal. The goal of the thesis is threefold:

e (Novel theory on submodular maximization) To address fundamental design problems
in control, sensing, and robotics per the problem in eq. (1.1); in particular:

— (Control) We consider two fundamental problems of actuator placement: the
problem of actuator placement for state reachability, and the problem of actuator
placement for controllability with low control effort. These problems are impor-
tant, e.g., in the stabilizability of large-scale systems, such as power grids [27],
and the control of complex networks, such as biological networks [28].

In particular, the objective of actuator placement for state reachability is to de-
termine which few nodes we should actuate in a linear dynamical system so to
make feasible the state transfer from the system’s initial condition to a given final
state. And the objective of actuator placement for controllability with low control
effort is to determine which few nodes we should actuate in a linear dynamical
system so to maximize the volume of the system states that are reachable with
one unit of control effort from the system’s initial condition.

— (Sensing and robotics) We consider two fundamental problems of sensor selection:
the problem of sensor selection for batch-state estimation (smoothing), and the
problem of sensor selection for LQG control (autonomous navigation). These
problems are important in both sensing and robotics applications (see also Sec-



tion 1.4), such as in the design of brain wearables in medical applications [21],
and in the design of the control inputs in multi-robot navigation applications [29].

In particular, the objective of sensor selection for batch-state estimation is to
determine which few sensors we should activate in a linear dynamical system —
possibly different sensors at different time steps— so to maximize at each time
step the estimation accuracy of the system’s observed trajectory so far. And the
objective of sensor selection for LQG control is to determine which few sensors
we should activate in a linear system so to enable the generation of control inputs
that minimize the system’s deviation from a desired trajectory.

e (Nowel theory on resilient mazimization) To protect against attacks and failures not
only the aforementioned fundamental designs, but also to go beyond control, sensing,
and robotics, and protect any design per the problem in eq. (1.1) —e.g., in machine
learning, facility location, and optimization in general [16, 17, 30]— by introducing
the resilient re-formulation of eq. (1.1) per the eq. (1.2) or the eq. (1.3); in particular:

— (Off-line resilient mazimization) The problem in eq. (1.2) goes beyond tradi-
tional (non-resilient) optimization [12, 13, 31, 32, 33| by proposing resilient op-
timization; beyond merely cardinality-constrained resilient optimization [34, 35]
by proposing matroid-constrained resilient optimization; and beyond protection
against non-adversarial set-removals [36, 37| by proposing protection against
worst-case set-removals. Hence, the problem in eq. (1.2) aims to protect the com-
plex design of systems, per heterogeneity or global-interdependency constraints,
against attacks or failures, which is a vital objective for the safety of critical infras-
tructures, such as power grids [1, 25|, or internet service provider networks [38].

— (On-line resilient mazimization) The problem in eq. (1.3) goes beyond tradi-
tional (non-resilient) optimization [31, 32, 33, 39, 40] by proposing resilient op-
timization; beyond the single-step resilient optimization in [34] or in eq. (1.2)
by proposing multi-step (sequential) resilient optimization; beyond memoryless
resilient optimization [41] by proposing adaptive resilient optimization; and be-
yond protection against non-adversarial attacks [36, 37] by proposing protection
against worst-case attacks. Hence, the problem in eq. (1.3) aims to protect the
system performance over extended periods of time against real-time denial-of-
service attacks or failures, which is vital in critical applications, such as multi-
target surveillance with teams of mobile robots [6].

o (Applications of resilient maximization) To apply the resilient maximization tools we
develop herein to the problem of active information gathering with mobile robots [42].

In particular, active information gathering calls for the motion-design of a team of mo-
bile robots so to enable the effective information gathering about a process of interest.
For example, this problem aims to support critical missions such as:

— Hazardous environmental monitoring: Deploy a team of mobile robots to monitor
the radiation flow around a nuclear reactor after an explosion; [43]



— Adversarial-target tracking: Deploy a team of agile robots to track an adversarial
target that aims to escape by moving in a cluttered urban environment; [3]

— Search and rescue: Deploy a team of aerial micro-robots to localize people trapped
in a burning building. |2]

Approach. To achieve the above ends, in this thesis we develop novel algorithms for both
submodular and merely monotone maximization, as explained in more detail below.

1.7. Thesis contributions, and organization

The thesis contribution is to realize the aforementioned goals, by developing novel algorithms
for both submodular and monotone maximization, that achieve the following characteristics:

resiliency: where applicable, the algorithms are valid for any number of denial-of-
service attacks or failures;

adaptiveness: where applicable, at each time step the algorithms select system ele-
ments based on both the history of selections, and on the history of attacks or failures;

provable approximation guarantees: the algorithms guarantee for any submodular or
merely monotone function a solution close to the optimal,;

manimal running time: the algorithms terminate with the same running time as state-
of-the-art algorithms for submodular maximization.

In more detail, the thesis contributions per thesis chapter are as follows:

(Chapters 2-3) Contributions to submodular mazimization in control: In Chapter 2 and
Chapter 3 we address the problems of minimal actuator placement for state reachability
and of minimal actuator placement for controllability, respectively.

In more detail, in Chapters 2-3 we make the following contributions:

— In Chapter 2 we prove that the problem of actuator placement for state reacha-
bility cannot be approximated in polynomial or even quasi-polynomial time.

— In Chapter 3 we prove that the problem of minimal actuator placement for con-
trollability with low control effort is NP-hard, yet we provide novel and near-
optimal approximation algorithms for its solution, by overcoming the complica-
tions discussed in Section 1.3 regarding the application of state-of-the-art algo-
rithms for the solution of the submodular maximization problem in eq. (1.1).

(Chapters 4-8) Contributions to submodular mazimization in sensing and robotics: In
Chapters 4-7 we focus on the problem of sensor selection for batch-state estimation,
and in Chapter 8 we focus on the problem of sensor selection for LQG control.

In more detail, in Chapters 4-7 we make the following contributions:



— (Problem definition) We formalize problems of sensor selection for batch-state
estimation (smoothing) for systems that are either linear (Chapters 4-5), non-
linear (Chapter 6), or stochastic (Chapter 7). This is the first work to formalize,
address, and demonstrate the importance of these problems.

— (Solution) We prove that the problem of sensor selection for batch-state estima-
tion is NP-hard (Chapter 6), yet we provide for its solution near-optimal, on-line
approximation algorithms, with minimal running time (equal to those sensor se-
lection algorithms that are employed for Kalman filtering).

— (Application) We propose novel designs of multi-sensor brain wearables that rely
on electroencephalograms, by determining via our proposed algorithms the sensor
location that seems to be the most effective with respect to a pre-specified number
of sensors. In particular, we observe that for a variety of tasks the location of
sensors currently used in such wearable devices is sub-optimal with respect to the
objective smoothing estimation (Chapter 6).

Finally, in Chapter 8 we make the following contributions:

— (Problem definition) We formalize the problem of sensor selection for LQG con-
trol, in particular, subject to heterogeneous sensor-cost constraints. This is the
first work to formalize, address, and demonstrate the importance of this problem.

— (Solution) We provide the first algorithms the problem of sensor selection for
LQG control, by extending algorithms in the literature on submodular optimiza-
tion subject to heterogeneous cost constraints. In particular, (i) we provide the
first efficient algorithms for the optimization of approximately supermodular func-
tions subject to heterogeneous-cost constraints; and (ii) we improve known sub-
optimality bounds that also apply to the optimization of (exactly) supermodular
functions: specifically, the proposed algorithm for approximate supermodular
optimization with heterogeneous-cost constraints can achieve in the exactly su-
permodular case the approximation bound (1 — 1/e), which is superior to the
previously established bound 1/2(1 — 1/e) in the literature |44].

— (Simulations) We consider two application scenarios, namely, sensing-constrained
formation control and resource-constrained robot navigation. We present a Monte
Carlo analysis for both scenarios, which demonstrates that (i) the proposed al-
gorithm is near-optimal (matches the optimal selection in all tested instances for
which the optimal selection could be computed via a brute-force approach), and
(ii) a naive selection which attempts to minimize the state estimation covari-
ance [5] (Kalman filtering error rather than the LQG cost) has degraded LQG
tracking performance, often comparable to a random selection.

e (Chapters 9-10) Resilient submodular mazimization: In Chapters 9-10 we go beyond
the traditional objective of the optimization problem in eq. (1.1), and introduce its
resilient re-formulations in eq. (1.2) and eq. (1.3), so to enable the protection of any
system design per eq. (1.1) —e.g., in control, machine learning, and optimization in



general— against any number of attacks or failures.
In more detail, in Chapters 9-10 we make the following contributions:

— (Problem definition) We formalize the problems of off-line resilient mazimization
over matroid-constraints per eq. (1.2) (Chapter 9), and of on-line resilient mawi-
mization per eq. (1.3) (Chapter 10). This is the first work to formalize, address,
and demonstrate the importance of these problems.

— (Solution) We develop the first algorithms for the solution of the resilient max-
imization problems in eq. (1.2) and eq. (1.3), and prove that they exhibit the
properties described in the beginning of Section 1.7, i.e., the properties of re-
siliency, adaptiveness —applicable to the Algorithm in Chapter 10,— provable
approximation performance, and minimal running time.

— (Simulations) We demonstrate the necessity for the resilient re-formulation of the
problem in eq. (1.1) by conducting numerical experiments in various scenarios of
sensing-constrained autonomous robot navigation, varying the number of sensor
failures. In addition, via the experiments we demonstrate the benefits of our
approach per the resilient problem formulations in eq. (1.2) and eq. (1.3).

e (Chapter 11) Application of resilient submodular mazimization to robotics: In Chap-
ter 11 we introduce the problem of resilient active information gathering with mobile
robots, which goes beyond the traditional objective of (non-resilient) active informa-
tion gathering, and aims to guard the information gathering process from worst-case
failures or attacks that can cause not only the withdrawal of robots from the informa-
tion gathering task, but also the inability of the remaining robots to jointly optimize
their motions, due to disruptions to their communication network.

In more detail, in Chapter 11 we make the following contributions:

— (Problem definition) We formalize the problem of resilient active information
gathering with mobile robots against attacks or failures. This is the first work to
formalize, address, and demonstrate the importance of this problem.

— (Solution) We develop the first algorithm for resilient active information gathering
with the following properties:

x resiliency: it is valid for any number of denial-of-service attacks or failures;

x provable approximation performance: for all monotone and (possibly) sub-
modular information gathering objective functions in the active robot set
(non-failed robots), it ensures a solution close to the optimal;

* minimal communication: it terminates within the same order of communica-
tion rounds as current algorithms for (non-resilient) information gathering.

— (Simulations) We conduct simulations in a variety of multi-robot multi-target
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tracking scenarios, varying the number of robots, targets, and failures. Our
simulations validate the benefits of our approach.

— (Experiments) We conduct hardware experiments of multiple quad-rotors tracking
static ground targets, to demonstrate visually the necessity for resilient robot
motion design against robotic failures or denial-of-service attacks.
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Part 1

CONTRIBUTIONS TO
SUBMODULAR MAXIMIZATION
IN ACTUATION DESIGN
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CHAPTER 2 : Minimal Reachability is Hard to Approximate

In this chapter, we consider the problem of choosing which nodes of a linear dynamical
system should be actuated so that the state transfer from the system’s initial condition to
a given final state is possible. Assuming a standard complexity hypothesis, we show that
this problem cannot be efficiently solved or approximated in polynomial, or even quasi-
polynomial, time.!

2.1. Introduction

During the last decade, researchers in systems, optimization, and control have focused on
questions such as:

o (Actuator Selection) How many nodes do we need to actuate in a gene regulatory
network to control its dynamics? [46, 47|

e (Input Selection) How many inputs are needed to drive the nodes of a power system
to fully control its dynamics? [48|

o (Leader Selection) Which UAVs do we need to choose in a multi-UAV system as leaders
for the system to complete a surveillance task despite communication noise? [49, 50|

The effort to answer such questions has resulted in numerous papers on topics such as
actuator placement for controllability [7, 51]; actuator selection and scheduling for bounded
control effort [18, 52, 53, 54]; resilient actuator placement against failures and attacks [55, 56];
and sensor selection for target tracking and optimal Kalman filtering [57, 58, 59, 60]. In all
these papers the underlying optimization problems have been proven (i) either polynomially-
time solvable [46, 47, 48] (ii) or NP-hard, in which case polynomial-time algorithms have been
proposed for their approximate solution [7, 18, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60].

But in several applications in systems, optimization, and control, such as in power sys-
tems [61, 62|, transportation networks [63], and neural circuits [64, 65|, the following problem
also arises:

Minimal Reachability Problem. Given times tg and t; such that t; > o,
vectors xg and x1, and a linear dynamical system with state vector x(t) such
that xz(tg) = xo, find the minimal number of system nodes we need to actuate
so that the state transfer from z(tg) = zo to x(t1) = z is feasible.

For example, the stability of power systems is ensured by placing a few generators such that
the state transfers from a set of possible initial conditions to the zero state are feasible [62].

The minimal reachability problem relaxes the objectives of the applications in [7, 18, 46,
47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60|. For example, in comparison to the
actuator placement problem for controllability 7], the minimal reachability problem aims to
place a few actuators only to make a single transfer between two states feasible, whereas the

!This chapter is based on the paper by A. Jadbabaie, A. Olshevsky, G. J. Pappas, and V. Tzoumas [45].
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Figure 1: Graphical representation of the linear system &1(t) = D27, x;(t), @:(t) = 0, i =
2,...,n; each node represents an entry of the system’s state (z1(t), z2(t),...,zn(t)), where
t represents time; the edges denote that the evolution in time of x; depends on (x9,x3, ...,
Tn).

minimal controllability problem aims to place a few actuators to make the transfer among
any two states feasible |7, 51].

The fact that the minimal reachability problem relaxes the objectives of the papers |7, 18,
46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60| is an important distinction whenever
we are interested in the feasibility of only a few state transfers by a small number of placed
actuators. The reason is that under the objective of minimal reachability the number of
placed actuators can be much smaller in comparison to the number of placed actuators
under the objective of controllability. For example, in the system of Fig. 1 the number of
placed actuators under the objective of minimal reachability from (0,...,0) to (1,...,0) is
one, whereas the number of placed actuators under the objective of controllability grows
linearly with the system’s size.

The minimal reachability problem was introduced in [66], where it was found to be NP-hard.
Similar versions of the reachability problem were studied in the context of power systems
in [62] and [67]. For the polynomial-time solution of the reachability problems in [62, 66, 67],
greedy approximation algorithms were proposed therein. The approximation performance
of these algorithms was claimed by relying on the modularity result [68, Lemma 8.1|, which
states that the distance from a point to a subspace created by the span of a set of vectors
is supermodular in the choice of the vectors.

In this chapter, we first show that the modularity result [68, Lemma 8.1] is incorrect. In
particular, we show this via a counterexample to [68, Lemma 8.1], and as a result, we prove
that the distance from a point to a subspace created by the span of a set of vectors is
non-supermodular in the choice of the vectors. Then, we also prove the following strong
intractability result for the minimal reachability problem, which is our main contribution in
this chapter:

Contribution 1. Assuming NP ¢ BPTIME(nP°Y 1981 we show that for each
d > 0, there is no polynomial-time algorithm that can distinguish between the
two cases where:

— the reachability problem has a solution with cardinality k;
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— the reachability problem has no solution with cardinality k2Q(1°g1_6"),
where n is the dimension of the system.

We note that the complexity hypothesis NP ¢ BPTIME(nP°Y1°8") means there is no ran-
domized algorithm which, after running for O(n{1°8™)°) time for some constant ¢, outputs
correct solutions to problems in NP with probability 2/3; see [69] for more details.

Notably, Contribution 1 remains true even if we allow the algorithm to search for an ap-
proximate solution that is relaxed as follows: instead of choosing the actuators to make the
state transfer from the initial state xo to a given final state z1 possible, some other state Zy
that satisfies |71 — 713 < € should be reachable from x. This is a substantial relaxation
of the reachability problem’s objective, and yet, we show that the intractability result of
Contribution 1 still holds.

The rest of this chapter is organized as follows. In Section 2.2, we introduce formally the min-
imal reachability problem. In Section 2.3, we provide a counterexample to [68, Lemma 8.1].
In Section 2.4, we present Contribution 1; in Section 2.5, we prove it. Section 2.6 concludes
the chapter.

2.2. Minimal Reachability Problem

In this section we formalize the minimal reachability problem. We start by introducing the
systems considered in this chapter and the notions of system node and of actuated node set.
System 1. We consider continuous-time linear systems of the form

#(t) = Ax(t) + Bu(t),  t>to, (2.1)

where to is a given starting time, x(t)€ R™ is the system’s state at time t, and u(t)e R™ is
the system’s input vector. <

In this chapter we want to actuate the minimal number of the system’s nodes in eq. (2.1) to
make a desired state-transfer feasible (and not to achieve necessarily the system’s control-
lability). We formalize this control objective using the following two definitions.
Definition 1 (System node). Given a system as in eq. (2.1), where z(t) € R", let x1(¢),
xa(t), ..., xn(t) € R such that x(t) = (x1(t),x2(t), ..., xn(t)). We refer to each x;(t) as a
system node. <
Definition 2 (Actuated node set). Given a system as in eq. (2.1), where z(t) € R", we say
that the set S € {1,2,...,n} is an actuated node set if for all times t the input u(t) affects
only the system nodes x;(t) where i € S. Formally, the set S € {1,2,...,n} is an actuated
node set if the system dynamics are given by

#(t) = Az(t) + I(S)Bu(t),  t>to, (2.2)

where 1(S) is a n x n diagonal matriz such that if i € S, the i-th entry of I(S)’s diagonal is
1, otherunse it is 0. <

The definition of I(S) in eq. (2.2) implies that the input u(t) affects only those system nodes
x;(t) where i € S. In more detail,
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e if i € S, the system node x;(t) is affected by u(t), since for i € S the i-th row of I(S)B
is the i-th row of B;

e if i ¢ S, the system node z;(t) cannot be affected by u(t), since for i ¢ S the i-th row
of I(S)B is zero.

Overall, the set S determines via the matrix I(S)B which rows of B will be set to zero and
which will remain the same.
Problem 1 (Minimal Reachability). Given

e f{imes ty and t1 such that t1 > tg,
e vectors xg, x1 € R™ and
o a system &(t) = Ax(t)+Bu(t), t > to, as in eq. (2.1), with initial condition x(ty) = xo,

find an actuated node set with minimal cardinality such that there exists an input u(t) defined
over the time interval (to,t1) that achieves x(t1) = x1. Formally, using the notation |S| to
denote the cardinality of a set S:
minimize  |S]
Sg{17277n}
such that there exist u : (to,t1) — R™ x: (to,t1) — R™ with
z(t) = Ax(t) + I(S)Bu(t), t>to,

x(to) = X, x(tl) = 2x1.

A special case of particular interest is when B is the identity matrix. Then, minimal reach-
ability asks for the fewest system nodes that need to be directly actuated by an input u(t)
so that at time ¢; the state z; is reachable from the system’s initial condition z(tg) = 0.

2.3. Non-supermodularity of distance from point to subspace

In this section, we provide a counterexample to the supermodularity result [68, Lemma 8.1].
We begin with some notation. In particular, given a matrix M € R™*" a vector v € R" and
aset S C {1,...,n}, let M(S) denote the matrix by throwing away columns of M not in
S. In addition, for any set S C {1,...,n}, let the set function

f(8) = dist*(v, Range(M(S))),
where dist(y, X) is the distance from a point to a subspace; formally,

dist(y, X) = min [ly — 2.

We show that there exist v and M such that the function:

f:{1,2,...,n} — dist?(v, Range(M(S))),
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is non-supermodular. We start with the definitions of monotone and supermodular set
functions.

Notation. For any set function f : 2¥ +— R on a ground set V, and any element = € V,

f(z) denotes f({x}). <
Definition 3 (Monotonicity). Consider any finite set V. The set function f : 2Y — R is
non-decreasing if and only if for any A C A" CV, we have f(A) < f(A'). <

In words, a set function f :2Y — R is non-decreasing if and only if adding elements in any
set A C V cannot decrease the value of f(A).

Definition 4 (Supermodularity [70, Proposition 2.1]). Consider any finite set V. The set
function f :2Y — R is supermodular if and only if for any AC A CV and x €V,

f(A) = f(AU{z}) = f(A) = F(A U {z}). <

In words, a function f : 2¥ +— R is supermodular if and only if it satisfies the following
diminishing returns property: for any = € V, the decrease f(A) — f(AU {z}) diminishes as
A grows; equivalently, for any A CV and z € V, f(A) — f(AU {z}) is non-increasing.
Example 1. We show that for

-1 1 01
v=1| 1|, M=|110],
1 0 01
f:{1,2,...,n} = dist?(v, Range(M(S))) is non-supermodular-

Since v is orthogonal to the first and third columns of M,

F{1}) = dist?(0, M({1})) = [[v[[3
f({173}) = diStQ(U,M({1,3})) = HUH%
Therefore,
f{1}) — {13} = 0.

At the same time, the span of the first two columns of M is the subspace {x € R3 : x3 = 0}.
Thus,

F({1,2}) = dist®(v, M({1,2})) = 1.
Moreover, since the three columns of A are linearly independent,
F({1,2,3}) = dist*(v, M({1,2,3})) = 0,

and as o result,
f({172}) - f({17273}) =L
In sum,
FH1,2)) = F({1,2,30) > F({1}) — fF({1,3});
hence, for v and M as defined in this ezample, f : {1,2,...,n} ~ dist?(v, Range(M(S))) is

17



non-supermodular. <

We remark that the same argument as in Example 1 shows that the set function g :
{1,2,...,n} — R such that g(S) = [dist(v, Range(M(S))]¢ is not supermodular for any
c>0.

2.4. Inapproximability of Minimal Reachability Problem

We show that, subject to a widely believed conjecture in complexity theory, there is no
efficient algorithm that solves, even approximately, the minimal reachability Problem 1.
Towards the statement of this result, we next introduce a definition of approximability and
the definition of quasi-polynomial running time.

Definition 5 (Approximability). Consider the minimal reachability Problem 1, and let the
set S* to denote one of its optimal solutions. We say that an algorithm renders Problem 1
(A1(n), Az(n))-approximable if it returns a set S such that:

o there is a state Ty such that x(t1) = 1 and ||x1 — z1|2 < A1(n);
e the cardinality of S is at most Aa(n)|S*|. <

In other words, the notion of (Aj(n), As(n)-approximability allows some slack both in the
quality of the reachability requirement, and in the number of actuators utilized to achieve
it.

Definition 6 (Quasi-polynomial running time). An algorithm is quasi-polynomial if it runs
in 200081)° time where ¢ is a constant. <

We note that any polynomial-time algorithm is a quasi-polynomial time algorithm since
nk = 2k1ogm On the other hand, a quasi-polynomial algorithm is asymptotically faster than
an exponential-time algorithm (i.e., one that runs in O(2""), for some € > 0).

We present next our main result in this chapter.

Theorem 1 (Inapproximability). There is a collection of instances of Problem 1 where
e the system’s initial condition is x(ty) = 0;
e the final state x1 is of the form [1,1,...,1,0,0,...,0]";
o the system’s input matriz is B = I, where I is the identity matriz,

such that for each § € (0,1), there exists some function A(n) = 2208 " 1) g4 that, unless
NP BPTIME(nPo¥ 1081  there exists no quasi-polynomial algorithm for which Problem 1
is (A(n), 22008 ™" M) _approzimable.

Theorem 1 says that if NP ¢ BPTIME(nP°¥1°81) there is no polynomial time algorithm (or
quasi-polynomial time algorithm) that can choose which entries of the system’s x state to ac-
tuate so that x(¢;) is even approximately close to a desired state 27 = [1,1,...,1,0,0,..., O]T
at time tq.
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To make sense of Theorem 1, first observe that we can always actuate every entry of the
system’s state, i.e., we can choose & = {1,2,...,n}. This means every system is (0,n)-
approximable; let us rephrase this by saying that every system is (0,2!°8™) approximate.
Theorem 1 tells us that we cannot achieve (0,QQ(logl_é”))—approximability for any § > 0.
In other words, improving the guarantee of the strategy that actuates every state by just a
little bit, in the sense of replacing 6 = 0 with some § > 0, is not possible —subject to the
complexity-theoretic hypothesis NP ¢ BPTIME(nP°Y °81) " Furthermore, the theorem tells
us it remains impossible even if we allow ourselves some error A(n) in the target state, i.e.,
even (A(n), 2%008' 1)) _approximability is ruled out.

Remark 1. In [66, Theorem 3] it is claimed that for any € > 0 the minimal reachability
Problem 1 1is (6, (0] (log %))—approm'mable, which contradicts Theorem 1. However, the proof
of this claim was based on [68, Lemma 8.1], which we proved incorrect in Section 2.3. <
Remark 2. The minimal controllability problem [7] seeks to place the fewest number of
actuators to make the system controllable. Theorem 1 is arquably surprising, as it was
shown in [7] that the sparsest set of actuators for controllability can be approzimated to a
multiplicative factor of O(logn) in polynomial time. By contrast, we showed in this chapter
that an almost exponentially worse approzimation ratio cannot be achieved for minimum
reachability. <

2.5. Proof of Inapproximability of Minimal Reachability

In this section, we provide a proof of our main result, namely Theorem 1. We use some
standard notation throughout: 1j is the all-ones vector in R, 0y, is the zero vector in R¥,
and eg is the k'th standard basis vector. We next give some standard definitions related to
the reachability space of a linear system.

2.5.1. Reachability Space for continuous-time linear systems

Definition 7 (Reachability space). Consider a system (t) = Ax(t) + Bu(t) as in eq. (2.1)
whose size is n. The Range([B, AB, A%B,..., A" 'B]) is called the reachability space of
#(t) = Az(t) + Bu(t). <

The reason why Definition 7 is called the reachability space is explained in the following
proposition.

Proposition 1 (|71, Proof of Theorem 6.1]). Consider a system as in eq. (2.1), with initial
condition xo. There exists a real input u(t) defined over the time interval (to,t1) such that
the solution of & = Ax + Bu, x(ty) = zo satisfies x(t1) = x1 if and only if

zy — eAMhito)y, e Range([B, AB, A’B,..., A" 'B]).

The notion of reachability space allows us to redefine the minimal reachability Problem 1
as follows.
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Corollary 1. The minimal reachability Problem 1 is equivalent to

minimize |S]|
Sg{17277n}

such that x1 — eA(tlftO)xo S
Range([I(S)B, AI(S)B,..., A" 'I(S)B)).

Overall, Problem 1 is equivalent to picking the fewest rows of the input matrix B such that
z1 — eAt—10) 0 is in the linear span of the columns of:

[I(S)B, AI(S)B, A’I(S)B,..., A" I(S)B].

2.5.2. Variable Selection Problem

We show the intractability of the minimum reachability by reducing it to the variable selec-
tion problem, defined next.
Problem 2 (Variable Selection). Let U € R™*! 2 € R™, and let A be a positive number.
The variable selection problem is to pick y € R that is an optimal solution to the following
optimization problem.
minimize  ||y|lo
yeR!

such that ||Uy — z|2 < A,
where ||y||o refers to the number of non-zero entries of y.

The variable selection Problem 2 is found in [72] to be inapproximable:
Theorem 2 ([72, Proposition 6]). Unless NP€ BPTIME(nP°Y 198 e have that for each
5 € (0,1) there exist

o a function A(l) : N = N which is 220g' ).

o a function q1(1) : N = N which is in 220€" "D gnd O(1);
e a polynomial? py(1) which is O(1);

e a polynomial m(l),

such that, given an m(l) x 1 matriz U, no quasi-polynomial algorithm can distinguish between
the following two cases:

1. There exists y € {0,1} such that Uy = 1) and [lyllo < p1(1).

2. For any y € R! such that ||Uy — lm(l)||§ < A(1), we have that |y|lo > p1(1)q1(1).

In this context, a function with a fractional exponent is considered to be a polynomial, e.g., M5 is
considered to be a polynomial in [.
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Informally, for the variable selection Problem 2 in Theorem 2, unless NPEBPTIME (nPo los 1),
there is no quasi-polynomial algorithm that can distinguish between the case where there
exists a solution to Problem 2 with a few non-zero entries, and the case where every approx-
imate solution has almost every entry nonzero.

2.5.3. Sketch of Proof of Theorem 1

We begin by sketching the intuition behind the proof of Theorem 1. Our general approach
is to find instances of Problem 1 that are as hard as inapproximable instances of the variable
selection Problem 2. We begin by discussing a construction that does not work, and then
explain how to fix it.

Given the matrix U coming from a variable selection Problem 2, we first attempt to construct
an instance of the minimal reachability Problem 1 where

e the system’s initial condition is z(tp) = 0;

e the destination state z; at time t; is of the form [1,0]" (the exact dimensions of 1
and 0 are to be determined);

e the system’s input matrix is B = I;

A:(g g) (2.3)

where the number of zeros is large so that A% = 0.

e the system’s matrix A is

Whereas the variable selection problem involves finding the smallest set of columns of U
so that a certain vector is in their span, for the minimum reachability problem, every time
we add the k-th state to the set of actuated variables S, the reachability span expands by
adding the span of the set of columns of the controllability matrix that correspond to the
vector ey being added in I(S). In particular, for the above construction, because A% = 0,
when the k-th state is added to the set of actuated variables, the span of the two columns
er and Uey, is added to the reachability space.

In other words, with the above construction we are basically constrained to make “moves”
which add columns in pairs, and we are looking for the smallest number of such “moves”
making a certain vector lie in the span of the columns. It should be clear that there is a
strong parallel between this and variable selection (where the columns are added one at a
time). However, because the columns are being added in pairs, this attempt to connect
minimum reachability with variable selection does not quite work. To fix this idea, we want
only the columns of U to contribute meaningfully to the addition of the span, with any
vectors e, we add along the way being redundant; this would reduce minimal reachability
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to exactly variable selection. We accomplish this by further defining,
U’ v
U
where we stack U some large number of times (to be determined in the main proof of
Theorem 1 at Section 2.5.4). We then set

A:<8 %/> (2.4)

The idea is that because U is “stacked” many times, adding a column of U to a set of vectors
expands the span much more than adding any vector e, so there is never an “incentive” to
even consider the contributions of the vectors e; to the reachability space.

We next make this argument precise. First, given a matrix M € R, for n > kp we define
¢n,d(M) to be the n x n matrix which stacks U in the top-right hand corner d times. For

example,
00 0 1 2
00 0 3 4
M=<§ j) paM)=| 0001 2 |,
00 0 3 4
00 0 0O

ie., ¢52(M) stacks M twice, and then pads it with enough zeros to make the resulting
matrix 5 X 5. Observe that if n > 2dl, then ¢, 4(M)? = 0. We adopt the notation that the
last { columns of ¢, 4(M) are called the non-identity columns, while the first n — [ columns
are called the identity columns.

2.5.4. Proof of Theorem 1

We turn to the proof of Theorem 1. We adopt the definitions in the previous sections.

Proof of Theorem 1: Let U be an [ X [ matrix and consider solving the minimum variable
selection problem with y = 1; by Theorem 2 this cannot be computed in quasi-polynomial
time unless NP ¢ BPTIME(nP°¥1°81) - Adopting the notation of Theorem 2, we set:

o d=m(l)[p1(D)q(1)];

e n = 2max(d,l);

e for simplicity, we use m and m(l) interchangeably.
We consider an instance of the minimal reachability where:

e the system’s initial condition is z(ty) = 0;
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e the destination state x1 at time ¢; is [1;, Oz_d]—r;
e the system’s input matrix is B = I, where [ is the identity matrix;
e the system’s matrix is A = ¢, 4(U).

Given the above instance for Problem 1, we next prove Theorem 1 in two steps.

First step of proof: Suppose that there exists a vector y € {0,1} with Uy = 1,, and
llyllo < pi(l). In that case, we claim there exists a set S C {1,2,...,n} with |S| < pi(I)
such that [IJ,OI_d]T reachable. Indeed, let S be a set of columns of U that have 1,, in
their span, and set S={k+n—1| k€ S}. Then |S| < pi(l), and

1WL::§E:L%7

keS

where Uy, denotes the k’th column of the matrix U; hence, we have

1,, Uy,
1,, Uy,
< 0111 ) = : =y : =3 Akini,
1, kes | o kes
0,—a 0,-a

where the final step follows by definition of ¢,, 4(-). Now each of the vectors in the last term
is a column of AI(S) with this choice of S, so [14,0,_4]7 indeed lies in the range of the
controllability matrix.

Second step of proof: Conversely, suppose that any z with |[Uz — 1|3 < A(l) has the
property that ||z||o > p1(1)q1(l). We refer to this as assumption Al. We claim that in this
case there is no S C {1,2,...,n} with cardinality strictly less than p;(l)q1(!) that makes
any y with ||y — [1],0 ,]T||3 < A(l) reachable. To prove this, assume the contrary, i.e.,
assume there exists S C {1,2,...,n} with cardinality strictly less than p;(1)g;(!) that makes
some y with ||y —[1,0] 7|2 < A(l) reachable. We call this assumption A2. We obtain
a contradiction as follows:

e Break up S into identity columns and non-identity columns such that & = S;qUSnon—id-

e By the pigeonhole principle, it follows that in the set {1,2,...,d} there is some interval
E ={em+1,km+2,...,km + m}, where k is a non-negative integer, such that
SNV =0, because |S| < p1(1)q1(1) and d > m[p1(1)q1(1)].

e In particular, there is no k € Siq such that k& € £, since in the previous bullet point
we showed SN E = 0, and therefore Sig N & = 0.

e As a consequence of the assumption that there is S C {1,2,...,n} with cardinal-
ity strictly less than pi(l)qi(I) that makes any y with |jy — [1],0, T[> < A(l)
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reachable, we have that there is y € Range[l(S), AI(S),0,0,...,0] such that ||y —
[17,0" 1713 < A(l). Define ys € R™ by taking the rows of y corresponding to
indices in €. Then, ||ye — 1,n||3 < A(l). Moreover, yg is in the span of the vectors ob-
tained by taking the rows km+1,. .., km-+m of the columns of the reachability matrix
[1(S), AI(S),0,0,...,0]. Since in the previous bullet point we concluded Sig N E = 0,
all such columns are either zero or equal to a column of U.

e Thus, we have that a vector ye € R™ such that ||ye — 1,n||3 < A(l) and yg is in the
span of |S| columns of U. Moreover, assumption A2 tells us that |S| < p1(1)q1(l) while
assumption Al tells us the opposite.

To summarize, we showed the dichotomy of (1a) and (1b):
la) “There exists a vector y € {0, 1} with Uy = 1,, and ||y||o < p1(1).”
1b) “Any y with ||[Uy — 1|3 < A(1) has the property that ||y|lo > p1(D)q1(1).”
implies the dichotomy of (i-a) and (i-b):
i-a) “There exists a set S C {1,2,...,n} with |S| < p1(I) such that [1},0] ,]T reachable.”

i-b) “There isno S C {1,2,...,n} with cardinality strictly less than pi(l)qi({) that makes
any y with ||y —[17,0]_,]T||3 < A(l) reachable.”

in the sense that (la) implies (i-a) (first step of the proof) and (1b) implies (i-b) (second
step of the proof).

Theorem 2 showed that unless NPEBPTIME (nP°Y 1°8 ™) no quasi-polynomial time algorithm
can distinguish between (1a) and (1b). This implies that, under the same assumption, no
quasi-polynomial time algorithm can distinguish between (i-a) and (i-b). In particular,

since for any 0 € (0,1), we can take ¢;(l) = 92(1o5'~*1) iy, Theorem 2, this implies that the
smallest number of inputs rendering [1}, O;L 4] reachable cannot be approximated within a

multiplicative factor of ¢(I) which grows slower than 92(log' 1)

Finally, we note that because the dimension of A is polynomial in [ (since A is n X n, where
n = 2max(d, ) with d = m(l)[p1(1)q1(1)]), we have that ¢(I) = 90(log! ~* n) u

2.6. Concluding Remarks & Future Work

We focused on the minimal reachability Problem 1, which is a fundamental question in op-
timization and control with applications such as power systems and neural circuits. By ex-
ploiting the connection to the variable selection Problem 2, we proved that Problem 1 is
hard to approximate. Future work will focus on properties for the system matrix A so that
Problem 1 is approximable in polynomial time.

We conclude with an open problem. As we have discussed, the minimum reachability
problem is (0, 21°g”)—approximable by the algorithm which actuates every variable; but

(0, 29(1°g176")) is impossible for any positive §. We wonder, therefore, whether the min-
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imum number of actuators can be approximated to within a multiplicative factor of say,
v/n in polynomial time, or, more generally, n¢ for some ¢ € (0,1). Indeed, observe that
since y/n = 2(1/2)legn the function v/n does not belong to 90(log! "’ n) g any 0 > 0. Thus,
the present chapter does not rule out the possibility of approximating the minimum reach-
ability problem up to a factor of \/n, or more broadly, n® for ¢ € (0,1). We remark that
such an approximation guarantee would have considerable repercussions in the context of
effective control, as at the moment the best polynomial-time protocol for actuation to meet

a reachability goal (in terms of worst-case approximation guarantee) is to actuate every
variable.
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CHAPTER 3 : Minimal Actuator Placement with Bounds on Control Effort

We address the problem of minimal actuator placement in linear systems so that the volume
of the set of states reachable with one unit or less of input energy is lower bounded by a
desired value. First, following the recent work of Olshevsky, we prove that this is NP-hard.
Then, we provide an efficient algorithm which, for a given range of problem parameters,
approximates up to a multiplicative factor of O(logn), n being the network size, any optimal
actuator set that meets the same energy criteria; this is the best approximation factor one
can achieve in polynomial time, in the worst case. Moreover, the algorithm uses a perturbed
version of the involved control energy metric, which we prove to be supermodular. Next,
we focus on the related problem of cardinality-constrained actuator placement for minimum
control effort, where the optimal actuator set is selected to maximize the volume of the set
of states reachable with one unit or less of input energy. While this is also an NP-hard
problem, we use our proposed algorithm to efficiently approximate its solutions as well.!

3.1. Introduction

During the past decade, an increased interest in the analysis of large-scale systems has led to
a variety of studies that range from the mapping of the human’s brain functional connectivity
to the understanding of the collective behavior of animals, and the evolutionary mechanisms
of complex ecological systems [74, 75, 76, 77]. At the same time, control scientists develop
methods for the regulation of such complex systems, with the notable examples in [78], for
the control of biological systems; [79], for the regulation of brain and neural networks; [80],
for robust information spread over social networks, and [81], for load management in smart
grid.

On the other hand, the large size of these systems, as well as the need for low cost control,
has made the identification of a small fraction of their states, to steer them around the
entire space, an important problem [52, 82, 83, 84]. This is a task of formidable complexity;
indeed, it is shown in [82] that finding a small number of actuators, so that a linear system
is controllable, is NP-hard. However, mere controllability is of little value if the required
input energy for the desired transfers is exceedingly high, when, for example, the control-
lability matrix is close to singularity [85]. Therefore, by choosing input states to ensure
controllability alone, one may not achieve a cost-effective control for the system.

In this chapter, we address this important requirement by providing efficient approximation
algorithms to actuate a small fraction of a system’s states so that a specified control energy
performance over the entire state space is guaranteed. In particular, we first consider the
selection of a minimal number of actuated states so that a pre-specified lower bound on
the volume of the set of states reachable with one or less units of input energy is satisfied.
Finding such a subset of states is a challenging task, since it involves the search for a small
number of actuators that induce controllability, which constitutes a combinatorial problem
that can be computationally intensive. Indeed, identifying a small number of actuated states
for inducing controllability alone is NP-hard [82]. Therefore, we extend this computationally
hard problem by introducing an energy performance requirement on the choice of the optimal

'This chapter is based on the paper by Tzoumas et al. [73].
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actuator set, and we solve it with an efficient approximation algorithm.

Specifically, we first generalize the involved energy objective to an e-close one, which remains
well-defined even for actuator sets that render the system uncontrollable. Then, we make
use of this metric and relax the implicit controllability constraint from the original actuator
placement problem. Notwithstanding, we prove that for small values of € all solutions of
this auxiliary program still render the system controllable. This fact, along with the super-
modularity of the generalized objective with respect to the choice of the actuator set, leads
to an efficient algorithm which, for a given range of problem parameters, approximates up
to a multiplicative factor of O(logn), where n is the size of the system, any optimal actua-
tor set that meets the specified energy criterion. Moreover, this is the best approximation
factor one can achieve in polynomial time, in the worst case. Hence, with this algorithm we
address the open problem of minimal actuator placement subject to bounds on the control
effort [52, 82, 84, 86, 87|.

Relevant results are also found in [84|, where the authors study the controllability of a
system with respect to the smallest eigenvalue of the controllability Gramian, and they
derive a lower bound on the number of actuators so that this eigenvalue is lower bounded
by a fixed value. Nonetheless, they do not provide an algorithm to identify the actuators
that achieve this value.

Next, we consider the problem of cardinality-constrained actuator placement for minimum
control effort, where the optimal actuator set is selected so that the volume of the set of states
that can be reached with one unit or less of input energy is maximized. The most related
works to this problem are the [52] and [88|, in which the authors assume a controllable
system and consider the problem of choosing a few extra actuators in order to optimize
some of the input energy metrics proposed in [19]. Their main contribution is in observing
that these energy metrics are supermodular with respect to the choice of the extra actuated
states. The assumption of a controllable system is necessary since these metrics depend on
the inverse of the controllability Gramian, as they capture the control energy for steering
the system around the entire state space. Nonetheless, it should be also clear that making a
system controllable by first placing some actuators to ensure controllability alone, and then
adding some extra ones to optimize a desired energy metric, introduces a sub-optimality
that is carried over to the end result. In this chapter, we follow a parallel line of work to the
minimal actuator placement problem, and provide an efficient algorithm that selects all the
actuated states to maximize the volume of the set of states that can be reached with one
unit or less of input energy without any assumptions on the controllability of the involved
systermn.

A similar actuator placement problem is studied in [84] for stable systems. Nevertheless,
its authors propose a heuristic actuator placement procedure that does not constrain the
number of available actuators and does not optimize their control energy objective. Our
proposed algorithm selects a cardinality-constrained actuator set that minimizes a control
energy metric, even for unstable systems.

The remainder of this chapter is organized as follows. The formulation and model for the
actuator placement problems are set forth in Section 3.2, where the corresponding integer
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optimization programs are stated. In Sections 3.3 and 3.4 we discuss our main results,
including the intractability of these problems, as well as the supermodularity of the involved
control energy metrics with respect to the choice of the actuator sets. Then, we provide
efficient approximation algorithms for their solution that guarantee a specified control energy
performance over the entire state space. Section 3.5 concludes the chapter.

3.2. Problem Formulation

Notation. We denote the set of natural numbers {1,2,...} as N, the set of real numbers
as R, and we let [n] = {1,2,...,n} for all n € N. Also, given a set X', we denote as |X|
its cardinality. Matrices are represented by capital letters and vectors by lower-case letters.
For a matrix A, A7 is its transpose and A;j; is its element located at the i—th row and
j—th column. If A is positive semi-definite or positive definite, we write A > 0 and A > 0,
respectively. Moreover, for i € [n], we let [ () be an n x n matrix with a single non-zero
element: I; = 1, while I;; = 0, for j, & # 7. Furthermore, we denote as I the identity
matrix, whose dimension is inferred from the context. Additionally, for § € R™, we let
diag(d) denote an n x n diagonal matrix such that diag(d);; = ¢; for all ¢ € [n]. Finally, we
set {0,1}" to be the set of vectors in R whose elements are either zero or one.

3.2.1. Actuator Placement Model
Consider a linear system of n states, x1,xs,...,x,, whose evolution is described by
@(t) = Ax(t) + Bu(t),t > to, (3.1)

where tg € R is fixed, z = {z1,22,...,2,}, ©(t) = dz/dt, while u is the corresponding
input vector. The matrices A and B are of appropriate dimension. We equivalently refer
to (3.1) as a network of n nodes, 1,2,...,n, which we associate with the states z1, z2, ..., Ty,
respectively. Moreover, we denote their collection as V = [n].

Henceforth, A is given while B is a diagonal zero-one matrix that we design so that (3.1)
satisfies a specified control energy criterion over the entire state space.
Assumption 1. B = diag(d), where 6 € {0,1}".

Specifically, if §; = 1, state x; may receive an input, while if §; = 0, it receives none.
Definition 8 (Actuator Set, Actuator). Given ad € {0,1}", let A={i:i €V and §; = 1};
then, A is called an actuator set and each i € A an actuator.

3.2.2. Controllability and Related Energy Metrics

We consider the notion of controllability and relate it to the problems of this chapter, i.e., the
minimal actuator placement for constrained control energy and the cardinality-constrained
actuator placement for minimum control effort.

System (3.1) is controllable — equivalently, (A, B) is controllable — if for any finite ¢; > ¢
and any initial state xy = z(to) it can be steered to any other state 1 = x(f1) by some
input u(t) defined over [to,t1]. Moreover, for general matrices A and B, the controllability
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condition is equivalent to the matrix

t
W= [ eAlt-to) ppTeAT(t-t0) gy (3.2)

to

being positive definite for any t; > to [85]. Therefore, we refer to W as the controllability
matriz of (3.1).

The controllability of a linear system is of interest because it is related to the solution of
the following minimum-energy transfer problem

t1
minimize / u(t)u(t) dt
u(*) to

subject to (3.3)
z(t) = Ax(t) + Bu(t),to <t < tq,
x(to) = 0,.1'(t1) =T,

where A and B are any matrices of appropriate dimension.

In particular, if for the given A and B (3.1) is controllable the resulting minimum control
energy is given by

eTw e, (3.4)

where 7 = t; — to [19]. Thereby, the states that belong to the eigenspace of the smallest
eigenvalues of (3.2) require higher energies of control input [85]. Extending this observation
along all the directions of transfers in the state space, we infer that the closer W is to singu-
larity the larger the expected input energy required for these transfers to be achieved [19].
For example, consider the case where W is singular, i.e., when there exists at least one di-
rection along which system (3.1) cannot be steered [85]. Then, the corresponding minimum
control energy along this direction is infinity.

This motivates the consideration of control energy metrics that quantify the steering energy
along all the directions in the state space, as the logdet(W 1) [19]. Indeed, this metric is
well-defined only for controllable systems — W must be invertible — and is directly related
to (3.4). In more detail, y/det(W—1) is inversely proportional to the volume of the set of
states reachable with one or less units of input energy, i.e., the volume of {x : 27 W1z < 1};
as a result, when log det(W 1) is minimized, the volume of {z : 27 W12 < 1} is maximized.
In this chapter, we aim to select a small number of actuators for system (3.1) so that
log det(W 1) either meets a specified upper bound or is minimized.

Per Assumption 1, further properties for the controllability matrix are due: For any actuator
set A, let WA = W, then,

Wa = Z@'Wi, (3.5)
i=1
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where W; = jz;l e 1WeA" 4 for any i € [n]. This follows from (3.2) and the fact that
BBT = B = 3" 619 for B = diag(6). Finally, for any A; € Ay C V, (3.5) and
Wi, Wa, ..., W, = 0 imply WAl = WAQ.

3.2.8. Actuator Placement Problems

We consider the selection of a small number of actuators for system (3.1) so that log det(W 1)
either satisfies an upper bound or is minimized. The challenge is in doing so with as few
actuators as possible. This is an important improvement over the existing literature where
the goal of actuator placement problems has either been to ensure controllability alone [82]
or the weaker property of structural controllability [89, 90]. Other relevant results consider
the task of leader-selection [91, 92|, where the leaders are the actuated states and are chosen
so to minimize a mean-square convergence error of the remaining states.

Furthermore, the most relevant works to our study are the [52] and [88] since its authors
consider the minimization of log det(W —1); nevertheless, their results rely on a pre-existing
actuator set that renders (3.1) controllable although this set is not selected for the mini-
mization of this energy metric. One of our contributions is in achieving optimal actuator
placement for minimum control effort without assuming controllability beforehand. Also,
the authors of [84] adopt a similar framework for actuator placement but focus on deriving
an upper bound for the smallest eigenvalue of W with respect to the number of actuators
and a lower bound for the required number actuators so that this eigenvalue takes a speci-
fied value. In addition, they consider the maximization of tr(WW'); however, their techniques
cannot be applied when minimizing the log det(W 1), while the maximization of tr(W) may
not ensure controllability [84].

We next provide the exact statements of our actuator placement problems, while their
solution analysis follows in Sections 3.3 and 3.4. We first consider the problem

minimize |A|
ACVY
subject to (I

logdet(Wy!) < E,

for some constant E. Its domain is {A : A C V and (4, B(A)) is controllable} since the
controllability matrix W,y must be invertible. Moreover, it is NP-hard, as we prove in
Appendix 3.6.

Additionally, Problem (I) is feasible for certain values of E. In particular, for any A such
that (A, B(A)) is controllable, 0 < Wa, i.e., logdet(W;,!) < logdet(Wx"') since for any
A (3.5) implies Wa < Wy, [93]; thus, (I) is feasible for

E > log det(Wy, ). (3.6)

Moreover, (I) is a generalized version of the minimal controllability problem of [82] so that
its solution not only ensures controllability but also satisfies a guarantee in terms of a control
energy metric; indeed, for E — oo we recover the problem of [82].
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We next counsider the problem

inimize log det(W5"
minimize  log et(WL")

subject to (11)
Al <,

where the goal is to find at most r actuated states so that the volume of the set of states
that can be reached with one unit or less of input energy is maximized. Its domain is
{A:ACV,|A| <rand (A,B(A)) is controllable}. Moreover, due to the NP-hardness of
Problem (I), Problem (II) is also NP-hard (cf. Appendix 3.6).

Because (I) and (IT) are NP-hard, we need to identify efficient approximation algorithms
for their general solution; this is the subject of Sections 3.3 and 3.4. In particular, in
Section 3.3 we consider Problem (I) and provide for it a best approximation algorithm, for
a given range of problem parameters. To this end, we first define an auxiliary program,
which ignores the controllability constraint of (I), and, nevertheless, admits an efficient
approximation algorithm whose solutions not only satisfy an energy bound that is e-close to
the original one but also render system (3.1) controllable. Then, in Section 3.4 we turn our
attention to (II), and following a parallel line of thought as for (I), we efficiently solve this
problem as well.

Since the approximation algorithm for the aforementioned auxiliary program for (I) is based
on results for supermodular functions, we present below a brief overview of the relevant
concepts. The reader may consult [16] for a survey on these results.

3.2.4. Supermodular Functions

We give the definition of a supermodular function, as well as, a relevant result that will be
used in Section 3.3 to construct an approximation algorithm for Problem (I). The material
of this section is drawn from [94].

Let V be a finite set and denote as 2V its power set.
Definition 9 (Submodularity and supermodularity). A function h : 2¥ — R is submodular
if for any sets A and A, with A C A CV, and any a ¢ A/,

h(AU{a}) — h(A) > h(A" U {a}) — h(A).
A function h : 2V + R is supermodular if (—h) is submodular.

An alternative definition of a submodular function is based on the notion of non-increasing
set functions.

Definition 10 (Monotone Set Function). A function h : 2V + R is a non-increasing set
function if for any A C A" CV, h(A) > h(A"). Moreover, h is a non-decreasing set function
if (—h) is a non-increasing set function.

Therefore, a function k : 2¥ — R is submodular if, for any a € V), the function h, : 2¥\M4} —
R, defined as hy(A) = h(AU{a}) — h(A), is a non-increasing set function. This property is
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also called the diminishing returns property.

Next, we present a fact from the supermodular functions minimization literature, that we use
in Section 3.3 so as to construct an approximation algorithm for Problem (I). In particular,
consider the following optimization program, which is of similar structure to (I), where
h:2Y — R is a non-decreasing, supermodular set function:

minimize |A|
ACV

subject to (0)
h(A) < E.

The following greedy algorithm has been proposed for its approximate solution, for which,
the subsequent fact is true.

Algorithm 2 Approximation Algorithm for the Problem (O).
Input: A, E.
Output: Approximate solution to Problem (O).
A+
while h(A) > E do
a; < a' € argmaxoeya{h(A) — (AU {a})}
A+ AU {az}
end while
Fact 1. Denote as A* a solution to Problem (O) and as Ao, A1, ... the sequence of sets
picked by Algorithm 2. Moreover, let | be the smallest index such that h(A;) < E. Then,

h(V) = h(D)
h(V) = h(A1-1)

l
= <1+log
| A%

In Section 3.3, we provide an efficient approximation algorithm for (I), by applying Fact 1
to an appropriately perturbed version of this problem, so that it involves a non-decreasing
supermodular function, as in (Q). This also leads to our second main contribution, presented
in Section 3.4: An efficient approximation algorithm for Problem (IT), which selects all the
actuators to maximize the volume of the set of states that can be reached with one unit
or less of input energy, without assuming controllability beforehand. This is in contrast to
the related works [52] and [88]: there, the authors consider a similar problem for choosing
a few actuators to optimize log det(W(__)l); however, their results rely on the assumption of
a pre-existing actuator set that renders (3.1) controllable, although this set is not selected
towards the minimization of log det(W(f)l). Nevertheless, this assumption is necessary, since

they then prove that the log det(W(f)l) is a supermodular function in the choice of the extra
actuators. On the other hand, our algorithms select all the actuators towards the involved
energy objective, since they rely on a e-perturbed version of log det(W(f)l), that we prove to
be supermodular without assuming controllability beforehand.

Overall, our results supplement the existing literature by considering Problems (I) and
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(IT) when the system is not initially controllable and by providing efficient approximation
algorithms for their solution, along with worst-case performance guarantees.

3.3. Minimal Actuator Sets with Constrained Control Effort

We present an efficient approximation algorithm for Problem (I). To this end, we first
generalize the involved energy metric to an e-close one that remains well-defined even when
the controllability matrix is not invertible. Next, we relax (I) by introducing a new program
that makes use of this metric and circumvents the restrictive controllability constraint of
(I). Moreover, we prove that for certain values of € all solutions of this auxiliary problem
render the system controllable. This fact, along with the supermodularity property of the
generalized metric that we establish, leads to our proposed approximation algorithm. The
discussion of its efficiency ends the analysis of (I).

3.8.1. An e-close Auziliary Problem
Consider the following approximation to (I)
minimize |A|
ACY
subject to (I')
log det(Wa +eI) ™' < E,

where Wa is equivalent to Wa /(2Amax (W), Amax(Wy) is the maximum eigenvalue of Wy,
E is equal to E + nlog(2Amax(Wy)), and € is positive.

In contrast to (I), the domain of this problem consists of all subsets of V since W(_) +el
is always invertible. The e-closeness is evident since for any A such that (A, B(A)) is
controllable log det(WA +el)7t < E becomes log~det(WA_1) < F as € — 0. Due to the
definition of W, for all A C V), all eigenvalues of W are at most 1/2 [93, Theorem 8.4.9];
this property will be useful in the proof of one of our main results, in particular, Proposition
1.

In the following paragraphs, we identify an approximation algorithm for solving Problem (I'),
and correspondingly, the e-close, NP-hard Problem (I).

3.3.2. Approzimation Algorithm for Problem (I')

We first prove that all solutions of (I') for 0 < ¢ < min{1/2,e ¥} render the system
controllable, notwithstanding that no controllability constraint is imposed by this program
on the choice of the actuator sets. Moreover, we show that the involved e-close energy
metric is supermodular with respect to the choice of actuator sets and then we present our
approximation algorithm, followed by a discussion of its efficiency which ends this subsection.
Proposition 1. Consider a constant w > 0, € such that 0 < ¢ < min{1/2,e7“}, and any
A CV: Iflogdet(Wa + eI)~' < w, then (A, B(A)) is controllable.

Proof: Assume that (A, B(A)) is not controllable and let k be the corresponding number of
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non-zero eigenvalues of Wa which we denote as A1, A9, ..., Ag; therefore, K <n — 1. Then,

log det(Wa + €)™ Z log ————
2>\max(WV) + €

1 1
+ (n—k)log— > log — > w,
€ €

since W +¢€ < 1 (because ﬁl(wv) < 1/2 and € < 1/2), and € < e~“. Therefore, we
have a contradiction. [

Note that w is chosen independently of the parameters of system (3.1). Therefore, the
absence of the controllability constraint in Problem (I') for 0 < ¢ < min{1/2,e ¥} is
fictitious; nonetheless, it obviates the necessity of considering only actuator sets that render
the system controllable.

The next proposition is also essential and suggests an efficient approximation algorithm for
solving (I').

Proposition 2 (Supermodularity). The function logdet(Wa +eI)™ : A CV — R is
supermodular and non-increasing set with respect to the choice of A.

Proof: To prove that the log det(Wa +€I)~! is non-increasing, recall from (3. 5) that for any
Ay C Ay Cnl, WA1 < Wa,. Therefore, from [93, Theorem 8.4.9], log det(Wa, + eI)~!
log det(Wa, +eI)~!, and as a result, log det(Wa + eI)~! is non-increasing.

Next, to prove that log det(WA +eI)~! is a supermodular set function, recall from Section
3.2.4 that it suffices to prove that log det(WA + el) is a submodular one. In particular,
recall that a function h : 2I" +— R is submodular if and only if, for any a € [n], the function
he = 2M\Mel 5 R, where he(A) = h(A U {a}) — h(A), is a non-increasing set function.
Therefore, to prove that h(A) = logdet(Wa + €I) is submodular, we may prove that the
hq(A) is a non-increasing set function. To this end, we follow the proof of Theorem 6 in
[52]: first, observe that

ha(A) = log det(Wayqy + €I) — log det(Wa + €I)
= log det(Wa + W, + €I) — log det(Wa + €I).
Now, for any A; € Ay C [n] and z € [0,1], define Q(2) = eI + Wa, + 2(Wa, — Wa,)

and h(z) = logdet(Q(z) + W,) — logdet (Q(z)); it is 2(0) = ha(A1) and h(1) = ha(Ay).
Moreover, since dlogdet(Q(z)))/dz = tr (Q(z)'dQ(z)/dz) (cf. equation (43) in [95]),

= tr[((Q(2) + Wa) ™t = Q(2)"HOun],

where Oy = Wa, — Wa,. From [93, Proposition 8.5.5], (Q(z) + I/i/a)_1 =< Q(2)7!, because
Q(z) = 0 for all z € [0,1], since el = 0, Wa, = 0, and Wa, = Wa,. Thereby, from [93,
Corollary 8.3.6], all eigenvalues of ((Q(z) + W,)~! — Q(2)71)O2; are non-positive. As a

34



result, dh(z)/dz < 0, and

L dh z
ha(Q2) = h(1) :B(o)+/0 df;(z)

Therefore, hy(A) is a non-increasing set function, and the proof is complete. |

Therefore, the hardness of the e-close Problem (I) is in agreement with that of the class of
minimum set-covering problems subject to submodular constraints. Inspired by this litera-
ture [16, 94, 96], we have the following efficient approximation algorithm for Problem (I'),
and as we show by the end of this section, for Problem (I) as well.

Algorithm 3 Approximation Algorithm for the Problem (I').

Input: Bound E, parameter € < min{1/2,e"%}, matrices Wi, Wa, ..., W,,.
Output: Actuator set A.
A0
while log det(Wa +el)~! > E do
ai< a’' € argmax,cy\a{log det(Wa + eI)~! — log det(WAU{a} +el)71}
A+ AU {CLZ}
end while

Regarding the quality of Algorithm 3 the following is true.
Theorem 1 (A Submodular Set Coverage Optimization). Denote as A* a solution to Prob-
lem (I') and as A the selected set by Algorithm 3. Then,

(A, B(A)) is controllable, (3.7)
logdet(Wa +€eI) ™! < E, (3.8)
A log(e™1) —1 Vy +el)™?
4| §1+logn ogge ) onget(Wy—i—e ) =F, (3.9)
|A*| E —logdet(Wy + el )1
1
F = O(logn + loglog(e™!) + log —= ). (3.10)

E —log det(ng)
Finally, the computational complexity of Algorithm 8 is O(n®).

Proof: We first prove (3.8), (3.9) and (3.10), and then, (3.7). We end the proof by clarifying
the computational complexity of Algorithm 3.

First, let Ag, Ay, ... be the sequence of sets selected by Algorithm 3 and [ the smallest index
such that logdet(Wa, + eI)~* < E. Therefore, A; is the set that Algorithm 3 returns, and
this proves (3.8).

Moreover, from [94], since for any A C V, h(A) = —logdet(Wa + eI)~' + nlog(e™!) is a
non-negative, non-decreasing, and submodular function (cf. Proposition 2), it is guaranteed
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for Algorithm 3 that (cf. Fact 1)

h(V) = h(D)
h(V) = h(Ai-1)

<1+log

l
| A%
— 1+
nlog(e~!) — log det(Wy + eI)~!
log det(Wa, , + eI)~1 —logdet(Wy 4 eI)~1

Now, [ is the first time that log det(Wa,+el)~! < E, and a result log det(Wa, , +€eI)~" > E.
This implies (3.9).

Moreover, observe that 0 < log det(Vi/v +el)™! < logdet(W,,!) so that from (3.9) we get
F < 1+log[nlog(e™t)/(E — log det(W,,1))], which in turn implies (3.10).

On the other hand, since 0 < € < min{1/2, e*E} and log det(Wa, +€l)~! < E, Proposition 1
is in effect, i.e., (3.7) holds true.

Finally, with respect to the computational complexity of Algorithm 3, note that the while
loop is repeated for at most n times. Moreover, the complexity to compute the determinant
an n X n matrix, using Gauss-Jordan elimination decomposition, is O(n?). Additionally,
at most n matrices must be inverted so that the “argmax,cy\a{log det(Wa + eI)~! —
log det(WAU{a} + €eI)~'}” can be computed. Furthermore, O(n) time is required to find a
maximum element between n available. Therefore, the computational complexity of Algo-
rithm 3 is O(n®). [ |

Therefore, Algorithm 3 returns a set of actuators that meets the corresponding control energy
bound of Problem (I') while it renders system (3.1) controllable. Moreover, the cardinality
of this set is up to a multiplicative factor of F' from the minimum cardinality actuator sets
that meet the same control energy bound.

The dependence of F' on n,e and F was expected from a design perspective: Increasing
the network size n or improving the accuracy by decreasing €, as well as demanding a
better energy guarantee by decreasing E should all push the cardinality of the selected
actuator set upwards. Also, loglog(e!) is the design cost for circumventing the difficult
to satisfy controllability constraint of (I) [82], i.e., for assuming no pre-existing actuators
that renders (3.1) controllable and choosing all the actuators towards the satisfaction of an
energy performance criterion.

From a computational perspective, the computation of the determinant is the only intensive
procedure of Algorithm 3, requiring O(n?) time, if we use the Gauss-Jordan elimination
decomposition. On the other hand, to apply this algorithm on large-scale systems, we can
speed up this procedure using the Coppersmith-Winograd algorithm [97], which requires
O(n2'376) time. Alternatively, we can use numerical methods, which efficiently compute
an approximate the determinant of a matrix even if its size is of several thousands [9§].
Moreover, we can speed up Algorithm 3 using a method proposed in [99], which avoids the
computation of log det(Wa + eI)~! — log det(WAU{a} + €I)~! for unnecessary choices of a,
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towards the computation of the arg max,ecyn\ a {log det(Wa+el)~' —log det(WAU{a} +el)71},
by taking advantage of the supermodularity of log det(W(‘) +el)7 L.

Finally, for large values of n, the computation of Wi, Wy, ..., W, is demanding as well. On
the other hand, in the case of stable systems, as many physical, e.g., biological, networks are,
the corresponding controllability Gramians can be used instead, which for a stable system
can be calculated from the Lyapunov equations AG; + G AT = —I10 for i = 1,2,...,n,
respectively, and are given in closed-form by

Gr= [ eAl—t0) () AT (1t0) g (3.11)

to

Using these Gramians for the evaluation of W in (3.4) corresponds to the minimum state
transfer energy with no time constraints. The advantage of this approach is that (3.11) can
be solved efficiently using numerical methods, even when the system’s size n has a value of
several thousands [100].

In Section 3.3.3 we finalize our treatment of Problem (I) by employing Algorithm 3 to
approximate its solutions.

3.3.8. Approzimation Algorithm for Problem (I)

We present an efficient approximation algorithm for Problem (I) that is based on Algo-
rithm 3. Let A be the actuator set returned by Algorithm 3, so that (A, B(A)) is control-
lable and log det(Wa + eI)~! < E. For any ¢ > 0, there exists sufficiently small ¢(c) such
that:

log det(Wa + e(c)I) ™ > logdet(Wx') — cE. (3.12)

Moreover, log det(Wa +e(e)I)~! < E, and therefore we get from (3.12) that log det(WA_l) <
(I+¢)E, or

logdet(Wx') < E + cE. (3.13)
Hence, we refer to ¢ as approzimation error.

On the other hand, €(c) is not known a priori. Hence, we need to search for a sufficiently small
€ so that (3.13) holds true. One way to achieve this since € is lower and upper bounded by 0
and min{1/2,e~F}, respectively, is to perform a search using bisection. We implement this
procedure in Algorithm 4, where we denote as [Algorithm 3](E, €) the set that Algorithm 3
returns for given E and e.

In the worst case, when we first enter the inner while loop, the if condition is not satisfied,
and as a result € is set to a lower value. This process continues until the if condition is
satisfied for the first time, given that ag is sufficiently small for the specified ¢, from which
point and on this while loop converges up to the accuracy level ag to the largest value € of
¢ such that log det(W1') —log det(Wa + eI)~! < ¢E; specifically, |e — € < ag/2, due to the
mechanics of the bisection method. On the other hand, if ag is not sufficiently small, the
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Algorithm 4 Approximation Algorithm for the Problem (I).

Input: Bound F, approximation error ¢, bisection’s initial accuracy level ag, matrices
Wi, Wa, ..., W,.
Output: Actuator set A. )
a < ag, flag < 0,1 < 0, u < min{1/2,e FY e < (I +u)/2
while flag # 1 do
while v — [ > a do
A « [Algorithm 3](E, €)
if logdet(W1') — logdet(Wa + eI)~! > c¢E then
U< €
else
[+ €
end if
e+ (I4+u)/2
end while
if logdet(Wx') — logdet(Wa + €I)~! > ¢E then
u+e€ e (I+u)/2
end if
A « [Algorithm 3](E, €)
if logdet(Wi') — logdet(Wa + eI)~! < ¢E then
flag + 1
else
a<a/2
end if
end while

value of a decreases within the last if statement of the algorithm, the variable flag remains
zero and the outer loop is executed again, until the convergence within the inner while is
feasible. Then, the if statement that follows the inner while loop ensures that € is set below
€, so that log det(WA_l) —logdet(Wa + eI)~! < ¢E. Finally, the last if statement sets the
flag to 1 and the algorithm terminates. The efficiency of this algorithm for Problem (I) is
summarized below.

Theorem 2. (Approximation Efficiency and Computational Complexity of Algo-
rithm 4 for Problem (I)) Denote as A* a solution to Problem (I) and as A the selected
set by Algorithm 4. Then,

(A, B(A)) is controllable,

log det(Wx') < E + cFE, (3.14)
A
<F A
‘A*’ — Y (3 5)
F = O(logn + max{loglog(n/(cE)),log E}+
1
log (3.16)

E — logdet(VNVgl))'
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Finally, let a be the bisection’s accuracy level that Algorithm 4 terminates with. Then, if
a = ag, the computational complezity of Algorithm 4 is O(n®logy(1/ag), else it is:

O(n” log,(1/a)logy(ao/a)).

Proof: We only prove statements (3.14), (3.15) and (3.16), while the first follows from
Theorem 1. We end the proof by clarifying the computational complexity of Algorithm 4.

First, when Algorithm 4 exits the while loop, and after the following if statement,
log det(Wx') — log det(Wa + el) ™' < cE,
and since log det(Wa + eI)~! < E, this implies (3.14).

To show (3.15), consider any solution A* to Problem (I) and any solution A® to Problem (T').
Then, |A*| > |A®|; to see this, note that for any A*, log det(Wa+ +eI)~' < logdet(Wx}) <
E since € > 0, i.e., A* is a candidate solution to Problem (I') because it satisfies all of its
constraints. Therefore, |A*| > |A®|, and as a result |A|/|A*] < |A|/|A®] < F per (3.9).

Next, note that (3.14) holds true when, e.g., € is equal to cE/(2n). Therefore, since also
1

e <e P logloge™! = O(max{loglog(n/(cE)),log E}) and this proves (3.16).

Finally, with respect to the computational complexity of Algorithm 4, note that the in-
ner while loop is repeated for at most logy(1/(2a)) times (since € < 1/2); in the worst
case. Moreover, the time complexity of the procedures within this loop is of order O(n®),
due to Algorithm 3. Finally, if a = ag, the outer while loop runs for one time, and oth-
erwise, for logy(ag/a) times. Therefore, the computational complexity of Algorithm 4 is
O(n®logy(1/ap)), or O(n®logy(1/a)logy(ag/a)), respectively. [

From a computational perspective, we can speed up Algorithm 4 using the methods we
discussed in the end of Section 3.3.2. Moreover, for a wide class of systems, e.g., when
a = O(n”cl), where ¢1 is a positive constant, independent of n, this algorithm runs in
polynomial time, due to the logarithmic dependence on a.

From an approximation efficiency perspective we have that F' = O(log(n)), whenever E =
O(n), Amax(Wy) = O(n™?) and 1/(E — log det(ng)) = O(n®), where c1, ¢ and c3 are
positive constants and independent of n. In other words, the cardinality of the actuator
set that Algorithm 4 returns is up to a multiplicative factor of O(logn) from the minimum
cardinality actuator sets that meet the same energy bound. Indeed, this is the best achievable
bound in polynomial time for the set covering problem in the worst case [13], while (I) is a
generalization of it [82]. Thus, Algorithm 4 is a best-approximation of (I) for this class of
systems.

3.4. Minimum Energy Control by a Cardinality-Constrained Actuator Set

We present an approximation algorithm for Problem (II) following a parallel line of thought
as in Section 3.3: First, we circumvent the restrictive controllability constraint of (II) using
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the e-close generalized energy metric defined in Section 3.3. Then, we propose an efficient
approximation algorithm for its solution that makes use of Algorithm 4; this algorithm
returns an actuator set that always renders (3.1) controllable while it guarantees a value
for (IT) that is provably close to its optimal one. We end the analysis of (II) by explicating
further the efficiency of this procedure.

3.4.1. An e-close Auziliary Problem
For € > 0 consider the following approximation to (IT)

inimize log det(Wa +€l)™!
minimize  log et(Wa + €l)

subject to (IT)

IA] <.

In contrast to (II), the domain of this problem consists of all subsets of V since W(_) +el is
always invertible. Moreover, its objective is e-close to that of Problem (II).

In the following paragraphs, we identify an efficient approximation algorithm for solving
Problem (IT'), and correspondingly, the e-close, NP-hard Problem (IT). We note that the
hardness of the latter is in accordance with that of the general class of supermodular function
minimization problems, as per Proposition 2 the objective log det(WA +el)~1 is supermodu-
lar. The approximation algorithms used in that literature however [16, 94, 96], fail to provide
an efficient solution algorithm for (II') — for completeness, we discuss this direction in the
Appendix 3.6.1. In the next subsection we propose an efficient approximation algorithm for
(IT) that makes use of Algorithm 4.

3.4.2. Approximation Algorithm for Problem (1I)

We provide an efficient approximation algorithm for Problem (II) that is based on Algo-
rithm 4. In particular, since (II) finds an actuator set that minimizes log det(W(f)l), and

any solution to (I) satisfies log det(W(f)l) < E, one may repeatedly execute Algorithm 4 for
decreasing values of E as long as the returned actuators are at most r and E satisfies the
feasibility constraint £ > logdet(W;,!) (cf. Section 3.2.3). Therefore, for solving (II) we
propose a bisection-type execution of Algorithm 4 with respect to E.

To this end, we also need an upper bound for the value of (IT): Let A¢ be a small actuator
set that renders system (3.1) controllable; it is efficiently found using Algorithm 4 for large
E or the procedure proposed in [82]. Then, for any r > |A¢|, log det(WA_Cl) upper bounds

the value of (II) since log det(W(f)l) is monotone.

Thus, having a lower and upper bound for the value of (II), we implement Algorithm 5 for
approximating the solutions of (IT); we consider only the non-trivial case where r < n and
denote the set that Algorithm 4 returns as [Algorithm 4](FE, ¢, ag) for given E, ¢ and ag.

In the worst case, when we first enter the while loop, the if condition is not satisfied, and as
a result F is set to a greater value. This process continues until the if condition is satisfied
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Algorithm 5 Approximation algorithm for Problem (II).

Input: Set A, maximum number of actuators r such that r» > |A¢|, approximation error
c for Algorithm 4, bisection’s accuracy level ag for Algorithm 4, bisection’s accuracy level
af, for current algorithm, matrices Wy, Wa, ..., W,.

Output: Actuator set A. )

A+ 0,1+ logdet(ng), U tr(WA_cl), E +— (I4+u)/2, € «— min{1/2,e ¥}
while v — 1 > q; do
A « [Algorithm 4](E, ¢, ag)
if |A| > r then
| E, E+ (I+u)/2
else
u—E, B+ (I4+u)/2
end if
e+ 1/E
end while
if |A| > r then
I+ E, E+ (I4+u)/2
end if
A « [Algorithm 4](E, ¢, ag)

for the first time from which point and on the algorithm converges up to the accuracy level
ag to the smallest value £ of E such that |A| < r; specifically, |E — E| < a}/2 due to
the mechanics of the bisection method, where E = mln{E |[Algorithm 4](E, ¢, ag)| < r}.
Hereby E is the least bound E for which Algorithm 4 returns an actuator set of cardinality at
most  for the specified ¢ and a9 — E may be larger than the value of (IT) due to worst-case
approximability of the involved problems (cf. Theorem 2). Then, Algorithm 5 exits the while
loop and the last if statement ensures that E is set below E so that |A] < r. Moreover, per
Theorem 2 this set renders (3.1) controllable and guarantees that log det(WA_l) < E+cE.
Finally, with respect to the computational complexity of Algorithm 5, note that the while
loop is repeated for at most log, [(log det(WA_l) — log det(W‘l))/ag] times. Moreover, the
time complexity of the procedures within this loop are, in the worst case, of the same order
as that of Algorithm 4 when it is executed for E equal to E. Regarding Theorem 2, denote
this time complexity as C' (E ,¢,ap). Therefore, the computational complexity of Algorithm

41is O (C’(E, ¢, ap) logy [(log det(W&c) log det (V. ))/aD

We summarize the above in the next corollary, which also ends the analysis of Problem (II).
Corollary 1. (Approximation Efficiency and Computational Complexity of Al-
gorithm 5 for Problem (II)) Denote as A the selected set by Algorithm 5. Then,

(A, B(A)) is controllable,

log det(Wx') < E + cFE,

|E—E| <d/2,
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where E = min{E : |[Algorithm 4](E,c,a)| < r} is the least bound E that Algorithm 4
satisfies with an actuator set of cardinality at most r for the specified ¢ and a. Finally, the
computational complezity of Algorithm &5 is

log det(WA_cl) —log det(W;l) > >

CL/

0] (C(E, ¢, ap) logy <
where C(E, ¢, ap) denotes the computational complezity of Algorithm 4, with respect to The-
orem 2, when it is executed for E equal to E.

From a computational perspective, we can speed up Algorithm 5 using the methods we
discussed in the end of Section 3.3.2. Moreover, for a wide class of systems, e.g., when
a = O(n™"), where ¢; is a positive constant, independent of n, and similarly for o’ and
log det(W&cl), this algorithm runs in polynomial time, due to the logarithmic dependence

on a, a’ and log det(Wgcl), respectively.
3.5. Concluding Remarks & Future Work

We addressed two actuator placement problems in linear systems: First, the problem of
minimal actuator placement so that the volume of the set of states reachable with one or
less units of input energy is lower bounded by a desired value, and then the problem of
cardinality-constrained actuator placement for minimum control effort, where the optimal
actuator set is selected so that the volume of the set of states that can be reached with one
unit or less of input energy is maximized. Both problems were shown to be NP-hard, while
for the first one we provided a best approximation algorithm for a given range of the problem
parameters. Next, we proposed an efficient approximation algorithm for the solution of the
second problem as well. Our future work is focused on exploring the effect that the under-
lying network topology of the involved system has on these actuator placement problems,
as well as investigating distributed implementations of their corresponding algorithms.

3.6. Appendix: Computational Complexity

We prove that Problem I is NP-hard, providing an instance that reduces to the NP-hard
controllability problem introduced in [82]. In particular, it is shown in [82] that deciding if
(3.1) is controllable by a zero-one diagonal matrix B with r + 1 non-zero entries reduces to
the r-hitting set problem, as we define it below, which is NP-hard [101].

Definition 11 (r-hitting set problem). Given a finite set M and a collection C of non-empty
subsets of M, find an M’ C M of cardinality at most r that has a non-empty intersection
with each set in C.

Without loss of generality, we assume that every element of M appears in at least one set in
C and all sets in C are non-empty. Moreover in Definition 11, we let |C| = p and M = {1, 2,
...,m}, and define C' € RP*™ such that Cj; = 1 if the i-th set contains the element j and
zero otherwise.

We show that Problem (I) for A as described below and with E = n(2n)2"" T12n+2 _ p g
equivalent to the NP-hard controllability problem introduced in [82]. Therefore, since F
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can be described in polynomial time, as log(E) = O(n?), we conclude that Problem (I) is
NP-hard.

In particular, as in [82], let n = m +p+ 1 and A = V-IDV, where D = diag(1,2,...,n)
and?

2ILmxm Om><;10 Emx1
O1><m 01><p 1

It is shown in [82] that deciding if A is controllable by a zero-one diagonal matrix B with
r + 1 non-zero entries is NP-hard.

Now, observe that all the entries of V' are integers either zero or at most m + 1. Moreover,
with respect to the entries of V=1, it is shown in [82] that:

e Fori=1,2,...,m: It has a 1/2 in the (4,4)-th place and a —1/2 in the (i, n)-th place,
and zeros elsewhere.

e Fori =m+1,m+2,...,m+p: Ilthasa1l/(m+1) in the (i,7)-th place, a —1/(2(m~+1))
in the (4, 7)-th place where j € C; (C; is the corresponding set of the collection C), and
|C;|/(2(m + 1)) in the (i, n)-th place; every other entry of the i-th row is zero.

e Finally, the last row of V1 is [0,0,...,0,1].

Therefore, 2(m + 1)V ! has all its entries as integers that are either zero or at most n?, in
absolute value.

Consider the controllability matrix associated with this system, given a zero-one diagonal
B that makes it controllable, and denote it as Wp. Then,

t
Wg = / " Alt—t0) g BT AT (t-t0) g4

to

t
=yt / 1eD(t_tO)VBVTeDT(t_tO)dtV‘T.
to

Let t1 — tgp = In(n). Then, (2n)!fglft° PV BVTeP"t 4t evaluates to a matrix that has
entries of the form ¢y +cin+can®+...+c,n", where cg, c1, . . ., ¢, are non-negative integers
and all less than (2n)! < (2n)?". Thereby,

t1—to
Wh = 4(m+ 1)2(2n)1V ! / PV BYTeP t qty T
0
has entries of the form ¢ + ¢jn + chn? + ... + ¢,n", where ¢, c}, ..., c), are integers and all

less than (2n)2("+3) in absolute value due to the pre and post multiplications by 2(m+1)V !
and 2(m + 1)V =T respectively.

2V is invertible since it is strictly diagonally dominant.
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We are interested on upper bounding log det(ng): since for x > 0, log(z) < x — 1,
logdet(W3') < tr(Wz') — n. In addition,

tr(Wgt) = 4(m + 1)22n)ltr(Wp ') < (20)20 V(Wi ™.

Therefore, we upper bound tr(WfB_l): Using Crammer’s rule to compute W]’B_l, due to the
form of the entries of W}, all of its elements, including the diagonal ones, if they approach
infinity, they approach it with at most n!n™(2n)2"("*+3) < (2n)2*("*5) speed, and as a result
tT(Wé_l) < n(Qn)Qn(n+5)_ Hence, tT’(ng) < n(2n)2n(n+5)+2(n+1) _ 71(2”)2712+12n+27 for
any B that makes (3.1) controllable. Thus, if we set E = n(2n)2"*+12n+2 _n (which implies
log(E) = O(n?) so that E can be described polynomially), Problem (I) is equivalent to the
controllability problem of [82], which is NP-hard. |

An immediate consequence of the above is the following one.
Corollary 2 (Computational Complexity of Problem (II)). Problem (II) is NP-hard.

3.6.1. The Greedy Algorithm used in the Supermodular Minimization Literature is Inefficient
for solving Problem (IT')

Counsider Algorithm 6 which is in accordance with the supermodular minimization litera-
ture [16, 94, 96].

Algorithm 6 Greedy algorithm for Problem (IT').

Input: Maximum number of actuators r, approximation parameter ¢, number of steps that
the algorithm will run [, matrices Wy, Wa, ..., W,.
Output: Actuator set 4,
Ag«0,i+0
while ¢ < [ do
a; < argmax,cy\ a{log det(Wa, + el)~t —logdet(Wa,uqay + €)1}
JAVERIR WAV U{ai},i —i1+1
end while

The following is true for its performance.
Fact 2. Let v* denote the value of Problem (II'). Then, Algorithm 6 guarantees that for
any positive integer [,

log det(Wa, + €)™t < (1 — e /")v* + nlog(e t)e /"

Proof: 1t follows from Theorem 9.3, Ch. II1.3.9. of [96], since —logdet(Wa, + eI)~! +
nlog(e~1) is a non-negative, non-decreasing, and submodular function with respect to the
choice of A (cf. Proposition 2). [

Algorithm 6 suffers from an error term that is proportional to nlog(e!). Moreover, it is
possible that Algorithm 6 returns an actuator set that does not render (3.1) controllable.
Therefore, Algorithm 6 is inefficient for solving Problem (IT').
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Part 11

CONTRIBUTIONS TO
SUBMODULAR MAXIMIZATION
IN SENSING DESIGN
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CHAPTER 4 : Sensor Placement for Optimal Kalman Filtering: Fundamental
Limits, Submodularity, and Algorithms

In this chapter, we focus on sensor placement in linear dynamic estimation, where the
objective is to place a small number of sensors in a system of interdependent states so to
design an estimator with a desired estimation performance. In particular, we consider a
linear time-variant system that is corrupted with process and measurement noise, and study
how the selection of its sensors affects the estimation error of the corresponding Kalman
filter over a finite observation interval. Our contributions are threefold: First, we prove
that the minimum mean square error of the Kalman filter decreases only linearly as the
number of sensors increases. That is, adding extra sensors so to reduce this estimation error
is ineffective, a fundamental design limit. Similarly, we prove that the number of sensors
grows linearly with the system’s size for fixed minimum mean square error and number
of output measurements over an observation interval; this is another fundamental limit,
especially for systems where the system’s size is large. Second, we prove that the log det of
the error covariance of the Kalman filter, which captures the volume of the corresponding
confidence ellipsoid, with respect to the system’s initial condition and process noise is a
supermodular and non-increasing set function in the choice of the sensor set. Therefore,
it exhibits the diminishing returns property. Third, we provide an efficient approximation
algorithm that selects a small number sensors so to optimize the Kalman filter with respect to
this estimation error —the worst-case performance guarantees of this algorithm are provided
as well.!

4.1. Introduction

In this chapter, we consider a linear time-variant system corrupted with process and measure-
ment noise. Our first goal is to study how the placement of their sensors affects the minimum
mean square error of their Kalman filter over a finite observation interval [103]. Moreover, we
aim to select a small number of sensors so to minimize the volume of the corresponding con-
fidence ellipsoid of this estimation error. Thereby, this study is an important distinction in
the minimal sensor placement literature |7, 8, 84, 104, 105, 106, 107, 108, 109, 110, 111, 112],
since the Kalman filter is the optimal linear estimator —in the minimum mean square sense—
given a sensor set [113].

Our contributions are threefold:

Fundamental limits. First, we identify fundamental limits in the design of the Kalman
filter with respect to its sensors. In particular, given any finite number of output measure-
ments over an observation interval, we prove that the minimum mean square error of the
Kalman filter decreases only linearly as the number of sensors increases. That is, adding
extra sensors so to reduce this estimation error of the Kalman filter is ineffective, a fun-
damental design limit. Similarly, we prove that the number of sensors grows linearly with
the system’s size for fixed minimum mean square error; this is another fundamental limit,
especially for systems where the system’s size is large. Overall, our novel results quantify
the trade-off between the number of sensors and that of output measurements so to achieve

'This chapter is based on the paper by Tzoumas et al. [102].
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a specified value for the minimum mean square error.

These results are the first to characterize the effect of the sensor set on the minimum mean
square error of the Kalman filter. In particular, in [84], the authors quantify only the trade-
off between the total energy of the consecutive output measurements and the number of
its selected sensors. Similarly, in [111], the authors consider only the maximum-likelihood
estimator for the system’s initial condition and only for a special class of stable linear
time-invariant systems. Moreover, they consider systems that are corrupted merely with
measurement noise, which is white and Gaussian. Finally, they also assume an infinite
observation interval, that is, infinite number of consecutive output measurements. Nonethe-
less, we assume a finite observation interval and study the Kalman estimator both for the
system’s initial condition and for the system’s state at the time of the last output mea-
surement. In addition, we consider general linear time-variant systems that are corrupted
with both process and measurement noise, of any distribution (with zero mean and finite
variance). Overall, our results characterize the effect of the cardinality of the sensor set on
the minimum mean square error of the Kalman filter, that is, the optimal linear estimator.

Submodularity. Second, we identify properties for the logdet of the error covariance of
the Kalman filter, which captures the volume of the corresponding confidence ellipsoid, with
respect to the system’s initial condition and process noise over a finite observation interval
as a sensor set function —the design of an optimal Kalman filter with respect to the system’s
initial condition and process noise implies the design of an optimal Kalman filter with respect
to the system’s state. Specifically, we prove that it is a supermodular and non-increasing
set function in the choice of the sensor set.

In contrast, in [114], the authors study sensor placement for monitoring static phenomena
with only spatial correlations. To this end, they prove that the mutual information between
the chosen and non-chosen locations is submodular. Notwithstanding, we consider dynamic
phenomena with both spatial and temporal correlations, and as a result, we characterize as
submodular a richer class of estimation performance metrics. Furthermore, in the sensor
scheduling literature [20], the logdet of the error covariance of the Kalman filter has been
proven submodular but only for special cases of systems with zero process noise [115] and
[5]. Nevertheless, we consider the presence of process noise, and prove our supermodularity
result for the general case.?

Algorithms. Third, we consider the problem of sensor placement so to optimize the log det
of the error covariance of the Kalman filter with respect to the system’s initial condition and
process noise over a finite observation interval —henceforth, we refer to this error as log det
error, and to the latter problem as P;. Naturally, P; is combinatorial, and in particular,
it involves the minimization of a supermodular set function, that is, the minimum mean
square error. Because the minimization of a general supermodular function is NP-hard [13],

*In [5], the authors prove with a counterexample in the context of sensor scheduling that the minimum
mean square error of the Kalman filter with respect to the system’s state is not in general a supermodular
set function. We can extend this counterexample in the context of minimal sensor placement as well: the
minimum mean square error of the Kalman with respect to the system’s state is not in general a supermodular
set function with respect to the choice of the sensor set.
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we provide efficient approximation algorithms for their general solution, along with their
worst-case performance guarantees. Specifically, we provide an efficient algorithm for P
that returns a sensor set that satisfies the estimation guarantee of P; and has cardinality
up to a multiplicative factor from the minimum cardinality sensor sets that meet the same
estimation bound. Moreover, this multiplicative factor depends only logarithmically on the
problem’s P; parameters.?

In contrast, the related literature has focused either on the optimization of average esti-
mation performance metrics, such as the logdet of the error’s covariance, or on heuristic
algorithms that provide no worst-case performance guarantees. In particular, in [119], the
authors minimize the log det of the error’s covariance matrix of the Kalman estimator for the
case where there is no process noise in the system’s dynamics —in contrast, in our frame-
work we assume both process and measurement noise. Moreover, to this end they use convex
relaxation techniques that provide no performance guarantees. Furthermore, in [120] and
[121], the authors design an Hs-optimal estimation gain with a small number of non-zero
columns. To this end, they also use convex relaxation techniques that provide no perfor-
mance guarantees. Finally, in [122], the author designs an output matrix with a desired
norm so to minimize the minimum mean square error of the corresponding Kalman estima-
tor; nonetheless, the author does not minimize the number of selected sensors. Overall, with
this chapter we are the first to optimize the minimum mean square error of the Kalman
filter using a small number of sensors and to provide worst-case performance guarantees.

The remainder of this chapter is organized as follows. In Section 4.2, we introduce our model,
and our estimation and sensor placement framework, along with our sensor placement prob-
lems. In Section 4.3, we provide a series of design and performance limits and characterize
the properties of the Kalman estimator with respect to its sensor set; in Section 4.4, we
prove that the logdet estimation error of the Kalman filter with respect to the system’s
initial condition and process noise is a supermodular and non-increasing set function in the
choice of the sensor set; and in Section 4.5, we provide efficient approximation algorithms
for selecting a small number of sensors so to design an optimal Kalman filter with respect to
its log det error —the worst-case performance guarantees of these algorithms are provided
as well. Finally, Section 4.6 concludes the chapter. Due to space limitations, the proofs of
all of our results, as well as, the corresponding simulations, are omitted; they can be found
in the full version of this chapter, located at our websites.

4.2. Problem Formulation

Notation. We denote the set of natural numbers {1,2,...} as N, the set of real numbers
as R, and the set {1,2,...,n} as [n|, where n € N. Given a set X, |X] is its cardinality.
Matrices are represented by capital letters and vectors by lower-case letters. For a matrix
A, AT is its transpose and A;; its element located at the i—th row and j—th column.

3Such algorithms, that involve the minimization of supermodular set functions, are also used in the
machine learning [116], leader selection [8, 91, 92], sensor scheduling [5, 115], actuator placement [7, 106,
107, 110, 112, 117] and sensor placement in static environments [114, 118] literature. Their popularity is
due to their simple implementation — they are greedy algorithms — and provable worst-case approximation
factors, that are the best one can achieve in polynomial time for several classes of supermodular functions
[13, 40].
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|Alla = VAT A is its spectral norm, and Apin(A) and Apax(A) its minimum and maximum
eigenvalues, respectively. Moreover, if A is positive semi-definite or positive definite, we
write A = 0 and A > 0, respectively. Furthermore, I is the identity matrix —its dimension
is inferred from the context; similarly for the zero matrix 0. Finally, for a random variable
x € R", E(x) is its expected value, and C(z) = E ([x —E(x)] [z — E(x)]T> its covariance.
The rest of our notation is introduced when needed.

4.2.1. Model and Estimation Framework
For k > 0, we consider the linear time-variant system

Th1 = ApTr + Wy, (4.1)
yr = Cray + vg,

where z € R (n € N) is the state vector, y; € R® (¢ € [n]) the output vector, wy the
process noise and vy the measurement noise —without loss of generality, the input vector is
assumed zero. The initial condition is xg.

Assumption 2. (For all £ > 0, the initial condition, the process noise and the
measurement noise are uncorrelated random variables) xg is a random variable
with covariance C(xg) = 021, where o > 0. Moreover, for all k > 0, C(wy) = C(vg) = 021
as well. Finally, for all k, k' > 0 such that k # k', xg, wi and vg, as well as, wy, wi, v
and vy, are uncorrelated.*

Moreover, for k > 0, consider the vector of measurements g, the vector of process noises

wy and the vector of measurement noises vy, defined as follows: 7, = (ya—,le, .. ,y;—)—r,
wy, = (wg ,wy,...,w )T, and v = (v ,v],...,v] )T, respectively; the vector gy is known,

while the wy and v are not.
Definition 12 (Observation interval and its length). The interval [0,k] = {0,1,...,k} is
called the observation interval of (4.1). Moreover, k + 1 is its length.

Evidently, the length of an observation interval [0, k| equals the number of measurements
Yo, Y1, - - -5 Yk-

In this chapter, given an observation interval [0, k], we consider the minimum mean square
linear estimators for xy/, for any &’ € [0, k] [103]. In particular, (4.1) implies

Uk = Ok2k—1 + Vg, (4.2)

where Oy, is the c(k + 1) x n(k+ 1) matrix [L] CJ ,L{ Cf ..., LIC]]", Lo the n x n(k +1)
matrix [/,0], L;, for i > 1, the n x n(k + 1) matrix [A;—1 -+ Ao, Ai—1 -+ A1, ..., 4;_1,1,0],

and zp_1 = (fbg ,w;—_l)T. As a result, the minimum mean square linear estimate of z5_1 is

*This assumption is common in the related literature [119], and it translates to a worst-case scenario for
the problem we consider in this chapter.
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the 241 = E(2k-1) + O} (0O} + I)_1 (Uk — OkE(2z—1) — E(0g)); its error covariance is
Yy, =E ((Zk—l — Zp—1)(Zh—1 — 2k—1)T>
= o2 (1 — o] (Oko;[ + I)il ok> (4.3)
and its minimum mean square error

mmse(z,_1) = E ((%-1 — Zp-1) " (zho1 — 2k—1))

4.4
= tr (221%1) . *4)

As a result, the corresponding minimum mean square linear estimator of xy/, for any k' €
[0,K], is
Ty = Ly 21, (4.5)

(since xpr = Lyszk—1), with minimum mean square error
mmse(zy ) = tr ( Lk/EzkilL;cr,> . (4.6)

In particular, the recursive implementation of (4.5) results to the Kalman filtering algorithm
[123).

In this chapter, in addition to the minimum mean square error of Z;/, we also consider per
(4.5) the estimation error metric that is related to the n-confidence ellipsoid of zx_1 — 21
[119]. Specifically, this is the minimum volume ellipsoid that contains zx_1 — 2,1 with
probability 7, that is, the & = {z : 27%,, 2z < €}, where € = FX_21 (n) and F is

2
X;
n(k+1) n(k+1)
the cumulative distribution function of a x-squared random variable with n(k + 1) degrees

of freedom [124]. Therefore, the volume of &,

_ (67T)n<k+1)/2
vl(€) = mr a1 (E;ﬁl) : (4.7)

where I'(+) denotes the Gamma function [124], quantifies the estimation’s error of Z;_1, and
as a result, for any &’ € [0, k], of 24 as well, since per (4.5) the optimal estimator for zx_1
defines the optimal estimator for zj/.

Henceforth, we consider the logarithm of (4.7),
logvol(&) = B+ 1/2logdet (X, _,); (4.8)

B is a constant that depends only on n(k+ 1) and €, in accordance to (4.7), and as a result,
we refer to the logdet (3., ,) as the logdet estimation error of the Kalman filter of (4.1):

Definition 13 (log det estimation error of the Kalman filter). Given an observation interval
[0, k], the logdet (E ) is called the logdet estimation error of the Kalman filter of (4.1).

Zk—1

In the following paragraphs, we present our sensor placement framework, that leads to our
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sensor placement problems.
4.2.82. Sensor Placement Framework

In this chapter, we study among others the effect of the selected sensors in (4.1) on mmse(xg)
and mmse(xy). Therefore, this translates to the following conditions on Cy, for all k > 0,
in accordance with the minimal sensor placement literature [7].

Assumption 3 (C is a full row-rank constant zero-one matrix). For all k > 0, C), = C €
Re*™ where C is a zero-one constant matriz. Specifically, each row of C' has one element
equal to one, and each column at most one, such that C has rank c.

In particular, when for some i, Cj; is one, the j-th state of x is measured; otherwise, it is
not. Therefore, the number of non-zero elements of C' coincides with the number of placed
sensors in (4.1).

Definition 14 (Sensor set and sensor placement). Consider a C per Assumption 3 and
define S = {i :i € [n] and Cj; = 1, for some j € [r]}; S is called a sensor set or a sensor
placement and each of its elements a sensor.

4.2.3. Sensor Placement Problems

We introduce three objectives, that we use to define the sensor placement problems we
consider in this chapter.

Objective 1 (Fundamental limits in optimal sensor placement). Given an observation in-
terval [0,k], i € {0,k} and a desired mmse(x;), identify fundamental limits in the design of
the sensor set.

As an example of a fundamental limit, we prove that the number of sensors grows linearly
with the system’s size for fixed estimation error mmse(x;) —this is clearly a major limitation,
especially when the system’s size is large. This result, as well as, the rest of our contributions
with respect to Objective 1, is presented in Section 4.3.

Objective 2 (logdet estimation error as a sensor set function). Given an observation in-
terval [0, k|, identify properties of the log det (221@71) as a sensor set function.

We address this objective in Section 4.4, where we prove that log det (EZ;CA) is a supermod-
ular and non-increasing set function with respect to the choice of the sensor set —the basic
definitions of supermodular set functions are presented in that section as well.

Objective 3 (Algorithms for optimal sensor placement). Given an observation interval
[0, k], identify a sensor set S that solves the minimal sensor placement problem:

minimize |S)|
SCin] (P1)
subject to  logdet (E ) < R.

Zk—1

That is, with P; we design an estimator that guarantees a specified error and uses a minimal
number of sensors. The corresponding algorithm is provided in Section 4.5.

All of our contributions with respect to the Objectives 1, 2 and 3 are presented in the
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following sections.
4.3. Fundamental Limits in Optimal Sensor Placement

In this section, we present our contributions with respect to Objective 1. In particular, given
any finite observation interval, we prove that the minimum mean square error decreases only
linearly as the number of sensors increases. That is, adding extra sensors so to reduce the
minimum mean square estimation error of the Kalman filter is ineffective, a fundamental
design limit. Similarly, we prove that the number of sensors grows linearly with the system’s
size for fixed minimum mean square error; this is another fundamental limit, especially for
systems where the system’s size is large. On the contrary, given a sensor set of fixed cardi-
nality, we prove that the length of the observational interval increases only logarithmically
with the system’s size for fixed minimum mean square error. Overall, our novel results
quantify the trade-off between the number of sensors and that of output measurements so
to achieve a specified value for the minimum mean square error.

To this end, given i € {0, k}, we first determine a lower and upper bound for mmse(z;).?

Theorem 3. (A lower and upper bound for the estimation error with respect
to the number of sensors and the length of the observation interval) Consider
a sensor set S, any finite observation interval [0,k] and a non-zero o. Moreover, let p =
maX,,eok |Amll2 and assume p # 1. Given i € {0,k},

no?l;

SI(1— ) /(1 2) +1

< mmse(z;) < no’u;, (4.9)

where lo =1, ug =1, lp = Amin (L;—Lk) and up = (]{7 + 1)Amax (L;Lk)

The upper bound corresponds to the case where no sensors have been placed (C' = 0). On
the other hand, the lower bound corresponds to the case where |S| sensors have been placed.

As expected, the lower bound in (4.9) decreases as the number of sensors or the length of
the observational interval increases; the increase of either should push the estimation error
downwards. Owverall, this lower bound quantifies fundamental limits in the design of the
Kalman estimator: first, this bound decreases only inversely proportional to the number
of sensors. Therefore, the estimation error of the optimal linear estimator decreases only
linearly as the number of sensors increases. That is, adding extra sensors so to reduce the
minimum mean square estimation error of the Kalman filter is ineffective, a fundamental
design limit. Second, this bound increases linearly with the system’s size. This is another
fundamental limit, especially for systems where the system'’s size is large. Finally, for fixed
and non-zero Amin (L;—Lk), these scaling extend to the mmse(xy) as well, for any finite k.

Corollary 3. (Trade-off among the number of sensors, estimation error and the
length of the observation interval) Consider any finite observation interval [0,k], a
non-zero o, and for i € {0,k}, that the desired value for mmse(x;) is o (o > 0). Moreover,
let p = maxpcp i | Amll2 and assume p # 1. Any sensor set S that achieves mmse(z;) =

"The extension of Theorem 3 to the case u = 1 is straightforward, yet notationally involved; as a result,
we omit it.
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satisfies:

1—p?

2

(4.10)

where lo =1 and I, = A\nin (LkTLk).

The above corollary shows that the number of sensors increages as the minimum mean square
error or the number of output measurements decreases. More importantly, it shows that the
number of sensors increases linearly with the system’s size for fixed minimum mean square
error. This is again a fundamental design limit, especially when the system’s size is large.5

4.4. Submodularity in Optimal Sensor Placement

In this section, we present our contributions with respect to Objective 2. In particular, we
first derive a closed formula for log det (Ezk,_l) and then prove that it is a supermodular and
non-increasing set function in the choice of the sensor set.

We now give the definition of a supermodular set function, as well as, that of an non-
decreasing set function —we follow |94] for this material.

Denote as 2" the power set of [n].
Definition 15 (Submodularity and supermodularity). A function h : 2" — R is submod-
ular if for any sets S and S', with S C S’ C [n], and any a ¢ S,

h(SU{a}) — h(S) > h(S'U{a}) — h(S).
A function h : 2"l — R is supermodular if (—h) is submodular.

An alternative definition of a submodular function is based on the notion of non-increasing
set functions.

Definition 16 (Monotone set function). A function h : 2" +— R is a non-increasing set
function if for any S C 8" C [n], h(S) > h(S’). Moreover, h is a non-decreasing set function
if (—=h) is a non-increasing set function.

Therefore, a function h : 2"+ R is submodular if, for any a € [n], the function h, :
oM} 3 R, defined as hq(S) = (S U {a}) — h(S), is a non-increasing set function. This
property is also called the diminishing returns property.

The first major result of this section follows, where we let
O = O] O,

given an observation interval [0, k].
Proposition 3 (Closed formula for the logdet error as a sensor set function). Given any

SFor fixed and non-zero Amin (LkTLk), the comments of this paragraph extend to the mmse(zy) as well,
for any finite K —on the other hand, if Amin (Lj Li) varies with the system’s size, since Amin (L} Li) < 1,
the number of sensors can increase sub-linearly with the system’s size for fixed mmse(zy).
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finite observation interval [0, k] and non-zero o, irrespective of Assumption 3,

log det (Ezkfl) =
2n(k + 1)log (o) — logdet (O + I). (4.11)

Therefore, the log det (szfl) depends on the sensor set through Or. Now, the main result
of this section follows, where we make explicit the dependence of Oy on the sensor set S.
Theorem 4. The logdet error is a supermodular and non-increasing set function
with respect to the choice of the sensor set Given any finite observation interval [0, k],
the

logdet (2., ,,S) =
2n(k 4 1)log (o) — logdet (Ops + 1) : S € 2" - R

1s a supermodular and non-increasing set function with respect to the choice of the sensor
set S.

The above theorem states that for any finite observation interval, the logdet error of the
Kalman filter is a supermodular and non-increasing set function with respect to the choice
of the sensor set for any finite k. Hence, it exhibits the diminishing returns property: its rate
of reduction with respect to newly placed sensors decreases as the cardinality of the already
placed sensors increases. On the one hand, this property implies another fundamental design
limit, in accordance to that of Theorem 3: adding new sensors, after a first few, becomes
ineffective for the reduction of the estimation error. On the other hand, it also implies that
greedy approach for solving P; is effective [13, 40]. Thereby, we next use the results from
the literature on submodular function maximization [96] and provide an efficient algorithm
for Pq.

4.5. Algorithms for Optimal Sensor Placement

In this section, we present our contributions with respect to Objective 3: P; is combinatorial,
and in Section 4.4 we proved that it involves the minimization of the supermodular set
function logdet error. In particular, because the minimization of a general supermodular
function is NP-hard [13], in this section we provide efficient approximation algorithms for
the general solution of Py, along with their worst-case performance guarantees.

Specifically, we provide an efficient algorithm for P; that returns a sensor set that satisfies
the estimation bound of P; and has cardinality up to a multiplicative factor from the mini-
mum cardinality sensor sets that meet the same estimation bound. More importantly, this
multiplicative factor depends only logarithmically on the problem’s P; parameters.

To this end, we first present a fact from the supermodular functions minimization literature
that we use so to construct an approximation algorithm for P; —we follow [94] for this
material. In particular, consider the following problem, which is of similar structure to Py,
where h : 2" i R is a supermodular and non-increasing set function:
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minimize |S]|
SCin] (P)
subject to h(S) < R.

The following greedy algorithm has been proposed for its approximate solution, for which,
the subsequent fact is true.

Algorithm 7 Approximation Algorithm for P.
Input: h, R.
Output: Approximate solution for P.
S« 10
while A(S) > R do
ai < a' € argmax,ep)\s (A(S) — h(SU {a}))
S+Su {al}
end while

Fact 3. Denote as S* a solution to P and as Sp,S1, ... the sequence of sets picked by
Algorithm 7. Moreover, let | be the smallest index such that h(S;) < R. Then,

h([n]) — (D)
([n]) = h(Si-1)’

l
<1+1
|S*\_ +ogh

For several classes of submodular functions, this is the best approximation factor one can
achieve in polynomial time [13]. Therefore, we use this result to provide the approximation
Algorithm 8 for Py, where we make explicit the dependence of log det (E Zk—l) on the selected
sensor set S. Moreover, its performance is quantified with Theorem 5.

Algorithm 8 Approximation Algorithm for P;.
For h(S) = logdet (X, ,,S), where S C [n], Algorithm 8 is the same as Algorithm 7.

Theorem 5 (A Submodular Set Coverage Optimization for P1). Denote a solution to Pi
as 8* and the selected set by Algorithm 8 as S. Then,

logdet (2., ,,S) <R, (4.12)
S| <1+1log log det (Ezk,l,@) — log det (szil, [n])
|S*| — R —logdet (sz_l, [n])

=R, (4.13)

where log det (Ezk_l,Q) < n(k+1)log(c?). Finally, the computational complezity of Algo-
rithm 8 is O(n?(nk)3).

Therefore, Algorithm 8 returns a sensor set that meets the estimation bound of P;. More-
over, the cardinality of this set is up to a multiplicative factor of F; from the minimum
cardinality sensor sets that meet the same estimation bound —that is, Fj is a worst-case
approximation guarantee for Algorithm 8. Additionally, F; depends only logarithmically on
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the problem’s P parameters. Finally, the dependence of F; on n, R and o2 is expected from
a design perspective: increasing the network size n, requesting a better estimation guarantee
by decreasing R, or incurring a noise of greater variance, should all push the cardinality of
the selected sensor set upwards.

4.6. Concluding Remarks & Future Work

We considered a linear time-variant system and studied the properties of its Kalman es-
timator given an observation interval and a sensor set. Our contributions were threefold.
First, in Section 4.3 we presented several design limits. For example, we proved that the
number of sensors grows linearly with the system’s size for fixed minimum mean square
error; this is a fundamental limit, especially for systems where the system’s size is large.
Second, in Section 4.4 we proved that the log det error is a supermodular and non-increasing
set function with respect to the choice of the sensor set. Third, in Section 4.5, we used this
result to provide an efficient approximation algorithm for the solution of P;, along with its
worst-case performance guarantees. Our future work is focused on extending the results of
this chapter to the problem of sensor scheduling.

4.7. Appendix: Proof of Results

e Theorem 3

Proof: We first prove the lower bound in (4.9): observe first that mmse(z) > mmse(xq)% =",

where mmse(:vo)w'zo is the minimum mean square error of xg when the process noise wy

in (4.1) is zero for all £ > 0. To express mmse(7o)% =" in a closed form similar to (4.11),

note that in this case (4.2) becomes g = Orxo + Ui, where O, = [C’J, <I>1TClT, e @;—C,;r] T
and ®,, = A,,_1---Ag, for m > 0, and ®,, = I, for m = 0. Thereby, from Corollary
E.3.5 of [123], the minimum mean square linear estimate of x, denoted as ﬁkw(;zo, has error
covariance

s 1 .

= o2 (1 _ oy (Oko,j + I) 0k> , (4.14)
and minimum mean square error
mmse(zo)? =0 = tr (22)6:0)

. ~1

— o%r [(ogok n 1) ] (4.15)
) - ~1

=o°tr [(Ok—l—l) } ) (4.16)
where we deduce (4.15) from (4.14) using the Woodbury matrix identity (Corollary 2.8.8

of [93]), and (4.16) from (4.15) using the notation Oy = O/ Oy. In particular, Oy, is the
observability matrix Oy = Y"1 & €T Cy®,, of (4.1) ([83)).
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. -1
Hence, mmse(zg) > otr {(Ok + I) }, and since the arithmetic mean of a finite set of
positive numbers is at least as large as their harmonic mean, using (4.16),

n?o? no?

mmse(xg) > — > -
tr (Ok—‘y-I) tr (Ok) +n
Now, for i € [n], let I®) be the n x n matrix where I is one, while I; ik is zero, for all
(j.k) # (i,9). Then, tr(Oy) = tr (zm L CTCD,, ) = S st (zm Ocp,y()cpm);

now,

k k k k
tr (Z @;I(i@m) < NAmax (Z <1>;1<i><1>m> =nl| > IV, )ls <n > (|83,
m=0 m=0 m=0

m=0

because |1 | = 1, and from the definition of ®,,, and Proposition 9.6.1 of [93],

( +1)
Z @13 <
Therefore, tr(Og) < SO0, sin # n|S|= “MH) , and as a result, the lower bound in

(4.9) for mmse(zg) follows.

Next, we prove the upper bound in (4.9), using (4.19), which is proved in the proof of
Proposition 3, and (4.6) for &' = 0: O +1 = 01, and as a result, from Proposition 8.5.5 of
[93], (Og +I)™! < 0721. Hence, mmse(xg) < tr [Loo?IL{ ] < no?.

Finally, to derive the lower and upper bounds for mmse(x), observe that mmse(xg) <
mmse(z;_1) and mmse(zx_1) < n(k + 1)o? —the proof follows using similar steps as above.
Then, from Theorem 1 of [125],

Amin (L;Lk) mmse(zi_1) <mmse(zg) <
Amax (LEL;C) mmse(2k_1).
The combination of these inequalities completes the proof. [

e Proposition 3
Proof: From .f:’i = Li—lékz—l,

mmse(z;) = tr(Li 1%, L ).

Zk—1"1—1
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Also,
-1
S, = o (I —oy (Oko,j + I) ok>

-1
= o (O,Iok +[)
= 2O+ 1),

where we deduce (4.18) from (4.17) using the Woodbury matrix identity (Corollary 2.8.8 of

[93]), and (4.19) from (4.18) using the fact that O = O O

e Theorem 4

Proof: To prove that the mmse(x;) is non-increasing, observe that

n

k n
Ok73 = Z SmZM]TI(m)Mj = Z Smok,{m}a
j=0

m=1 m=1

where M; is the n x nk matrix
Mj = [Lj_l,O] .

Then, for any S; € Sz C [n], (4.20) and that fact that O {1y, O g2}, - -

(4.20)

-y O qny = 0 imply

Ors, = Ops,, and as aresult, Op s, + 1 X Oy s, + I. Therefore, from Proposition 8.5.5 of

[93],
(Oks, + 1) 2 (Ops, + )7,

This implies
Lici (Opsy + 1) LLy < Lioy (Ogs, + VL,

and as a result, mmse(z;) is non-increasing.

Next, observe that

tr |:Li_1 (Ok,S + I)_l L;r_1:| = tr |:(Ok7$ + I>_1 L;r_lLi_l ,

and consider the eigenvector decomposition of LllLi,l, P )\mqmq;, where A, and g,
is the m-th eigenvalue and eigenvector of LiT_lLi_l, respectively. Thereby,

tr [Li,1 (Ok73 + I)il L;r_l}

— Z Amtr [(01@3 + I)f1 qmq;b

m=1

= Z Am%—vrz (Ok,S + I)_1 qm-

m=1
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Since L] {Li—1 = 0, Ay, > 0, for all m € [n]. Therefore, since the non-negative sum of
supermodular set functions is a supermodular set function, it remains to prove that for any
q € R q" (Op,s + I)"" qis such. This follows from the proof of Proposition 2 of [110], and
the proof is complete. |

e Theorem 5

Proof: First, let Sy, S1, . .. be the sequence of sets selected by Algorithm 8 and [ the smallest
index such that mmse(x;,S;) < R. Therefore, S; is the set that Algorithm 8 returns, and
this proves (4.12).

Moreover, from Fact 3,

0 b))~ h®)
S = ) — S
C 1 log mmse(x;, ) — mmse(z;, [n])

mmse(x;, S;_1) — mmse(z;, [n])

Now, [ is the first time that mmse(x;,S;) < R, and a result mmse(z;,S;—1) > R. This
implies (4.13).

Furthermore, for i = 0, mmse(zg, ) = no?. On the other hand, for i = k, first set for

m > ] > O, (I)m,j = AmAm—l tee Aj and (I)m,m+1 = I; then,

mmse(zy, ) = o’tr (Lk_le_J

k
= o’tr (Z <I>21,m<1>k1,m>
m=0

k
< nUQ)\max (Z (I)l—cr—l,mq)k—lam>
m=0
k
= no? Z D) i ®h1mll2
m=0
k
1 — 20k4D)
< nOQmZ_:(]H%—Lmllgénﬁl_lﬁ-

Finally, with respect to the computational complexity of Algorithm 8, note that the while
loop is repeated for at most n times. Moreover, the complexity to invert an nk x nk matrix,
using Gauss-Jordan elimination decomposition, is O((nk)3) (this is also the complexity
to multiply two such matrices). Additionally, at most n matrices must be inverted so
that the arg max,¢n)\s (mmse(z;, S) — mmse(z;,S U {a})) can be computed. Furthermore,
O(n) time is required to find a maximum element between n available. Therefore, the
computational complexity of Algorithm 8 is O(n?(nk)3). [
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CHAPTER 5 : Near-optimal sensor scheduling for batch state estimation:
Complexity, algorithms, and limits

In this chapter, we focus on batch state estimation for linear systems. This problem is
important in applications such as environmental field estimation, robotic navigation, and
target tracking. Its difficulty lies on that limited operational resources among the sensors,
e.g., shared communication bandwidth or battery power, constrain the number of sensors
that can be active at each measurement step. As a result, sensor scheduling algorithms
must be employed. Notwithstanding, current sensor scheduling algorithms for batch state
estimation scale poorly with the system size and the time horizon. In addition, current
sensor scheduling algorithms for Kalman filtering, although they scale better, provide no
performance guarantees or approximation bounds for the minimization of the batch state
estimation error. In this chapter, one of our main contributions is to provide an algorithm
that enjoys both the estimation accuracy of the batch state scheduling algorithms and the
low time complexity of the Kalman filtering scheduling algorithms. In particular: 1) our
algorithm is near-optimal: it achieves a solution up to a multiplicative factor 1/2 from the
optimal solution, and this factor is close to the best approximation factor 1/e one can achieve
in polynomial time for this problem; 2) our algorithm has (polynomial) time complexity that
is not only lower than that of the current algorithms for batch state estimation; it is also
lower than, or similar to, that of the current algorithms for Kalman filtering. We achieve
these results by proving two properties for our batch state estimation error metric, which
quantifies the square error of the minimum variance linear estimator of the batch state vector:
a) it is supermodular in the choice of the sensors; b) it has a sparsity pattern (it involves
matrices that are block tri-diagonal) that facilitates its evaluation at each sensor set.!

5.1. Introduction

Search and rescue [126], environmental field estimation [127], robotic navigation [128], and
target tracking [129] are only a few of the challenging information gathering problems that
employ the monitor capabilities of sensor networks [130]. In particular, all these problems
face the following three main challenges:

e they involve systems whose evolution is largely unknown, corrupted with noisy inputs
[129], and sensors with limited sensor capabilities, corrupted with measurement noise
[103].

e they involve systems that change over time [127], and as a result, necessitate both
spacial and temporal deployment of sensors in the environment. At the same time:

e they involve operational constraints, such as limited bandwidth and battery life, which
limit the number of sensors that can be simultaneously used (i.e., be switched-on) in
the information gathering process [131].

As a result of these challenges, researchers focused on the following question: “How do we
select at each measurement step only a few sensors so to minimize the estimation error
despite the above challenges?” The effort to answer this question resulted to the problem

'This chapter is based on the paper by Tzoumas et al. [58].
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of sensor scheduling [131]: in particular, sensor scheduling offers a formal methodology to
use at each measurement time only a few sensors and obtain an optimal trade-off between
the estimation accuracy and the usage of the limited operational resource (e.g., the shared
bandwidth). Clearly, sensor scheduling is a combinatorial problem of exponential complexity
[130].

In this chapter, we focus on the following instance of this problem:

Problem 1 (Sensor Scheduling for Minimum Variance Batch State Estimation)
Consider a time-invariant linear system, whose state at time ty is denoted as x(ty), a set of
m sensors, and a fired set of K measurement times ti,to, ..., tx. In addition, consider that
at each t at most ry, sensors can be used, where r, < m. At each ty select a set of v, sensors
so to minimize the square estimation error of the minimum variance linear estimator of the
batch state vector (z(t1),z(t2),...,z(tk)).

There are two classes of sensor scheduling algorithms, that trade-off between the estimation
accuracy of the batch state vector and their time complexity: these for Kalman filtering,
and those for batch state estimation. In more detail:

Kalman filtering algorithms: These algorithms sacrifice estimation accuracy over reduced
time complexity. The reason is that they are sequential algorithms: at each ¢, they select the
sensors so to minimize the square estimation error of the minimum variance linear estimator
of z(t;) (given the measurements up to t;). Therefore, their objective is to minimize the
sum of the square estimation errors of x(tj) across the measurement times t; [132]. However,
this sum is only an upper bound to the square estimation error of the batch state vector
(z(t1),x(t2),...,x(tx)). Thus, the Kalman filtering algorithms lack on estimation accuracy
with respect to the batch state estimation algorithms.

Batch state estimation algorithms: These algorithms sacrifice time complexity over esti-
mation accuracy. The reason is that they perform global optimization, in accordance to
Problem 1. Therefore, however, they lack on time complexity with respect to the Kalman
filtering algorithms.

Notwithstanding, in several recent robotic applications, batch estimation algorithms have
been proven competitive in their time complexity to their filtering counterparts [22, 133].
The reason is that sparsity patterns emerge in these applications, that reduce the time
complexity of their batch estimation algorithms to an order similar to that of the filtering
algorithms [134]. Thereby, the following question on Problem 1 arises:

Question 1. “Is there an algorithm for Problem 1 that enjoys both the estimation accuracy
of the batch state algorithms and the low time complexity of the Kalman filtering algorithms?”

Literature review on sensor scheduling algorithms for batch state estimation.
The most relevant paper on Problem 1 is [135]|, where an algorithm based on convex re-
laxation is provided. This algorithm scales poorly with the system’s size and number of
measurement times. In addition, it provides no approximation performance guarantees.
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Literature review on sensor scheduling algorithms for Kalman filtering. Several
papers in this category have focused on myopic algorithms [115]; such algorithms, however,
often perform poorly [136]. Other papers have focused on algorithms that use: tree prun-
ing [137], convex optimization [119], quadratic programming [138|, or submodular function
maximization [5, 139]. Nevertheless, these algorithms provide no performance guarantees
on the batch state estimation error, or have time complexity that scales poorly with the
system’s size and number of measurement times [137] [138]. To reduce the time complexity
of these algorithms, papers have also proposed periodic sensor schedules [132].

Contributions. We now present our contributions:
1) We prove that Problem 1 is NP-hard.

2) We provide an algorithm for Problem 1 (Algorithm 1) that answers Question 1 positively.
The reasons are two:

i) Algorithm 1 is near-optimal: it achieves a solution that is up to a multiplicative
factor 1/2 from the optimal solution. In addition, this multiplicative factor is close
to the factor 1/e which we prove to be the best approximation factor one can achieve
in polynomial time for Problem 1 in the worst-case.

ii) Algorithm 1 has (polynomial) time complexity that is not only lower than that of
the state of the art scheduling algorithms for batch state estimation; it is also lower
than, or similar to, that of the state of the art scheduling algorithms for Kalman
filtering. For example, it has similar complexity to the state of the art periodic
scheduling algorithm in [132] (in particular: lower for K large enough), and lower
than the complexity of the algorithm in [119].

Overall, in response to Question 1, Algorithm 1 enjoys both the higher estimation accu-
racy of the batch state estimation approach (compared to the Kalman filtering approach,
that only approximates the batch state estimation error with an upper bound) and the
low time complexity of Kalman filtering approach.

3) We prove limits on the minimization of the square error of the minimum variance esti-
mator of (z(t1), x(t2),...,x(tx)) with respect to the scheduled sensors. For example,
we prove that the number r; of used sensors at each measurement time must increase
linearly with the system size for fixed estimation error and number of measurement times
K; this is a fundamental limit, especially for large-scale systems.

Our technical contributions. We achieve our aforementioned contributions by proving
the following two:

Supermodularity in Problem 1: We prove that our estimation metric, that quantifies the
square error of the minimum variance estimator of (x(t1), x(t2),...,z(tx)), is a supermod-
ular function in the choice of the used sensors. This result becomes important when we
compare it to results on the multi-step Kalman filtering that show that the corresponding
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estimation metric in this case is neither supermodular nor submodular [5, 139].2

In addition, this submodularity result cannot be reduced to the batch estimation problem in
[114]. The main reasons are two: i) we consider sensors that can measure any linear combi-
nation of the element of z(t), in contrast to [114], where each sensor measures directly only
one element of x(t;). Nonetheless, the latter assumption is usually infeasible in dynamical
systems [85]; ii) our error metric is relevant to estimation problems for dynamical systems
and different to the submodular information gain considered in [114].

Sparsity in Problem 1: We identify a sparsity pattern in our error metric, that facilitates
the latter’s evaluation at each sensor set. In particular, we prove that the error covariance
of the minimum variance linear estimator of the batch state vector is block tri-diagonal.

We organize the rest of the chapter as follows: In Section 5.2 we present formally Problem 1.
In Section 5.3, we present in three subsections our main results: in Section 5.3.1, we prove
that our sensor scheduling problem is NP-hard. In Section 5.3.2, we derive our near-optimal
approximation algorithm. In Section 5.3.3, we prove limits on the minimization of the batch
state estimation error with respect to the used sensors. Section 5.4 concludes the chapter
with our future work.?

5.2. Problem Formulation

In the following paragraphs, we present our sensor scheduling problem for batch state es-
timation. To this end, we first build our system and measurement framework. Then, we
define our sensor scheduling framework and, finally, present our sensor scheduling problem.

We start in more detail with the system model:

System Model. We consider the linear time-invariant system:
z(t) = Ax(t) + Bu(t) + Fw(t),t > to, (5.1)

where to is the initial time, x(t) € R™ (n € N) the state vector, (t) the time derivative
of x(t), u(t) the exogenous input, and w(t) the process noise. The system matrices A, B
and F are of appropriate dimensions. We consider that u(t), A, B and F are known. Our
main assumption on w(t) is found in Assumption 4, that is presented after our measurement
model.

Remark 1. Our results extend to continuous and discrete time-variant systems, as explained

>The observation of [5] is also important as it disproves previous results in the literature [140].

3 Standard notation is presented in this footnote: We denote the set of natural numbers {1,2,...} as N,
the set of real numbers as R, and the set {1,2,...,n} as [n] (n € N). The empty set is denoted as (. Given
a set X, |X| is its cardinality. Matrices are represented by capital letters and vectors by lower-case letters.
We write A € X" *"2 (ny1,n2 € N) to denote a matrix of n1 rows and n2 columns whose elements take
values in X. Moreover, for a matrix A, A" is its transpose, and [A];; is its element at the i-th row and j-th
column. In addition, ||Alj2 = VAT A is its spectral norm, and det(A) its determinant. Furthermore, if A is
positive semi-definite or positive definite, we write A > 0 and A > 0, respectively. I is the identity matrix;
its dimension is inferred from the context. Similarly for the zero matrix 0. Finally, for a random variable
z € R", E(x) is its expected value, and C(z) its covariance.
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in detail in Section 5.8 (Corollaries 4 and 5).

We introduce the measurement model:

Measurement Model. We consider m sensors:
zi(t) = Cix(t) + vi(t),i € [m], (5.2)

where z;(t) is the measurement taken by sensor i at time t, C; € R%*"™ (d; € N) is sensor’s
i measurement matriz, and v;(t) is its measurement noise.

We make the following assumption on z(tp), w(t) and v;(t):
Assumption 4. For allt, t' > tg, t #t', and all i € [m]: z(ty), w(t), w(t’), vi(t) and v;(t')
are uncorrelated; in addition, x(ty), w(t) and v;(t) have positive definite covariance.

We now introduce the sensor scheduling model:

Sensor Scheduling Model. The m sensors in (5.2) are used at K scheduled measurement
times {t1,ta,...,tx}. Specifically, at each ty only ry of these m sensors are used (r, < m),
resulting in the batch measurement vector y(ty):

y(te) = S(tr)z(t), k € [K], (5.3)

where 2(t) = (2] (tr), 29 (tr)s- -+, 20 (tk)) T, and S(tg) is the sensor selection matriz: it is
a block matriz, composed of matrices [S(ti)]ij (i € [ri], j € [m]) such that [S(t)]i; = I if
sensor j is used at ty, and [S(ty)]i; = 0 otherwise. We consider that each sensor can be used
at most once at each ty, and as a result, for each i there is one j such that [S(ty)]i; = I
while for each j there is at most one i such that [S(ty)];; = I.

We now present the sensor scheduling problem we study in this chapter. To this end, we
use two notations:

Notation. First, we set S = {j : there exists i € [ry], [S(t)]i; = 1}; that is, Sy, is the set
of indices that correspond to used sensors at tj. Second, we set S1.x = (51,82, ...,Sk).

Problem 1 (Sensor Scheduling for Minimum Variance Batch State Estimation)
Given a set of measurement times t1,la,...,tx, select at each ti to use a subset of ry
sensors, out of the m sensors in (5.2), so to minimize the logdet of the error covariance of
the minimum variance linear estimator of x1.x = (x(t1),x(t2),...,x(tx)). In mathematical

notation:
mimize logdet(2(Z1.x|Sq.
znl[l[nz],kl[ ] g ( ( 1.K’ 1K))

subject to |Si| < ri, k € [K],

where T1.5 s the minimum variance linear estimator of x1.x, and X(&1.x|S1.x) ils error
covariance given S1.x.

Two remarks follow on the definition of Problem 1. In the first remark we explain why we
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focus on #1.x, and in the second why we focus on log det(X(Z1.x)).

Notation. For notational simplicity, we use X(%1.x) and X(#1.x|S1.x) interchangeably.
Remark 2. We focus on the minimum variance linear estimator T1.x because of its optimal-
ity: it minimizes among all linear estimators of x1.x the estimation error E(||x1.x —21.x|3),
where the expectation is taken with respect to y(t1),y(t2),...,y(tx) [103]. Because Z1.x
is also unbiased (that is, E(Z1.x) = x1.x, where the expectation is taken with respect to
y(t1),y(te),...,y(tx)), we equivalently say that 2. is the minimum variance estimator of
T1:K-

We compute the error covariance of &1.x in Appendiz 5.5.1.

Remark 3. We focus on the estimation error metric logdet(X(21.x)) because when it is
minimized the probability that the estimation error ||x1.;c — 1. ||3 is small is mazimized. To
quantify this statement, we note that this error metric is related to the n-confidence ellipsoid
of x1.x — Z1.x [119]: Specifically, the n-confidence ellipsoid is the minimum volume ellipsoid
that contains 1.0 — #1.5c with probability n, that is, it is the & = {z : ' X(21.x)7 < €},

where € is the quantity F ' (n), and F 2 the cumulative distribution function of a
Xn(k+1) Xn(k+1)

X-squared random variable with n(k + 1) degrees of freedom [124]. Thus, its volume

(ew)n(k—&-l)/z
T (n(k+1)/2+1)

vol(E,) det (z(@lzK)l/Z) , (5.4)
where I'(+) denotes the Gamma function [124], quantifies the estimation error of the optimal
estimator T1.i. Therefore, by taking the logarithm of (5.4), we validate that when the
log det(X(#1.5)) is minimized the probability that the estimation error ||x1.x — Z1.x|3 is
small is mazimized.

5.3. Main Results
Our main results are presented in three sections:
e In Section 5.3.1, we prove that Problem 1 is NP-hard.

e In Section 5.3.2, we derive a provably near-optimal approximation algorithm for Prob-
lem 1. In addition, we emphasize on its time complexity and compare it to that of
existing sensor scheduling algorithms for two categories: batch state estimation, and
Kalman filtering.

e In Section 5.3.3, we prove limits on the optimization of the estimation error E(||z1.x —
#1.x|3) with respect to the scheduled sensors.

5.8.1. Computational Complexity of Sensor Scheduling for Batch State Estimation

In this section, we characterize the computational complexity of Problem 1. In particular,
we prove:
Theorem 6. The problem of sensor scheduling for minimum variance batch state estimation

(Problem 1) is NP-hard.
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Algorithm 9 Approximation algorithm for Problem 1.

Input: Number of measurement times K, scheduling constraints r1,rs,..., 7k, estimation
error function log det(X(21.x|S1.x)) : Sk C [m],k € [K] —» R

Output: Sensor sets (S1,Ss,...,Sk) that approximate the solution to Problem 1, as quan-
tified in Theorem 7
k «— 1, 81;() — @
while £ < K do
1. Apply Algorithm 10 to

Sncl%n}{logdet(E(:ﬁlzK|Slzk_1,S)) SIS < i} (5.5)

2. Denote as Si the solution Algorithm 10 returns
3. Sl:k < (Slzk—lask)

4. k+k+1
end while

Proof: The proof is omitted due to space constraints. Notwithstanding, we note that the
proof is complete by finding an instance of Problem 1 that is equivalent to the NP-hard
minimal observability problem introduced in |7] [109]. [

Due to Theorem 6, for the polynomial time solution of Problem 1 we need to appeal to
approximation algorithms. To this end, in Section 5.3.2, we provide an efficient provably
near-optimal approximation algorithm:

5.3.2. Algorithm for Sensor Scheduling for Minimum Variance Batch State Estimation

We propose Algorithm 9 for Problem 1 (Algorithm 9 uses Algorithm 10 as a subroutine);
with the following theorem, we quantify its approximation performance and time complexity.
Theorem 7. The theorem has two parts:

1) Approximation performance of Algorithm 9: Algorithm 9 returns sensors sets S1,Sa, . . .,
Sk that:

e satisfy all the feasibility constraints of Problem 1: |Si| < ri, k € [K]

e achieve an error value logdet(X(21.x|S1.x)), where S1.x = (S1,82,...,S8K), such
that:
log det(X(21:x|S1:x)) — OPT < 1’ (5.6)
MAX — OPT 2

where OPT s the (optimal) value to Problem 1, and M AX is the mazimum (worst)
value to Problem 1 (MAX =maxg logdet(X(21:x[S].x)))-

2) Time complexity of Algorithm 9: Algorithm 9 has time complexity of order:
K
O(n**K Z r2).
k=1
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Theorem 7 extends to continuous and discrete time-variant systems as follows:
Corollary 4. Consider the time-variant version of (5.1):

z(t) = A(t)x(t) + B(t)u(t) + F(t)w(t), t > to. (5.7)
1) Part 1 of Theorem 7 holds.

2) Part 2 of Theorem 7 holds if the time complexity for computing each transition matriz
D(tpr1,te) [85], where k € [K — 1], is O(n?).4
Corollary 5. Consider the discrete time version of (5.7):

zlk + 1] = Agx[k] + Brulk] + Frw(k], k > ko. (5.8)

Similarly, consider the discrete time counterparts of the sensor model (5.2), Assumption 4,
and the sensor scheduling model (5.3).

1) Part 1 of Theorem 7 holds.
2) Part 2 of Theorem 7 holds if Ay in (5.8) is full rank for all k € [K].

We follow-up with several remarks on Theorem 7:

Remark 4. (Approximation quality of Algorithm 9) Theorem 7 quantifies the worst-case
performance of Algorithm 9 across all values of Problem 1’s parameters. The reason is that
the right-hand side of (5.6) is constant. In particular, (5.6) guarantees that for any instance
of Problem 1, the distance of the approzimate value logdet(X(Z1.x|S1.x)) from OPT is at
most 1/2 the distance of the worst (maximum) value MAX from OPT. In addition, this
approzimation factor is near to the optimal approzimation factor 1/e = .38 one can achieve
in the worst-case for Problem 1 in polynomial time [141]; the reason is twofold: first, as
we comment in the next paragraph, we prove that Problem 1 involves the minimization of a
non-increasing and supermodular function [96], and second, as we proved in Section 5.3.1,
Problem 1 1s in the worst-case equivalent to the minimal controllability problem introduced
in [7], which cannot be approzimated in polynomial time with a better factor than the 1/e
[13].

Remark 5. (Supermodularity of logdet(X(Z1.x))) In the proof of Theorem 7 (Appendiz
5.5.2), we show that logdet(X(%1.x)) 18 a non-increasing and supermodular function with
respect to the sequence of selected sensors. Specifically, the proof of (5.6) follows by combin-
ing these two results and results on the maximization of submodular functions over matroid
constraints [12] —we present these three derivations in Appendices 5.5.2, 5.5.2, and 5.5.2,
respectively.

We continue with our third remark on Theorem 7:

Remark 6. (Time complexity of Algorithm 9) Algorithm 9’s time complezity is broken down
into two parts: the first part is the number of evaluations of log det(X(21.x)) required by the
algorithm, and the second part is the time comple