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Resilient Submodular Maximization For Control And Sensing

Abstract
Fundamental applications in control, sensing, and robotics, motivate the design of systems by selecting system
elements, such as actuators or sensors, subject to constraints that require the elements not only to be a few in
number, but also, to satisfy heterogeneity or interdependency constraints (called matroid constraints). For
example, consider the scenarios:

- (Control) Actuator placement: In a power grid, how should we place a few generators both to guarantee its
stabilization with minimal control effort, and to satisfy interdependency constraints where the power grid
must be controllable from the generators?

- (Sensing) Sensor placement: In medical brain-wearable devices, how should we place a few sensors to ensure
smoothing estimation capabilities?

- (Robotics) Sensor scheduling: At a team of mobile robots, which few on-board sensors should we activate at
each robot ---subject to heterogeneity constraints on the number of sensors that each robot can activate at
each time--- so both to maximize the robots' battery life, and to ensure the robots' capability to complete a
formation control task?

In the first part of this thesis we motivate the above design problems, and propose the first algorithms to
address them. In particular, although traditional approaches to matroid-constrained maximization have met
great success in machine learning and facility location, they are unable to meet the aforementioned problem of
actuator placement. In addition, although traditional approaches to sensor selection enable Kalman filtering
capabilities, they do not enable smoothing or formation control capabilities, as required in the above
problems of sensor placement and scheduling. Therefore, in the first part of the thesis we provide the first
algorithms, and prove they achieve the following characteristics: provable approximation performance: the
algorithms guarantee a solution close to the optimal; minimal running time: the algorithms terminate with the
same running time as state-of-the-art algorithms for matroid-constrained maximization; adaptiveness: where
applicable, at each time step the algorithms select system elements based on both the history of selections. We
achieve the above ends by taking advantage of a submodular structure of in all aforementioned problems ---
submodularity is a diminishing property for set functions, parallel to convexity for continuous functions.

But in failure-prone and adversarial environments, sensors and actuators can fail; sensors and actuators can
get attacked. Thence, the traditional design paradigms over matroid-constraints become insufficient, and in
contrast, resilient designs against attacks or failures become important. However, no approximation
algorithms are known for their solution; relevantly, the problem of resilient maximization over matroid
constraints is NP-hard.

In the second part of this thesis we motivate the general problem of resilient maximization over matroid
constraints, and propose the first algorithms to address it, to protect that way any design over matroid
constraints, not only within the boundaries of control, sensing, and robotics, but also within machine
learning, facility location, and matroid-constrained optimization in general.

In particular, in the second part of this thesis we provide the first algorithms, and prove they achieve the
following characteristics: resiliency: the algorithms are valid for any number of attacks or failures;
adaptiveness: where applicable, at each time step the algorithms select system elements based on both the
history of selections, and on the history of attacks or failures; provable approximation guarantees: the
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algorithms guarantee for any submodular or merely monotone function a solution close to the optimal;
minimal running time: the algorithms terminate with the same running time as state-of-the-art algorithms for
matroid-constrained maximization. We bound the performance of our algorithms by using notions of
curvature for monotone (not necessarily submodular) set functions, which are established in the literature of
submodular maximization.

In the third and final part of this thesis we apply our tools for resilient maximization in robotics, and in
particular, to the problem of active information gathering with mobile robots. This problem calls for the
motion-design of a team of mobile robots so to enable the effective information gathering about a process of
interest, to support, e.g., critical missions such as hazardous environmental monitoring, and search and rescue.
Therefore, in the third part of this thesis we aim to protect such multi-robot information gathering tasks
against attacks or failures that can result to the withdrawal of robots from the task. We conduct both numerical
and hardware experiments in multi-robot multi-target tracking scenarios, and exemplify the benefits, as well
as, the performance of our approach.
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ABSTRACT

RESILIENT SUBMODULAR MAXIMIZATION FOR CONTROL AND SENSING

Vasileios Tzoumas
George J. Pappas
Ali Jadbabaie

Fundamental applications in control, sensing, and robotics, motivate the design of systems
by selecting system elements, such as actuators or sensors, subject to constraints that require
the elements not only to be a few in number, but also, to satisfy heterogeneity or interde-
pendency constraints (called matroid constraints). For example, consider the scenarios:

• (Control) Actuator placement : In a power grid, how should we place a few generators
both to guarantee its stabilization with minimal control e�ort, and to satisfy interde-
pendency constraints where the power grid must be controllable from the generators?

• (Sensing) Sensor placement : In medical brain-wearable devices, how should we place
a few sensors to ensure smoothing estimation capabilities?

• (Robotics) Sensor scheduling : At a team of mobile robots, which few on-board sensors
should we activate at each robot �subject to heterogeneity constraints on the number
of sensors that each robot can activate at each time� so both to maximize the robots'
battery life, and to ensure the robots' capability to complete a formation control task?

In the �rst part of this thesis we motivate the above design problems, and propose the
�rst algorithms to address them. In particular, although traditional approaches to matroid-
constrained maximization have met great success in machine learning and facility location,
they are unable to meet the aforementioned problem of actuator placement. In addition,
although traditional approaches to sensor selection enable Kalman �ltering capabilities,
they do not enable smoothing or formation control capabilities, as required in the above
problems of sensor placement and scheduling. Therefore, in the �rst part of the thesis
we provide the �rst algorithms, and prove they achieve the following characteristics: prov-
able approximation performance: the algorithms guarantee a solution close to the optimal;
minimal running time: the algorithms terminate with the same running time as state-of-
the-art algorithms for matroid-constrained maximization; adaptiveness: where applicable,
at each time step the algorithms select system elements based on both the history of se-
lections. We achieve the above ends by taking advantage of a submodular structure of in
all aforementioned problems �submodularity is a diminishing property for set functions,
parallel to convexity for continuous functions.

But in failure-prone and adversarial environments, sensors and actuators can fail; sensors
and actuators can get attacked. Thence, the traditional design paradigms over matroid-
constraints become insu�cient, and in contrast, resilient designs against attacks or failures
become important. However, no approximation algorithms are known for their solution;
relevantly, the problem of resilient maximization over matroid constraints is NP-hard.
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In the second part of this thesis we motivate the general problem of resilient maximization
over matroid constraints, and propose the �rst algorithms to address it, to protect that way
any design over matroid constraints, not only within the boundaries of control, sensing,
and robotics, but also within machine learning, facility location, and matroid-constrained
optimization in general. In particular, in the second part of this thesis we provide the �rst
algorithms, and prove they achieve the following characteristics: resiliency : the algorithms
are valid for any number of attacks or failures; adaptiveness: where applicable, at each
time step the algorithms select system elements based on both the history of selections,
and on the history of attacks or failures; provable approximation guarantees: the algorithms
guarantee for any submodular or merely monotone function a solution close to the optimal;
minimal running time: the algorithms terminate with the same running time as state-of-
the-art algorithms for matroid-constrained maximization. We bound the performance of
our algorithms by using notions of curvature for monotone (not necessarily submodular) set
functions, which are established in the literature of submodular maximization.

In the third and �nal part of this thesis we apply our tools for resilient maximization in
robotics, and in particular, to the problem of active information gathering with mobile
robots. This problem calls for the motion-design of a team of mobile robots so to enable the
e�ective information gathering about a process of interest, to support, e.g., critical missions
such as hazardous environmental monitoring, and search and rescue. Therefore, in the third
part of this thesis we aim to protect such multi-robot information gathering tasks against
attacks or failures that can result to the withdrawal of robots from the task. We conduct
both numerical and hardware experiments in multi-robot multi-target tracking scenarios,
and exemplify the bene�ts, as well as, the performance of our approach.
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∑n

j=2 xj(t),
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CHAPTER 1 : INTRODUCTION

1.1. Motivation of submodular maximization in control, sensing, and robotics

Researchers in control, sensing, and robotics envision the design of critical infrastructures
and autonomous systems in applications such as:

• (Control) Power-grid stabilization: Deploy new-technology HVDC generators in power
grids to guarantee their stabilization. [1]

• (Sensing) Search and rescue: Deploy mobile robots to localize people trapped in burn-
ing buildings. [2]

• (Robotics) Multi-target coverage: Deploy aerial micro-robots to monitor targets that
move in a cluttered urban environment. [3]

In particular, all the aforementioned applications motivate fundamental set function opti-
mization problems such as:

• (Control) Actuator placement : In a power grid, how should we place a few generators
both to guarantee its stabilization, and to satisfy global-interdependency constraints
where the power grid must be controllable from the generators? [4]

• (Sensing) Sensor scheduling : At a team of mobile robots, which few on-board sensors
should we activate at each robot �subject to heterogeneity constraints on the number
of sensors each robot can activate� so both to maximize the robots' battery life, and
to ensure the robots' capability to complete a formation control task? [5]

• (Robotics) Motion planning : At a team of aerial robots, how should we select the
robots' motions to maximize the team's capability for tracking targets moving in ur-
ban environments, subject to heterogeneity constraints where each robot has di�erent
motion capabilities? [6]

Speci�cally, all the above applications motivate the design of systems by selecting system
elements, such as actuators, sensors, or movements, subject to complex design constraints
that require the system elements not only to be a few in number, but also to possibly satisfy
heterogeneity or global-interdependency constraints. Other general fundamental problems
that involve such complex design constraints are:

• (Control) Sparse actuation design for state reachability or low-control e�ort [4], or
merely for controllability [7] or structural controllability [8]; and synchronization in
complex networks for tasks of motion coordination [9].

• (Sensing) Sparse sensing design for optimal Kalman �ltering [5, 10].

• (Robotics) Task allocation in collaborative multi-robot systems for surveillance in ur-
ban environments [11].
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In more detail, all the aforementioned problems and applications require the solution to an
optimization problem of the form:

max
A⊆V, A∈I

f(A), (1.1)

where the set V represent a set of available elements to choose from; the set I represents the
collection of complex design constraints �called matroids [12]� that enforce heterogeneity
or global-interdependency across the elements in A; and the objective function f is non-
decreasing and (possibly) submodular; submodularity is a diminishing returns property. For
example, I may constrain the cardinality of each feasible set in the problem in eq. (1.1),
e.g., when I = {A : A ⊆ V, |A| ≤ α}, given some positive integer α; an interpretation of
the number α is that it captures a resource constraint, such as a limited battery for sensor
activation, which limits the number of elements one can select in A (under the implicit
assumption that all the elements in V consume the same amount of the limited resource).
In some cases, however, di�erent elements may consume di�erent amounts of the limited
resource; for example, di�erent sensors may have di�erent battery consumption. In such
heterogeneity scenarios, I may constrain the cost of each feasible set in the problem in
eq. (1.1), e.g., by being I = {A : A ⊆ V, c(A) ≤ b}, given some cost function c(A) over all
the possible subsets A ⊆ V, and given some budget constraint b; that is, the cost function c
captures the heterogeneity in the cost of each element in V. More generally, I may also
enforce heterogeneity to the elements in A by partitioning the elements in V, and permitting
the selection of only a few elements from each partition, e.g., when V = V1 ∪ · · · ∪ Vn and
I = {A : A ⊆ V, ci(A∩Vi) ≤ bi, for all i = 1, . . . , n}, given a positive integer n, a partition
V1, . . . ,Vn of V, cost functions c1, . . . , cn, and budget constraints b1, . . . , bn. In particular,
we may give two interpretations of the heterogeneity introduced by the sets V1, . . . ,Vn: the
�rst interpretation considers that the sets V1, . . . ,Vn correspond to the available elements
across n di�erent types (buckets) of elements, and correspondingly, the budgets b1, . . . , bn
constrain the total cost of the elements one can use from each type 1, . . . , n; and the second
interpretation considers that the sets V1, . . . ,Vn correspond to the available elements across
n di�erent times, and correspondingly, the budget constraints b1, . . . , bn constrain the total
cost of the elements one can use at each time 1, . . . , n. Finally, in other complex design
scenarios, that call for global-interdependency among the selected elements, I may require
the elements in A to form, e.g., a spanning tree on a graph associated to V, such as in the
aforementioned scenario of leader selection for structural controllability [8].

1.2. State-of-the-art approaches for submodular maximization

Overall, the optimization problem in eq. (1.1) is combinatorial, and, in particular, it is NP-
hard [13]; notwithstanding, greedy-like algorithms have been proposed for its solution [12,
14], such as the greedy presented in Algorithm 1. Speci�cally, Algorithm 1 builds sequentially
an approximate solution for the problem in eq. (1.1), by starting with an empty set A (line 1
of Algorithm 1), and then by adding in A one element at a time (lines 2-8 of Algorithm 1);
in particular, any element that achieves the highest value of f(A∪{y}) among the elements
y ∈ V that not chosen so far (line 5 of Algorithm 1) and for which the feasibility constraint
A ∪ {y} ∈ I is satis�ed (lines 4 of Algorithm 1). Similarly, the rest of the state-of-the-art
algorithms for the problem in eq. (1.1), i.e., the proposed algorithms in [14], follow similar
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Algorithm 1 Greedy algorithm for problem in eq. (1.1) [12].

Input: Per problem in eq. (1.1), Algorithm 19 receives the inputs:
• a matroid (V, I);
• a non-decreasing set function f : 2V 7→ R.

Output: Set A.

1: A ← ∅; R ← ∅;
2: while R 6= V do
3: x ∈ arg maxy∈V\(A∪R) f(A ∪ {y});
4: if A ∪ {x} ∈ I then
5: A ← A∪ {x};
6: end if
7: R ← R∪ {x};
8: end while

steps to the ones in Algorithm 1, and di�er only on how they choose which element to add
in A (i.e., they replace the criterion in line 3 of Algorithm 1 with some other).

Notably, the algorithms in [12, 14] are proved to be near-optimal for several instances of the
optimization problem in eq. (1.1) [13, 14, 15], and are commonly used in, e.g., statistics,
such as, in machine learning [16], and optimization, such as, in facility location [17].

1.3. Need for novel approaches of submodular maximization in control

However, the algorithms in [12, 14], cannot address with provable approximation perfor-
mance the fundamental control problems of actuator selection discussed above, such as the
ones in [4]. In particular, consider the fundamental problem of actuator placement for low
control e�ort in [4], where the objective is to place a few actuators in a dynamical system
to minimize the average control e�ort one needs to drive the system in the state space. In
this case, the algorithms in [12, 14] do not exhibit the near-optimal approximation proved
in [12, 15], even for average control-e�ort metrics (which are instances of the objective func-
tion f in eq. (1.1)) that are non-decreasing and submodular. To reveal the reason, we next
discuss in more detail when a system can be controlled with low e�ort from an actuator
set, and then discuss how the algorithms in [12, 14] may become insu�cient in this context:
speci�cally, the control-e�ort one needs to drive a system in the state space is in�nite if the
system is not controllable from the set of placed actuators, i.e., if there exists at least one
system state that is not reachable with a �nite amount of control e�ort from the set of placed
actuators. In particular, for a system to be controllable typically more than one actuators
is needed [18]. Hence, given a system, and any set of placed actuators of low enough cardi-
nality, then any metric f that captures the average control e�ort needed to drive the system
in the state space [19] is in�nity (has in�nite value). The latter conclusion is su�cient to
reveal why the algorithms in [12, 14] may fail to provide a near-optimal actuator selection
for low-e�ort control: by focusing without loss of generality only on Algorithm 1, recall
that Algorithm 1 builds an approximate solution to the optimization problem in eq. (1.1)
greedily, by starting with an empty set A, and then by adding elements in A one-by-one,
using the criterion in line 5 of Algorithm 1 to di�erentiate among the candidate elements to
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add; however, since the control e�ort metrics are in�nity insofar only a few actuators have
been added in A, Algorithm 1 cannot di�erentiate among them, and as a result, it picks
randomly the element to add in A. The complication of this fact is that even though all the
elements �nally picked in A a�ect the average control e�ort, a part of A has been picked
randomly, instead for minimizing the average control e�ort.

In sum, we have exempli�ed the necessity for novel tools of submodular maximization in
control, by presenting the above complications in applying the state-of-the-art algorithms
in [12, 14] to the fundamental problem of actuator placement for low control e�ort.

1.4. Need for novel approaches of submodular maximization in sensing and robotics

Traditional designs in sensing focus on selecting sensors in critical infrastructures, such as
in networks of satellites, or in power-grids, with the objective to enable state estimation
via Kalman �ltering in the presence of resource constraints, such as of limited bandwidth
for simultaneous satellite sensor communication [20], or of limited monetary budget for
phasor-measurement-unit (PMU) placement in power grids [4].

However, recent advances in the miniaturization of sensors and robots trigger the vision of
using swarms of mobile robots to support missions of search and rescue, and of safety and
security [2], which all suggest a shift of focus in the sensor selection process beyond Kalman
�ltering: in particular, a shift from sensor selection for merely state estimation (Kalman
�ltering) to sensor selection for autonomous navigation. For example, for a swarm of robots
to participate in missions of search and rescue in burning buildings, where each robot in the
swarm can operate only a subset of its sensors due to limited battery, the primary goal of
the sensor selection process is to enable the swarm's capability for autonomous navigation,
instead of its capability for only localization (state estimation); that is, such missions of
autonomous navigation exemplify the need for navigation-aware sensor selection emerges,
instead of merely localization-aware sensor selection.

At the same time, emergent medical applications require the design of multi-sensor devices,
such as of brain wearables, that enable smoothing estimation (trajectory estimation), instead
of Kalman �ltering (state estimation); see [21] and the references therein. Similarly, research
in robotics weigh also on smoothing estimation to enable exploration missions in unknown
environments by the means of simultaneous localization and mapping (SLAM) [22].

In sum, novel sensor selection schemes of submodular maximization are necessitated, that
go beyond Kalman �ltering to enable a variety of critical applications such as medical ap-
plications of brain wearables, and autonomous navigation applications of swarms of robots.

1.5. Need for resilient submodular maximization

At the same time, in all the above critical infrastructures and complex autonomous systems,
actuators can fail [23]; sensors and robots can get attacked [24]. Hence, in such failure-
prone and adversarial scenarios, resilient designs against denial-of-service attacks or failures
become important. That is, one needs to introduce resilient re-formulations of the problem
in eq. (1.1), that go beyond the traditional problem in eq. (1.1), and guard against denial-
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of-service attacks and failures, either in an o�-line fashion (before any attack or failure
happens) or in an on-line fashion (while any attacks or failures happen).

Evidently, which of the two options is appropriate �o�-line or on-line resilient design�
depends on the context of the design in hand. For example, o�-line protection of designs
becomes important in critical infrastructures, such as in power grids, where the design
happens once, does not change in time, and needs to withstand future attacks or failures [1,
25]. In contrast, on-line protection of designs becomes important in critical tasks where
the design requirements may evolve in time, such as in sensor scheduling for autonomous
navigation in search and rescue, where, speci�cally, di�erent sensors are activated at each
time step, and as a result, di�erent sensors may fail or get attacked at each time step.

We discuss in more detail the two options of o�-line and on-line resilient design below.

1.5.1. O�-line resilient submodular maximization

An option for an o�-line resilient re-formulation of the problem in eq. (1.1) is the following:

max
A⊆V, A∈I

min
B⊆A, B∈I′

f(A \ B). (1.2)

where the set I ′ represents the collection of possible set-removals B �attacks or failures�
from A, each of some speci�ed cardinality. Hence, the problem in eq. (1.2) maximizes f
despite worst-case failures that compromise the maximization in eq. (1.1). Therefore, it is
suitable in scenarios where there is no prior on the removal mechanism, as well as, in scenarios
where protection against worst-case removals is essential, such as in sensor selections for
expensive experiment designs.

Particularly, the optimization problem in eq. (1.2) may be interpreted as a 2-stage perfect
information sequential game between two players [26, Chapter 4], namely, a �maximization�
player (designer), and a �minimization� player (attacker), where the designer plays �rst, and
selects A to maximize the objective function f, and, in contrast, the attacker plays second,
and selects B to minimize the objective function f. In particular, the attacker �rst observes
the designer's selection A, and then, selects B such that B is a worst-case set removal from A.

1.5.2. On-line resilient submodular maximization

As mentioned above, the optimization problem in eq. (1.2) enables the o�-line protection of
system designs against attacks or failures (since in eq. (1.2) the set A is selected once, and
before any attack or failure B happens); however, for design requirements that evolve in time
(such as in sensor scheduling), one may want to go even beyond the o�-line resilient objective
of the problem in eq. (1.2), and guard adaptively against real-time attacks or failures. To
this end, an option is to introduce the following on-line re-formulation of the problem in
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eq. (1.2) (which for simplicity is presented for the case of merely cardinality constraints):

max
A1⊆V1

min
B1⊆A1

· · · max
AT⊆VT

min
BT⊆AT

f(A1 \ B1, . . . ,AT \ BT ),

such that:

|At| = αt and |Bt| ≤ βt, for all t = 1, . . . , T,

(1.3)

where the number βt is the number of possible attacks or failures. Hence, the problem in
eq. (1.2) maximizes the function f despite real-time worst-case failures that compromise
the consecutive maximization steps in eq. (1.1). Therefore, similarly to the problem in
eq. (1.2), it is suitable in scenarios where there is no prior on the removal mechanism, and
in scenarios where protection against worst-case failures is essential, such as in missions of
adversarial-target tracking.

Particularly, and similarly to the problem in eq. (1.2), the problem in eq. (1.3) may be inter-
preted as a T -stage perfect information sequential game between two players [26, Chapter 4],
namely, a �maximization� player (designer), and a �minimization� player (attacker), who play
sequentially, both observing all past actions of all players, and with the designer starting the
game. That is, at each time t = 1, . . . , T, both the designer and the attacker adapt their set
selections to the history of all the players' selections so far, and, in particular, the attacker
adapts its selection also to the current (t-th) selection of the designer (since at each step t,
the attacker plays after it observes the selection of the designer).

1.6. Thesis goal and approach

Goal. The goal of the thesis is threefold:

• (Novel theory on submodular maximization) To address fundamental design problems
in control, sensing, and robotics per the problem in eq. (1.1); in particular:

� (Control) We consider two fundamental problems of actuator placement: the
problem of actuator placement for state reachability, and the problem of actuator
placement for controllability with low control e�ort. These problems are impor-
tant, e.g., in the stabilizability of large-scale systems, such as power grids [27],
and the control of complex networks, such as biological networks [28].

In particular, the objective of actuator placement for state reachability is to de-
termine which few nodes we should actuate in a linear dynamical system so to
make feasible the state transfer from the system's initial condition to a given �nal
state. And the objective of actuator placement for controllability with low control
e�ort is to determine which few nodes we should actuate in a linear dynamical
system so to maximize the volume of the system states that are reachable with
one unit of control e�ort from the system's initial condition.

� (Sensing and robotics) We consider two fundamental problems of sensor selection:
the problem of sensor selection for batch-state estimation (smoothing), and the
problem of sensor selection for LQG control (autonomous navigation). These
problems are important in both sensing and robotics applications (see also Sec-
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tion 1.4), such as in the design of brain wearables in medical applications [21],
and in the design of the control inputs in multi-robot navigation applications [29].

In particular, the objective of sensor selection for batch-state estimation is to
determine which few sensors we should activate in a linear dynamical system �
possibly di�erent sensors at di�erent time steps� so to maximize at each time
step the estimation accuracy of the system's observed trajectory so far. And the
objective of sensor selection for LQG control is to determine which few sensors
we should activate in a linear system so to enable the generation of control inputs
that minimize the system's deviation from a desired trajectory.

• (Novel theory on resilient maximization) To protect against attacks and failures not
only the aforementioned fundamental designs, but also to go beyond control, sensing,
and robotics, and protect any design per the problem in eq. (1.1) �e.g., in machine
learning, facility location, and optimization in general [16, 17, 30]� by introducing
the resilient re-formulation of eq. (1.1) per the eq. (1.2) or the eq. (1.3); in particular:

� (O�-line resilient maximization) The problem in eq. (1.2) goes beyond tradi-
tional (non-resilient) optimization [12, 13, 31, 32, 33] by proposing resilient op-
timization; beyond merely cardinality-constrained resilient optimization [34, 35]
by proposing matroid-constrained resilient optimization; and beyond protection
against non-adversarial set-removals [36, 37] by proposing protection against
worst-case set-removals. Hence, the problem in eq. (1.2) aims to protect the com-
plex design of systems, per heterogeneity or global-interdependency constraints,
against attacks or failures, which is a vital objective for the safety of critical infras-
tructures, such as power grids [1, 25], or internet service provider networks [38].

� (On-line resilient maximization) The problem in eq. (1.3) goes beyond tradi-
tional (non-resilient) optimization [31, 32, 33, 39, 40] by proposing resilient op-
timization; beyond the single-step resilient optimization in [34] or in eq. (1.2)
by proposing multi-step (sequential) resilient optimization; beyond memoryless
resilient optimization [41] by proposing adaptive resilient optimization; and be-
yond protection against non-adversarial attacks [36, 37] by proposing protection
against worst-case attacks. Hence, the problem in eq. (1.3) aims to protect the
system performance over extended periods of time against real-time denial-of-
service attacks or failures, which is vital in critical applications, such as multi-
target surveillance with teams of mobile robots [6].

• (Applications of resilient maximization) To apply the resilient maximization tools we
develop herein to the problem of active information gathering with mobile robots [42].

In particular, active information gathering calls for the motion-design of a team of mo-
bile robots so to enable the e�ective information gathering about a process of interest.
For example, this problem aims to support critical missions such as:

� Hazardous environmental monitoring : Deploy a team of mobile robots to monitor
the radiation �ow around a nuclear reactor after an explosion; [43]
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� Adversarial-target tracking : Deploy a team of agile robots to track an adversarial
target that aims to escape by moving in a cluttered urban environment; [3]

� Search and rescue: Deploy a team of aerial micro-robots to localize people trapped
in a burning building. [2]

Approach. To achieve the above ends, in this thesis we develop novel algorithms for both
submodular and merely monotone maximization, as explained in more detail below.

1.7. Thesis contributions, and organization

The thesis contribution is to realize the aforementioned goals, by developing novel algorithms
for both submodular and monotone maximization, that achieve the following characteristics:

• resiliency : where applicable, the algorithms are valid for any number of denial-of-
service attacks or failures;

• adaptiveness: where applicable, at each time step the algorithms select system ele-
ments based on both the history of selections, and on the history of attacks or failures;

• provable approximation guarantees: the algorithms guarantee for any submodular or
merely monotone function a solution close to the optimal;

• minimal running time: the algorithms terminate with the same running time as state-
of-the-art algorithms for submodular maximization.

In more detail, the thesis contributions per thesis chapter are as follows:

• (Chapters 2-3) Contributions to submodular maximization in control : In Chapter 2 and
Chapter 3 we address the problems of minimal actuator placement for state reachability
and of minimal actuator placement for controllability, respectively.

In more detail, in Chapters 2-3 we make the following contributions:

� In Chapter 2 we prove that the problem of actuator placement for state reacha-
bility cannot be approximated in polynomial or even quasi-polynomial time.

� In Chapter 3 we prove that the problem of minimal actuator placement for con-
trollability with low control e�ort is NP-hard, yet we provide novel and near-
optimal approximation algorithms for its solution, by overcoming the complica-
tions discussed in Section 1.3 regarding the application of state-of-the-art algo-
rithms for the solution of the submodular maximization problem in eq. (1.1).

• (Chapters 4-8) Contributions to submodular maximization in sensing and robotics: In
Chapters 4-7 we focus on the problem of sensor selection for batch-state estimation,
and in Chapter 8 we focus on the problem of sensor selection for LQG control.

In more detail, in Chapters 4-7 we make the following contributions:
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� (Problem de�nition) We formalize problems of sensor selection for batch-state
estimation (smoothing) for systems that are either linear (Chapters 4-5), non-
linear (Chapter 6), or stochastic (Chapter 7). This is the �rst work to formalize,
address, and demonstrate the importance of these problems.

� (Solution) We prove that the problem of sensor selection for batch-state estima-
tion is NP-hard (Chapter 6), yet we provide for its solution near-optimal, on-line
approximation algorithms, with minimal running time (equal to those sensor se-
lection algorithms that are employed for Kalman �ltering).

� (Application) We propose novel designs of multi-sensor brain wearables that rely
on electroencephalograms, by determining via our proposed algorithms the sensor
location that seems to be the most e�ective with respect to a pre-speci�ed number
of sensors. In particular, we observe that for a variety of tasks the location of
sensors currently used in such wearable devices is sub-optimal with respect to the
objective smoothing estimation (Chapter 6).

Finally, in Chapter 8 we make the following contributions:

� (Problem de�nition) We formalize the problem of sensor selection for LQG con-
trol, in particular, subject to heterogeneous sensor-cost constraints. This is the
�rst work to formalize, address, and demonstrate the importance of this problem.

� (Solution) We provide the �rst algorithms the problem of sensor selection for
LQG control, by extending algorithms in the literature on submodular optimiza-
tion subject to heterogeneous cost constraints. In particular, (i) we provide the
�rst e�cient algorithms for the optimization of approximately supermodular func-
tions subject to heterogeneous-cost constraints; and (ii) we improve known sub-
optimality bounds that also apply to the optimization of (exactly) supermodular
functions: speci�cally, the proposed algorithm for approximate supermodular
optimization with heterogeneous-cost constraints can achieve in the exactly su-
permodular case the approximation bound (1 − 1/e), which is superior to the
previously established bound 1/2(1− 1/e) in the literature [44].

� (Simulations) We consider two application scenarios, namely, sensing-constrained
formation control and resource-constrained robot navigation. We present a Monte
Carlo analysis for both scenarios, which demonstrates that (i) the proposed al-
gorithm is near-optimal (matches the optimal selection in all tested instances for
which the optimal selection could be computed via a brute-force approach), and
(ii) a naive selection which attempts to minimize the state estimation covari-
ance [5] (Kalman �ltering error rather than the LQG cost) has degraded LQG
tracking performance, often comparable to a random selection.

• (Chapters 9-10) Resilient submodular maximization: In Chapters 9-10 we go beyond
the traditional objective of the optimization problem in eq. (1.1), and introduce its
resilient re-formulations in eq. (1.2) and eq. (1.3), so to enable the protection of any
system design per eq. (1.1) �e.g., in control, machine learning, and optimization in
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general� against any number of attacks or failures.

In more detail, in Chapters 9-10 we make the following contributions:

� (Problem de�nition) We formalize the problems of o�-line resilient maximization
over matroid-constraints per eq. (1.2) (Chapter 9), and of on-line resilient maxi-
mization per eq. (1.3) (Chapter 10). This is the �rst work to formalize, address,
and demonstrate the importance of these problems.

� (Solution) We develop the �rst algorithms for the solution of the resilient max-
imization problems in eq. (1.2) and eq. (1.3), and prove that they exhibit the
properties described in the beginning of Section 1.7, i.e., the properties of re-
siliency, adaptiveness �applicable to the Algorithm in Chapter 10,� provable
approximation performance, and minimal running time.

� (Simulations) We demonstrate the necessity for the resilient re-formulation of the
problem in eq. (1.1) by conducting numerical experiments in various scenarios of
sensing-constrained autonomous robot navigation, varying the number of sensor
failures. In addition, via the experiments we demonstrate the bene�ts of our
approach per the resilient problem formulations in eq. (1.2) and eq. (1.3).

• (Chapter 11) Application of resilient submodular maximization to robotics: In Chap-
ter 11 we introduce the problem of resilient active information gathering with mobile
robots, which goes beyond the traditional objective of (non-resilient) active informa-
tion gathering, and aims to guard the information gathering process from worst-case
failures or attacks that can cause not only the withdrawal of robots from the informa-
tion gathering task, but also the inability of the remaining robots to jointly optimize
their motions, due to disruptions to their communication network.

In more detail, in Chapter 11 we make the following contributions:

� (Problem de�nition) We formalize the problem of resilient active information
gathering with mobile robots against attacks or failures. This is the �rst work to
formalize, address, and demonstrate the importance of this problem.

� (Solution) We develop the �rst algorithm for resilient active information gathering
with the following properties:

∗ resiliency : it is valid for any number of denial-of-service attacks or failures;

∗ provable approximation performance: for all monotone and (possibly) sub-
modular information gathering objective functions in the active robot set
(non-failed robots), it ensures a solution close to the optimal;

∗ minimal communication: it terminates within the same order of communica-
tion rounds as current algorithms for (non-resilient) information gathering.

� (Simulations) We conduct simulations in a variety of multi-robot multi-target
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tracking scenarios, varying the number of robots, targets, and failures. Our
simulations validate the bene�ts of our approach.

� (Experiments) We conduct hardware experiments of multiple quad-rotors tracking
static ground targets, to demonstrate visually the necessity for resilient robot
motion design against robotic failures or denial-of-service attacks.

11



Part I

CONTRIBUTIONS TO

SUBMODULAR MAXIMIZATION

IN ACTUATION DESIGN

12



CHAPTER 2 : Minimal Reachability is Hard to Approximate

In this chapter, we consider the problem of choosing which nodes of a linear dynamical
system should be actuated so that the state transfer from the system's initial condition to
a given �nal state is possible. Assuming a standard complexity hypothesis, we show that
this problem cannot be e�ciently solved or approximated in polynomial, or even quasi-
polynomial, time.1

2.1. Introduction

During the last decade, researchers in systems, optimization, and control have focused on
questions such as:

• (Actuator Selection) How many nodes do we need to actuate in a gene regulatory
network to control its dynamics? [46, 47]

• (Input Selection) How many inputs are needed to drive the nodes of a power system
to fully control its dynamics? [48]

• (Leader Selection) Which UAVs do we need to choose in a multi-UAV system as leaders
for the system to complete a surveillance task despite communication noise? [49, 50]

The e�ort to answer such questions has resulted in numerous papers on topics such as
actuator placement for controllability [7, 51]; actuator selection and scheduling for bounded
control e�ort [18, 52, 53, 54]; resilient actuator placement against failures and attacks [55, 56];
and sensor selection for target tracking and optimal Kalman �ltering [57, 58, 59, 60]. In all
these papers the underlying optimization problems have been proven (i) either polynomially-
time solvable [46, 47, 48] (ii) or NP-hard, in which case polynomial-time algorithms have been
proposed for their approximate solution [7, 18, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60].

But in several applications in systems, optimization, and control, such as in power sys-
tems [61, 62], transportation networks [63], and neural circuits [64, 65], the following problem
also arises:

Minimal Reachability Problem. Given times t0 and t1 such that t1 > t0,
vectors x0 and x1, and a linear dynamical system with state vector x(t) such
that x(t0) = x0, �nd the minimal number of system nodes we need to actuate
so that the state transfer from x(t0) = x0 to x(t1) = x1 is feasible.

For example, the stability of power systems is ensured by placing a few generators such that
the state transfers from a set of possible initial conditions to the zero state are feasible [62].

The minimal reachability problem relaxes the objectives of the applications in [7, 18, 46,
47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60]. For example, in comparison to the
actuator placement problem for controllability [7], the minimal reachability problem aims to
place a few actuators only to make a single transfer between two states feasible, whereas the

1This chapter is based on the paper by A. Jadbabaie, A. Olshevsky, G. J. Pappas, and V. Tzoumas [45].
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x2(t) x3(t) x4(t) · · · xn(t)

x1(t)

Figure 1: Graphical representation of the linear system ẋ1(t) =
∑n

j=2 xj(t), ẋi(t) = 0, i =
2, . . . , n; each node represents an entry of the system's state (x1(t), x2(t), . . . , xn(t)), where
t represents time; the edges denote that the evolution in time of x1 depends on (x2, x3, . . . ,
xn).

minimal controllability problem aims to place a few actuators to make the transfer among
any two states feasible [7, 51].

The fact that the minimal reachability problem relaxes the objectives of the papers [7, 18,
46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60] is an important distinction whenever
we are interested in the feasibility of only a few state transfers by a small number of placed
actuators. The reason is that under the objective of minimal reachability the number of
placed actuators can be much smaller in comparison to the number of placed actuators
under the objective of controllability. For example, in the system of Fig. 1 the number of
placed actuators under the objective of minimal reachability from (0, . . . , 0) to (1, . . . , 0) is
one, whereas the number of placed actuators under the objective of controllability grows
linearly with the system's size.

The minimal reachability problem was introduced in [66], where it was found to be NP-hard.
Similar versions of the reachability problem were studied in the context of power systems
in [62] and [67]. For the polynomial-time solution of the reachability problems in [62, 66, 67],
greedy approximation algorithms were proposed therein. The approximation performance
of these algorithms was claimed by relying on the modularity result [68, Lemma 8.1], which
states that the distance from a point to a subspace created by the span of a set of vectors
is supermodular in the choice of the vectors.

In this chapter, we �rst show that the modularity result [68, Lemma 8.1] is incorrect. In
particular, we show this via a counterexample to [68, Lemma 8.1], and as a result, we prove
that the distance from a point to a subspace created by the span of a set of vectors is
non-supermodular in the choice of the vectors. Then, we also prove the following strong
intractability result for the minimal reachability problem, which is our main contribution in
this chapter:

Contribution 1. Assuming NP /∈ BPTIME(npoly log n), we show that for each
δ > 0, there is no polynomial-time algorithm that can distinguish between the
two cases where:

� the reachability problem has a solution with cardinality k;
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� the reachability problem has no solution with cardinality k2Ω(log1−δ n),
where n is the dimension of the system.

We note that the complexity hypothesis NP /∈ BPTIME(npoly log n) means there is no ran-
domized algorithm which, after running for O(n(logn)c) time for some constant c, outputs
correct solutions to problems in NP with probability 2/3; see [69] for more details.

Notably, Contribution 1 remains true even if we allow the algorithm to search for an ap-
proximate solution that is relaxed as follows: instead of choosing the actuators to make the
state transfer from the initial state x0 to a given �nal state x1 possible, some other state x̂1

that satis�es ‖x1 − x̂1‖22 ≤ ε should be reachable from x0. This is a substantial relaxation
of the reachability problem's objective, and yet, we show that the intractability result of
Contribution 1 still holds.

The rest of this chapter is organized as follows. In Section 2.2, we introduce formally the min-
imal reachability problem. In Section 2.3, we provide a counterexample to [68, Lemma 8.1].
In Section 2.4, we present Contribution 1; in Section 2.5, we prove it. Section 2.6 concludes
the chapter.

2.2. Minimal Reachability Problem

In this section we formalize the minimal reachability problem. We start by introducing the
systems considered in this chapter and the notions of system node and of actuated node set.
System 1. We consider continuous-time linear systems of the form

ẋ(t) = Ax(t) +Bu(t), t ≥ t0, (2.1)

where t0 is a given starting time, x(t)∈ Rn is the system's state at time t, and u(t)∈ Rm is
the system's input vector. J

In this chapter we want to actuate the minimal number of the system's nodes in eq. (2.1) to
make a desired state-transfer feasible (and not to achieve necessarily the system's control-
lability). We formalize this control objective using the following two de�nitions.
De�nition 1 (System node). Given a system as in eq. (2.1), where x(t) ∈ Rn, let x1(t),
x2(t), . . . , xn(t) ∈ R such that x(t) = (x1(t), x2(t), . . . , xn(t)). We refer to each xi(t) as a
system node. J
De�nition 2 (Actuated node set). Given a system as in eq. (2.1), where x(t) ∈ Rn, we say
that the set S ∈ {1, 2, . . . , n} is an actuated node set if for all times t the input u(t) a�ects
only the system nodes xi(t) where i ∈ S. Formally, the set S ∈ {1, 2, . . . , n} is an actuated
node set if the system dynamics are given by

ẋ(t) = Ax(t) + I(S)Bu(t), t ≥ t0, (2.2)

where I(S) is a n× n diagonal matrix such that if i ∈ S, the i-th entry of I(S)'s diagonal is
1, otherwise it is 0. J

The de�nition of I(S) in eq. (2.2) implies that the input u(t) a�ects only those system nodes
xi(t) where i ∈ S. In more detail,
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• if i ∈ S, the system node xi(t) is a�ected by u(t), since for i ∈ S the i-th row of I(S)B
is the i-th row of B;

• if i /∈ S, the system node xi(t) cannot be a�ected by u(t), since for i /∈ S the i-th row
of I(S)B is zero.

Overall, the set S determines via the matrix I(S)B which rows of B will be set to zero and
which will remain the same.
Problem 1 (Minimal Reachability). Given

• times t0 and t1 such that t1 > t0,

• vectors x0, x1 ∈ Rn, and

• a system ẋ(t) = Ax(t)+Bu(t), t ≥ t0, as in eq. (2.1), with initial condition x(t0) = x0,

�nd an actuated node set with minimal cardinality such that there exists an input u(t) de�ned
over the time interval (t0, t1) that achieves x(t1) = x1. Formally, using the notation |S| to
denote the cardinality of a set S:

minimize
S⊆{1,2,...,n}

|S|

such that there exist u : (t0, t1) 7→ Rm, x : (t0, t1) 7→ Rn with

ẋ(t) = Ax(t) + I(S)Bu(t), t ≥ t0,
x(t0) = x0, x(t1) = x1.

A special case of particular interest is when B is the identity matrix. Then, minimal reach-
ability asks for the fewest system nodes that need to be directly actuated by an input u(t)
so that at time t1 the state x1 is reachable from the system's initial condition x(t0) = x0.

2.3. Non-supermodularity of distance from point to subspace

In this section, we provide a counterexample to the supermodularity result [68, Lemma 8.1].
We begin with some notation. In particular, given a matrix M ∈ Rn×n, a vector v ∈ Rn, and
a set S ⊂ {1, . . . , n}, let M(S) denote the matrix by throwing away columns of M not in
S. In addition, for any set S ⊂ {1, . . . , n}, let the set function

f(S) = dist2(v,Range(M(S))),

where dist(y,X) is the distance from a point to a subspace; formally,

dist(y,X) = min
x∈X
||y − x||2.

We show that there exist v and M such that the function:

f : {1, 2, . . . , n} 7→ dist2(v,Range(M(S))),
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is non-supermodular. We start with the de�nitions of monotone and supermodular set
functions.

Notation. For any set function f : 2V 7→ R on a ground set V, and any element x ∈ V,
f(x) denotes f({x}). J
De�nition 3 (Monotonicity). Consider any �nite set V. The set function f : 2V 7→ R is
non-decreasing if and only if for any A ⊆ A′ ⊆ V, we have f(A) ≤ f(A′). J

In words, a set function f : 2V 7→ R is non-decreasing if and only if adding elements in any
set A ⊆ V cannot decrease the value of f(A).
De�nition 4 (Supermodularity [70, Proposition 2.1]). Consider any �nite set V. The set
function f : 2V 7→ R is supermodular if and only if for any A ⊆ A′ ⊆ V and x ∈ V,

f(A)− f(A ∪ {x}) ≥ f(A′)− f(A′ ∪ {x}). J

In words, a function f : 2V 7→ R is supermodular if and only if it satis�es the following
diminishing returns property: for any x ∈ V, the decrease f(A)− f(A∪ {x}) diminishes as
A grows; equivalently, for any A ⊆ V and x ∈ V, f(A)− f(A ∪ {x}) is non-increasing.
Example 1. We show that for

v =

 −1
1
1

 , M =

 1 0 1
1 1 0
0 0 1

 ,

f : {1, 2, . . . , n} 7→ dist2(v,Range(M(S))) is non-supermodular.

Since v is orthogonal to the �rst and third columns of M ,

f({1}) = dist2(v,M({1})) = ||v||22
f({1, 3}) = dist2(v,M({1, 3})) = ||v||22

Therefore,
f({1})− f({1, 3}) = 0.

At the same time, the span of the �rst two columns of M is the subspace {x ∈ R3 : x3 = 0}.
Thus,

f({1, 2}) = dist2(v,M({1, 2})) = 1.

Moreover, since the three columns of A are linearly independent,

f({1, 2, 3}) = dist2(v,M({1, 2, 3})) = 0,

and as a result,
f({1, 2})− f({1, 2, 3}) = 1.

In sum,
f({1, 2})− f({1, 2, 3}) > f({1})− f({1, 3});

hence, for v and M as de�ned in this example, f : {1, 2, . . . , n} 7→ dist2(v,Range(M(S))) is
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non-supermodular. J

We remark that the same argument as in Example 1 shows that the set function g :
{1, 2, . . . , n} 7→ R such that g(S) = [dist(v,Range(M(S))]c is not supermodular for any
c > 0.

2.4. Inapproximability of Minimal Reachability Problem

We show that, subject to a widely believed conjecture in complexity theory, there is no
e�cient algorithm that solves, even approximately, the minimal reachability Problem 1.
Towards the statement of this result, we next introduce a de�nition of approximability and
the de�nition of quasi-polynomial running time.
De�nition 5 (Approximability). Consider the minimal reachability Problem 1, and let the
set S? to denote one of its optimal solutions. We say that an algorithm renders Problem 1
(∆1(n),∆2(n))-approximable if it returns a set S such that:

• there is a state x̂1 such that x(t1) = x̂1 and ||x̂1 − x1‖2 < ∆1(n);

• the cardinality of S is at most ∆2(n)|S?|. J

In other words, the notion of (∆1(n),∆2(n)-approximability allows some slack both in the
quality of the reachability requirement, and in the number of actuators utilized to achieve
it.
De�nition 6 (Quasi-polynomial running time). An algorithm is quasi-polynomial if it runs
in 2O(logn)c time, where c is a constant. J

We note that any polynomial-time algorithm is a quasi-polynomial time algorithm since
nk = 2k logn. On the other hand, a quasi-polynomial algorithm is asymptotically faster than
an exponential-time algorithm (i.e., one that runs in O(2n

ε
), for some ε > 0).

We present next our main result in this chapter.

Theorem 1 (Inapproximability). There is a collection of instances of Problem 1 where

• the system's initial condition is x(t0) = 0;

• the �nal state x1 is of the form [1, 1, . . . , 1, 0, 0, . . . , 0]>;

• the system's input matrix is B = I, where I is the identity matrix,

such that for each δ ∈ (0, 1), there exists some function ∆(n) = 2Ω(log1−δ n) so that, unless
NP∈ BPTIME(npoly log n), there exists no quasi-polynomial algorithm for which Problem 1

is (∆(n), 2Ω(log1−δ n))-approximable.

Theorem 1 says that if NP /∈ BPTIME(npoly log n) there is no polynomial time algorithm (or
quasi-polynomial time algorithm) that can choose which entries of the system's x state to ac-
tuate so that x(t1) is even approximately close to a desired state x1 = [1, 1, . . . , 1, 0, 0, . . . , 0]>

at time t1.
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To make sense of Theorem 1, �rst observe that we can always actuate every entry of the
system's state, i.e., we can choose S = {1, 2, . . . , n}. This means every system is (0, n)-
approximable; let us rephrase this by saying that every system is (0, 2logn) approximate.
Theorem 1 tells us that we cannot achieve (0, 2Ω(log1−δ n))-approximability for any δ > 0.
In other words, improving the guarantee of the strategy that actuates every state by just a
little bit, in the sense of replacing δ = 0 with some δ > 0, is not possible �subject to the
complexity-theoretic hypothesis NP /∈ BPTIME(npoly log n). Furthermore, the theorem tells
us it remains impossible even if we allow ourselves some error ∆(n) in the target state, i.e.,
even (∆(n), 2Ω(log1−δ n))�approximability is ruled out.
Remark 1. In [66, Theorem 3] it is claimed that for any ε > 0 the minimal reachability
Problem 1 is

(
ε, O

(
log n

ε

))
-approximable, which contradicts Theorem 1. However, the proof

of this claim was based on [68, Lemma 8.1], which we proved incorrect in Section 2.3. J
Remark 2. The minimal controllability problem [7] seeks to place the fewest number of
actuators to make the system controllable. Theorem 1 is arguably surprising, as it was
shown in [7] that the sparsest set of actuators for controllability can be approximated to a
multiplicative factor of O(log n) in polynomial time. By contrast, we showed in this chapter
that an almost exponentially worse approximation ratio cannot be achieved for minimum
reachability. J

2.5. Proof of Inapproximability of Minimal Reachability

In this section, we provide a proof of our main result, namely Theorem 1. We use some
standard notation throughout: 1k is the all-ones vector in Rk, 0k is the zero vector in Rk,
and ek is the k'th standard basis vector. We next give some standard de�nitions related to
the reachability space of a linear system.

2.5.1. Reachability Space for continuous-time linear systems

De�nition 7 (Reachability space). Consider a system ẋ(t) = Ax(t) +Bu(t) as in eq. (2.1)
whose size is n. The Range([B, AB, A2B, . . . , An−1B]) is called the reachability space of
ẋ(t) = Ax(t) +Bu(t). J

The reason why De�nition 7 is called the reachability space is explained in the following
proposition.
Proposition 1 ([71, Proof of Theorem 6.1]). Consider a system as in eq. (2.1), with initial
condition x0. There exists a real input u(t) de�ned over the time interval (t0, t1) such that
the solution of ẋ = Ax+Bu, x(t0) = x0 satis�es x(t1) = x1 if and only if

x1 − eA(t1−t0)x0 ∈ Range([B, AB, A2B, . . . , An−1B]).

The notion of reachability space allows us to rede�ne the minimal reachability Problem 1
as follows.
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Corollary 1. The minimal reachability Problem 1 is equivalent to

minimize
S⊆{1,2,...,n}

|S|

such that x1 − eA(t1−t0)x0 ∈
Range([I(S)B, AI(S)B, . . . , An−1I(S)B]).

Overall, Problem 1 is equivalent to picking the fewest rows of the input matrix B such that
x1 − eA(t1−t0)x0 is in the linear span of the columns of:

[I(S)B, AI(S)B, A2I(S)B, . . . , An−1I(S)B].

2.5.2. Variable Selection Problem

We show the intractability of the minimum reachability by reducing it to the variable selec-
tion problem, de�ned next.
Problem 2 (Variable Selection). Let U ∈ Rm×l, z ∈ Rm, and let ∆ be a positive number.
The variable selection problem is to pick y ∈ Rl that is an optimal solution to the following
optimization problem.

minimize
y∈Rl

‖y‖0

such that ‖Uy − z‖2 ≤ ∆,

where ||y||0 refers to the number of non-zero entries of y.

The variable selection Problem 2 is found in [72] to be inapproximable:
Theorem 2 ([72, Proposition 6]). Unless NP∈ BPTIME(npoly log n), we have that for each
δ ∈ (0, 1) there exist

• a function ∆(l) : N→ N which is 2Ω(log1−δ l);

• a function q1(l) : N→ N which is in 2Ω(log1−δ l) and O(l);

• a polynomial2 p1(l) which is O(l);

• a polynomial m(l),

such that, given an m(l)×l matrix U , no quasi-polynomial algorithm can distinguish between
the following two cases:

1. There exists y ∈ {0, 1}l such that Uy = 1m(l) and ||y||0 ≤ p1(l).

2. For any y ∈ Rl such that ||Uy − 1m(l)||22 ≤ ∆(l), we have that ||y||0 ≥ p1(l)q1(l).

2In this context, a function with a fractional exponent is considered to be a polynomial, e.g., l1/5 is
considered to be a polynomial in l.
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Informally, for the variable selection Problem 2 in Theorem 2, unless NP∈BPTIME(npoly log n),
there is no quasi-polynomial algorithm that can distinguish between the case where there
exists a solution to Problem 2 with a few non-zero entries, and the case where every approx-
imate solution has almost every entry nonzero.

2.5.3. Sketch of Proof of Theorem 1

We begin by sketching the intuition behind the proof of Theorem 1. Our general approach
is to �nd instances of Problem 1 that are as hard as inapproximable instances of the variable
selection Problem 2. We begin by discussing a construction that does not work, and then
explain how to �x it.

Given the matrix U coming from a variable selection Problem 2, we �rst attempt to construct
an instance of the minimal reachability Problem 1 where

• the system's initial condition is x(t0) = 0;

• the destination state x1 at time t1 is of the form [1,0]> (the exact dimensions of 1
and 0 are to be determined);

• the system's input matrix is B = I;

• the system's matrix A is

A =

(
0 U
0 0

)
, (2.3)

where the number of zeros is large so that A2 = 0.

Whereas the variable selection problem involves �nding the smallest set of columns of U
so that a certain vector is in their span, for the minimum reachability problem, every time
we add the k-th state to the set of actuated variables S, the reachability span expands by
adding the span of the set of columns of the controllability matrix that correspond to the
vector ek being added in I(S). In particular, for the above construction, because A2 = 0,
when the k-th state is added to the set of actuated variables, the span of the two columns
ek and Uek is added to the reachability space.

In other words, with the above construction we are basically constrained to make �moves�
which add columns in pairs, and we are looking for the smallest number of such �moves�
making a certain vector lie in the span of the columns. It should be clear that there is a
strong parallel between this and variable selection (where the columns are added one at a
time). However, because the columns are being added in pairs, this attempt to connect
minimum reachability with variable selection does not quite work. To �x this idea, we want
only the columns of U to contribute meaningfully to the addition of the span, with any
vectors ek we add along the way being redundant; this would reduce minimal reachability
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to exactly variable selection. We accomplish this by further de�ning,

U ′ =


U
U
...
U

 ,

where we stack U some large number of times (to be determined in the main proof of
Theorem 1 at Section 2.5.4). We then set

A =

(
0 U ′

0 0

)
. (2.4)

The idea is that because U is �stacked� many times, adding a column of U to a set of vectors
expands the span much more than adding any vector ek, so there is never an �incentive� to
even consider the contributions of the vectors ek to the reachability space.

We next make this argument precise. First, given a matrix M ∈ Rl×l, for n ≥ kp we de�ne
φn,d(M) to be the n × n matrix which stacks U in the top-right hand corner d times. For
example,

M =

(
1 2
3 4

)
, φ5,2(M) =


0 0 0 1 2
0 0 0 3 4
0 0 0 1 2
0 0 0 3 4
0 0 0 0 0

 ,

i.e., φ5,2(M) stacks M twice, and then pads it with enough zeros to make the resulting
matrix 5× 5. Observe that if n ≥ 2dl, then φn,d(M)2 = 0. We adopt the notation that the
last l columns of φn,d(M) are called the non-identity columns, while the �rst n− l columns
are called the identity columns.

2.5.4. Proof of Theorem 1

We turn to the proof of Theorem 1. We adopt the de�nitions in the previous sections.

Proof of Theorem 1: Let U be an l × l matrix and consider solving the minimum variable
selection problem with y = 1; by Theorem 2 this cannot be computed in quasi-polynomial
time unless NP /∈ BPTIME(npoly log n). Adopting the notation of Theorem 2, we set:

• d = m(l)dp1(l)q1(l)e;

• n = 2 max(d, l);

• for simplicity, we use m and m(l) interchangeably.

We consider an instance of the minimal reachability where:

• the system's initial condition is x(t0) = 0;
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• the destination state x1 at time t1 is [1>d ,0
>
n−d]

>;

• the system's input matrix is B = I, where I is the identity matrix;

• the system's matrix is A = φn,d(U).

Given the above instance for Problem 1, we next prove Theorem 1 in two steps.

First step of proof: Suppose that there exists a vector y ∈ {0, 1}l with Uy = 1m and
||y||0 ≤ p1(l). In that case, we claim there exists a set S ⊆ {1, 2, . . . , n} with |S| ≤ p1(l)
such that [1>d ,0

>
n−d]

> reachable. Indeed, let S be a set of columns of U that have 1m in
their span, and set S = {k + n− l | k ∈ S}. Then |S| ≤ p1(l), and

1m =
∑
k∈S

Uk,

where Uk denotes the k'th column of the matrix U ; hence, we have

(
1d

0n−d

)
=


1m
1m
...

1m
0n−d

 =
∑
k∈S


Uk
Uk
...
Uk
0n−d

 =
∑
k∈S

Ak+n−l,

where the �nal step follows by de�nition of φn,d(·). Now each of the vectors in the last term
is a column of AI(S) with this choice of S, so [1d,0n−d]

T indeed lies in the range of the
controllability matrix.

Second step of proof: Conversely, suppose that any z with ||Uz − 1||22 ≤ ∆(l) has the
property that ||z||0 ≥ p1(l)q1(l). We refer to this as assumption A1. We claim that in this
case there is no S ⊆ {1, 2, . . . , n} with cardinality strictly less than p1(l)q1(l) that makes
any y with ||y − [1>d ,0

>
n−d]

>||22 ≤ ∆(l) reachable. To prove this, assume the contrary, i.e.,
assume there exists S ⊆ {1, 2, . . . , n} with cardinality strictly less than p1(l)q1(l) that makes
some y with ||y− [1>d ,0

>
n−d]

>||22 ≤ ∆(l) reachable. We call this assumption A2. We obtain
a contradiction as follows:

• Break up S into identity columns and non-identity columns such that S = Sid∪Snon−id.

• By the pigeonhole principle, it follows that in the set {1, 2, . . . , d} there is some interval
E = {κm + 1, κm + 2, . . . , κm + m}, where κ is a non-negative integer, such that
S ∩ V = ∅, because |S| < p1(l)q1(l) and d ≥ mdp1(l)q1(l)e.

• In particular, there is no k ∈ Sid such that k ∈ E , since in the previous bullet point
we showed S ∩ E = ∅, and therefore Sid ∩ E = ∅.

• As a consequence of the assumption that there is S ⊆ {1, 2, . . . , n} with cardinal-
ity strictly less than p1(l)q1(l) that makes any y with ||y − [1>d ,0

>
n−d]

>||2 ≤ ∆(l)
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reachable, we have that there is y ∈ Range[I(S), AI(S), 0, 0, . . . , 0] such that ||y −
[1>d ,0

>
n−d]

>||22 ≤ ∆(l). De�ne yE ∈ Rm by taking the rows of y corresponding to
indices in E . Then, ||yE − 1m||22 ≤ ∆(l). Moreover, yE is in the span of the vectors ob-
tained by taking the rows κm+1, . . . , κm+m of the columns of the reachability matrix
[I(S), AI(S), 0, 0, . . . , 0]. Since in the previous bullet point we concluded Sid ∩ E = ∅,
all such columns are either zero or equal to a column of U .

• Thus, we have that a vector yE ∈ Rm such that ||yE − 1m||22 ≤ ∆(l) and yE is in the
span of |S| columns of U . Moreover, assumption A2 tells us that |S| < p1(l)q1(l) while
assumption A1 tells us the opposite.

To summarize, we showed the dichotomy of (1a) and (1b):

1a) �There exists a vector y ∈ {0, 1}l with Uy = 1m and ||y||0 ≤ p1(l).�

1b) �Any y with ||Uy − 1||22 ≤ ∆(l) has the property that ||y||0 ≥ p1(l)q1(l).�

implies the dichotomy of (i-a) and (i-b):

i-a) �There exists a set S ⊆ {1, 2, . . . , n} with |S| ≤ p1(l) such that [1>d ,0
>
n−d]

> reachable.�

i-b) �There is no S ⊆ {1, 2, . . . , n} with cardinality strictly less than p1(l)q1(l) that makes
any y with ||y − [1>d ,0

>
n−d]

>||22 ≤ ∆(l) reachable.�

in the sense that (1a) implies (i-a) (�rst step of the proof) and (1b) implies (i-b) (second
step of the proof).

Theorem 2 showed that unless NP∈BPTIME(npoly log n), no quasi-polynomial time algorithm
can distinguish between (1a) and (1b). This implies that, under the same assumption, no
quasi-polynomial time algorithm can distinguish between (i-a) and (i-b). In particular,
since for any δ ∈ (0, 1), we can take q1(l) = 2Ω(log1−δ l) in Theorem 2, this implies that the
smallest number of inputs rendering [1>d ,0

>
n−d] reachable cannot be approximated within a

multiplicative factor of φ(l) which grows slower than 2Ω(log1−δ l).

Finally, we note that because the dimension of A is polynomial in l (since A is n×n, where
n = 2 max(d, l) with d = m(l)dp1(l)q1(l)e), we have that φ(l) = 2Ω(log1−δ n). �

2.6. Concluding Remarks & Future Work

We focused on the minimal reachability Problem 1, which is a fundamental question in op-
timization and control with applications such as power systems and neural circuits. By ex-
ploiting the connection to the variable selection Problem 2, we proved that Problem 1 is
hard to approximate. Future work will focus on properties for the system matrix A so that
Problem 1 is approximable in polynomial time.

We conclude with an open problem. As we have discussed, the minimum reachability
problem is

(
0, 2logn

)
-approximable by the algorithm which actuates every variable; but(

0, 2Ω(log1−δ n)
)
is impossible for any positive δ. We wonder, therefore, whether the min-
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imum number of actuators can be approximated to within a multiplicative factor of say,√
n in polynomial time, or, more generally, nc for some c ∈ (0, 1). Indeed, observe that

since
√
n = 2(1/2) logn, the function

√
n does not belong to 2O(log1−δ n) for any δ > 0. Thus,

the present chapter does not rule out the possibility of approximating the minimum reach-
ability problem up to a factor of

√
n, or more broadly, nc for c ∈ (0, 1). We remark that

such an approximation guarantee would have considerable repercussions in the context of
e�ective control, as at the moment the best polynomial-time protocol for actuation to meet
a reachability goal (in terms of worst-case approximation guarantee) is to actuate every
variable.
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CHAPTER 3 : Minimal Actuator Placement with Bounds on Control E�ort

We address the problem of minimal actuator placement in linear systems so that the volume
of the set of states reachable with one unit or less of input energy is lower bounded by a
desired value. First, following the recent work of Olshevsky, we prove that this is NP-hard.
Then, we provide an e�cient algorithm which, for a given range of problem parameters,
approximates up to a multiplicative factor of O(log n), n being the network size, any optimal
actuator set that meets the same energy criteria; this is the best approximation factor one
can achieve in polynomial time, in the worst case. Moreover, the algorithm uses a perturbed
version of the involved control energy metric, which we prove to be supermodular. Next,
we focus on the related problem of cardinality-constrained actuator placement for minimum
control e�ort, where the optimal actuator set is selected to maximize the volume of the set
of states reachable with one unit or less of input energy. While this is also an NP-hard
problem, we use our proposed algorithm to e�ciently approximate its solutions as well.1

3.1. Introduction

During the past decade, an increased interest in the analysis of large-scale systems has led to
a variety of studies that range from the mapping of the human's brain functional connectivity
to the understanding of the collective behavior of animals, and the evolutionary mechanisms
of complex ecological systems [74, 75, 76, 77]. At the same time, control scientists develop
methods for the regulation of such complex systems, with the notable examples in [78], for
the control of biological systems; [79], for the regulation of brain and neural networks; [80],
for robust information spread over social networks, and [81], for load management in smart
grid.

On the other hand, the large size of these systems, as well as the need for low cost control,
has made the identi�cation of a small fraction of their states, to steer them around the
entire space, an important problem [52, 82, 83, 84]. This is a task of formidable complexity;
indeed, it is shown in [82] that �nding a small number of actuators, so that a linear system
is controllable, is NP-hard. However, mere controllability is of little value if the required
input energy for the desired transfers is exceedingly high, when, for example, the control-
lability matrix is close to singularity [85]. Therefore, by choosing input states to ensure
controllability alone, one may not achieve a cost-e�ective control for the system.

In this chapter, we address this important requirement by providing e�cient approximation
algorithms to actuate a small fraction of a system's states so that a speci�ed control energy
performance over the entire state space is guaranteed. In particular, we �rst consider the
selection of a minimal number of actuated states so that a pre-speci�ed lower bound on
the volume of the set of states reachable with one or less units of input energy is satis�ed.
Finding such a subset of states is a challenging task, since it involves the search for a small
number of actuators that induce controllability, which constitutes a combinatorial problem
that can be computationally intensive. Indeed, identifying a small number of actuated states
for inducing controllability alone is NP-hard [82]. Therefore, we extend this computationally
hard problem by introducing an energy performance requirement on the choice of the optimal

1This chapter is based on the paper by Tzoumas et al. [73].
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actuator set, and we solve it with an e�cient approximation algorithm.

Speci�cally, we �rst generalize the involved energy objective to an ε-close one, which remains
well-de�ned even for actuator sets that render the system uncontrollable. Then, we make
use of this metric and relax the implicit controllability constraint from the original actuator
placement problem. Notwithstanding, we prove that for small values of ε all solutions of
this auxiliary program still render the system controllable. This fact, along with the super-
modularity of the generalized objective with respect to the choice of the actuator set, leads
to an e�cient algorithm which, for a given range of problem parameters, approximates up
to a multiplicative factor of O(log n), where n is the size of the system, any optimal actua-
tor set that meets the speci�ed energy criterion. Moreover, this is the best approximation
factor one can achieve in polynomial time, in the worst case. Hence, with this algorithm we
address the open problem of minimal actuator placement subject to bounds on the control
e�ort [52, 82, 84, 86, 87].

Relevant results are also found in [84], where the authors study the controllability of a
system with respect to the smallest eigenvalue of the controllability Gramian, and they
derive a lower bound on the number of actuators so that this eigenvalue is lower bounded
by a �xed value. Nonetheless, they do not provide an algorithm to identify the actuators
that achieve this value.

Next, we consider the problem of cardinality-constrained actuator placement for minimum
control e�ort, where the optimal actuator set is selected so that the volume of the set of states
that can be reached with one unit or less of input energy is maximized. The most related
works to this problem are the [52] and [88], in which the authors assume a controllable
system and consider the problem of choosing a few extra actuators in order to optimize
some of the input energy metrics proposed in [19]. Their main contribution is in observing
that these energy metrics are supermodular with respect to the choice of the extra actuated
states. The assumption of a controllable system is necessary since these metrics depend on
the inverse of the controllability Gramian, as they capture the control energy for steering
the system around the entire state space. Nonetheless, it should be also clear that making a
system controllable by �rst placing some actuators to ensure controllability alone, and then
adding some extra ones to optimize a desired energy metric, introduces a sub-optimality
that is carried over to the end result. In this chapter, we follow a parallel line of work to the
minimal actuator placement problem, and provide an e�cient algorithm that selects all the
actuated states to maximize the volume of the set of states that can be reached with one
unit or less of input energy without any assumptions on the controllability of the involved
system.

A similar actuator placement problem is studied in [84] for stable systems. Nevertheless,
its authors propose a heuristic actuator placement procedure that does not constrain the
number of available actuators and does not optimize their control energy objective. Our
proposed algorithm selects a cardinality-constrained actuator set that minimizes a control
energy metric, even for unstable systems.

The remainder of this chapter is organized as follows. The formulation and model for the
actuator placement problems are set forth in Section 3.2, where the corresponding integer
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optimization programs are stated. In Sections 3.3 and 3.4 we discuss our main results,
including the intractability of these problems, as well as the supermodularity of the involved
control energy metrics with respect to the choice of the actuator sets. Then, we provide
e�cient approximation algorithms for their solution that guarantee a speci�ed control energy
performance over the entire state space. Section 3.5 concludes the chapter.

3.2. Problem Formulation

Notation. We denote the set of natural numbers {1, 2, . . .} as N, the set of real numbers
as R, and we let [n] ≡ {1, 2, . . . , n} for all n ∈ N. Also, given a set X , we denote as |X |
its cardinality. Matrices are represented by capital letters and vectors by lower-case letters.
For a matrix A, AT is its transpose and Aij is its element located at the i−th row and
j−th column. If A is positive semi-de�nite or positive de�nite, we write A � 0 and A � 0,
respectively. Moreover, for i ∈ [n], we let I(i) be an n × n matrix with a single non-zero
element: Iii = 1, while Ijk = 0, for j, k 6= i. Furthermore, we denote as I the identity
matrix, whose dimension is inferred from the context. Additionally, for δ ∈ Rn, we let
diag(δ) denote an n× n diagonal matrix such that diag(δ)ii = δi for all i ∈ [n]. Finally, we
set {0, 1}n to be the set of vectors in Rn whose elements are either zero or one.

3.2.1. Actuator Placement Model

Consider a linear system of n states, x1, x2, . . . , xn, whose evolution is described by

ẋ(t) = Ax(t) +Bu(t), t > t0, (3.1)

where t0 ∈ R is �xed, x ≡ {x1, x2, . . . , xn}, ẋ(t) ≡ dx/dt, while u is the corresponding
input vector. The matrices A and B are of appropriate dimension. We equivalently refer
to (3.1) as a network of n nodes, 1, 2, . . . , n, which we associate with the states x1, x2, . . . , xn,
respectively. Moreover, we denote their collection as V ≡ [n].

Henceforth, A is given while B is a diagonal zero-one matrix that we design so that (3.1)
satis�es a speci�ed control energy criterion over the entire state space.
Assumption 1. B = diag(δ), where δ ∈ {0, 1}n.

Speci�cally, if δi = 1, state xi may receive an input, while if δi = 0, it receives none.
De�nition 8 (Actuator Set, Actuator). Given a δ ∈ {0, 1}n, let ∆ ≡ {i : i ∈ V and δi = 1};
then, ∆ is called an actuator set and each i ∈ ∆ an actuator.

3.2.2. Controllability and Related Energy Metrics

We consider the notion of controllability and relate it to the problems of this chapter, i.e., the
minimal actuator placement for constrained control energy and the cardinality-constrained
actuator placement for minimum control e�ort.

System (3.1) is controllable � equivalently, (A,B) is controllable � if for any �nite t1 > t0
and any initial state x0 ≡ x(t0) it can be steered to any other state x1 ≡ x(t1) by some
input u(t) de�ned over [t0, t1]. Moreover, for general matrices A and B, the controllability
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condition is equivalent to the matrix

W ≡
∫ t1

t0

eA(t−t0)BBT eA
T (t−t0) dt, (3.2)

being positive de�nite for any t1 > t0 [85]. Therefore, we refer to W as the controllability
matrix of (3.1).

The controllability of a linear system is of interest because it is related to the solution of
the following minimum-energy transfer problem

minimize
u(·)

∫ t1

t0

u(t)Tu(t) dt

subject to

ẋ(t) = Ax(t) +Bu(t), t0 < t ≤ t1,
x(t0) = 0, x(t1) = x1,

(3.3)

where A and B are any matrices of appropriate dimension.

In particular, if for the given A and B (3.1) is controllable the resulting minimum control
energy is given by

xT1 W
−1x1, (3.4)

where τ = t1 − t0 [19]. Thereby, the states that belong to the eigenspace of the smallest
eigenvalues of (3.2) require higher energies of control input [85]. Extending this observation
along all the directions of transfers in the state space, we infer that the closer W is to singu-
larity the larger the expected input energy required for these transfers to be achieved [19].
For example, consider the case where W is singular, i.e., when there exists at least one di-
rection along which system (3.1) cannot be steered [85]. Then, the corresponding minimum
control energy along this direction is in�nity.

This motivates the consideration of control energy metrics that quantify the steering energy
along all the directions in the state space, as the log det(W−1) [19]. Indeed, this metric is
well-de�ned only for controllable systems � W must be invertible � and is directly related
to (3.4). In more detail,

√
det(W−1) is inversely proportional to the volume of the set of

states reachable with one or less units of input energy, i.e., the volume of {x : xTW−1x ≤ 1};
as a result, when log det(W−1) is minimized, the volume of {x : xTW−1x ≤ 1} is maximized.
In this chapter, we aim to select a small number of actuators for system (3.1) so that
log det(W−1) either meets a speci�ed upper bound or is minimized.

Per Assumption 1, further properties for the controllability matrix are due: For any actuator
set ∆, let W∆ ≡W ; then,

W∆ =
n∑
i=1

δiWi, (3.5)
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where Wi ≡
∫ t1
t0

eAtI(i)eA
T t dt for any i ∈ [n]. This follows from (3.2) and the fact that

BBT = B =
∑n

i=1 δiI
(i) for B = diag(δ). Finally, for any ∆1 ⊆ ∆2 ⊆ V, (3.5) and

W1,W2, . . . ,Wn � 0 imply W∆1 �W∆2 .

3.2.3. Actuator Placement Problems

We consider the selection of a small number of actuators for system (3.1) so that log det(W−1)
either satis�es an upper bound or is minimized. The challenge is in doing so with as few
actuators as possible. This is an important improvement over the existing literature where
the goal of actuator placement problems has either been to ensure controllability alone [82]
or the weaker property of structural controllability [89, 90]. Other relevant results consider
the task of leader-selection [91, 92], where the leaders are the actuated states and are chosen
so to minimize a mean-square convergence error of the remaining states.

Furthermore, the most relevant works to our study are the [52] and [88] since its authors
consider the minimization of log det(W−1); nevertheless, their results rely on a pre-existing
actuator set that renders (3.1) controllable although this set is not selected for the mini-
mization of this energy metric. One of our contributions is in achieving optimal actuator
placement for minimum control e�ort without assuming controllability beforehand. Also,
the authors of [84] adopt a similar framework for actuator placement but focus on deriving
an upper bound for the smallest eigenvalue of W with respect to the number of actuators
and a lower bound for the required number actuators so that this eigenvalue takes a speci-
�ed value. In addition, they consider the maximization of tr(W ); however, their techniques
cannot be applied when minimizing the log det(W−1), while the maximization of tr(W ) may
not ensure controllability [84].

We next provide the exact statements of our actuator placement problems, while their
solution analysis follows in Sections 3.3 and 3.4. We �rst consider the problem

minimize
∆⊆V

|∆|

subject to

log det(W−1
∆ ) ≤ E,

(I)

for some constant E. Its domain is {∆ : ∆ ⊆ V and (A,B(∆)) is controllable} since the
controllability matrix W(·) must be invertible. Moreover, it is NP-hard, as we prove in
Appendix 3.6.

Additionally, Problem (I) is feasible for certain values of E. In particular, for any ∆ such
that (A,B(∆)) is controllable, 0 ≺ W∆, i.e., log det(W−1

V ) ≤ log det(W−1
∆ ) since for any

∆ (3.5) implies W∆ �WV [93]; thus, (I) is feasible for

E ≥ log det(W−1
V ). (3.6)

Moreover, (I) is a generalized version of the minimal controllability problem of [82] so that
its solution not only ensures controllability but also satis�es a guarantee in terms of a control
energy metric; indeed, for E →∞ we recover the problem of [82].
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We next consider the problem

minimize
∆⊆V

log det(W−1
∆ )

subject to

|∆| ≤ r,

(II)

where the goal is to �nd at most r actuated states so that the volume of the set of states
that can be reached with one unit or less of input energy is maximized. Its domain is
{∆ : ∆ ⊆ V, |∆| ≤ r and (A,B(∆)) is controllable}. Moreover, due to the NP-hardness of
Problem (I), Problem (II) is also NP-hard (cf. Appendix 3.6).

Because (I) and (II) are NP-hard, we need to identify e�cient approximation algorithms
for their general solution; this is the subject of Sections 3.3 and 3.4. In particular, in
Section 3.3 we consider Problem (I) and provide for it a best approximation algorithm, for
a given range of problem parameters. To this end, we �rst de�ne an auxiliary program,
which ignores the controllability constraint of (I), and, nevertheless, admits an e�cient
approximation algorithm whose solutions not only satisfy an energy bound that is ε-close to
the original one but also render system (3.1) controllable. Then, in Section 3.4 we turn our
attention to (II), and following a parallel line of thought as for (I), we e�ciently solve this
problem as well.

Since the approximation algorithm for the aforementioned auxiliary program for (I) is based
on results for supermodular functions, we present below a brief overview of the relevant
concepts. The reader may consult [16] for a survey on these results.

3.2.4. Supermodular Functions

We give the de�nition of a supermodular function, as well as, a relevant result that will be
used in Section 3.3 to construct an approximation algorithm for Problem (I). The material
of this section is drawn from [94].

Let V be a �nite set and denote as 2V its power set.
De�nition 9 (Submodularity and supermodularity). A function h : 2V 7→ R is submodular
if for any sets ∆ and ∆′, with ∆ ⊆ ∆′ ⊆ V, and any a /∈ ∆′,

h(∆ ∪ {a})− h(∆) ≥ h(∆′ ∪ {a})− h(∆′).

A function h : 2V 7→ R is supermodular if (−h) is submodular.

An alternative de�nition of a submodular function is based on the notion of non-increasing
set functions.
De�nition 10 (Monotone Set Function). A function h : 2V 7→ R is a non-increasing set
function if for any ∆ ⊆ ∆′ ⊆ V, h(∆) ≥ h(∆′). Moreover, h is a non-decreasing set function
if (−h) is a non-increasing set function.

Therefore, a function h : 2V 7→ R is submodular if, for any a ∈ V, the function ha : 2V\{a} 7→
R, de�ned as ha(∆) ≡ h(∆∪{a})−h(∆), is a non-increasing set function. This property is
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also called the diminishing returns property.

Next, we present a fact from the supermodular functions minimization literature, that we use
in Section 3.3 so as to construct an approximation algorithm for Problem (I). In particular,
consider the following optimization program, which is of similar structure to (I), where
h : 2V 7→ R is a non-decreasing, supermodular set function:

minimize
∆⊆V

|∆|

subject to

h(∆) ≤ E.

(O)

The following greedy algorithm has been proposed for its approximate solution, for which,
the subsequent fact is true.

Algorithm 2 Approximation Algorithm for the Problem (O).
Input: h, E.
Output: Approximate solution to Problem (O).

∆← ∅
while h(∆) > E do

ai ← a′ ∈ arg maxa∈V\∆{h(∆)− h(∆ ∪ {a})}
∆← ∆ ∪ {ai}

end while

Fact 1. Denote as ∆? a solution to Problem (O) and as ∆0,∆1, . . . the sequence of sets
picked by Algorithm 2. Moreover, let l be the smallest index such that h(∆l) ≤ E. Then,

l

|∆?|
≤ 1 + log

h(V)− h(∅)
h(V)− h(∆l−1)

.

In Section 3.3, we provide an e�cient approximation algorithm for (I), by applying Fact 1
to an appropriately perturbed version of this problem, so that it involves a non-decreasing
supermodular function, as in (O). This also leads to our second main contribution, presented
in Section 3.4: An e�cient approximation algorithm for Problem (II), which selects all the
actuators to maximize the volume of the set of states that can be reached with one unit
or less of input energy, without assuming controllability beforehand. This is in contrast to
the related works [52] and [88]: there, the authors consider a similar problem for choosing
a few actuators to optimize log det(W−1

(·) ); however, their results rely on the assumption of
a pre-existing actuator set that renders (3.1) controllable, although this set is not selected
towards the minimization of log det(W−1

(·) ). Nevertheless, this assumption is necessary, since

they then prove that the log det(W−1
(·) ) is a supermodular function in the choice of the extra

actuators. On the other hand, our algorithms select all the actuators towards the involved
energy objective, since they rely on a ε-perturbed version of log det(W−1

(·) ), that we prove to
be supermodular without assuming controllability beforehand.

Overall, our results supplement the existing literature by considering Problems (I) and
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(II) when the system is not initially controllable and by providing e�cient approximation
algorithms for their solution, along with worst-case performance guarantees.

3.3. Minimal Actuator Sets with Constrained Control E�ort

We present an e�cient approximation algorithm for Problem (I). To this end, we �rst
generalize the involved energy metric to an ε-close one that remains well-de�ned even when
the controllability matrix is not invertible. Next, we relax (I) by introducing a new program
that makes use of this metric and circumvents the restrictive controllability constraint of
(I). Moreover, we prove that for certain values of ε all solutions of this auxiliary problem
render the system controllable. This fact, along with the supermodularity property of the
generalized metric that we establish, leads to our proposed approximation algorithm. The
discussion of its e�ciency ends the analysis of (I).

3.3.1. An ε-close Auxiliary Problem

Consider the following approximation to (I)

minimize
∆⊆V

|∆|

subject to

log det(W̃∆ + εI)−1 ≤ Ẽ,

(I′)

where W̃∆ is equivalent to W∆/(2λmax(WV)), λmax(WV) is the maximum eigenvalue of WV ,
Ẽ is equal to E + n log(2λmax(WV)), and ε is positive.

In contrast to (I), the domain of this problem consists of all subsets of V since W̃(·) + εI
is always invertible. The ε-closeness is evident since for any ∆ such that (A,B(∆)) is
controllable log det(W̃∆ + εI)−1 ≤ Ẽ becomes log det(W−1

∆ ) ≤ E as ε → 0. Due to the
de�nition of W̃∆, for all ∆ ⊆ V, all eigenvalues of W̃∆ are at most 1/2 [93, Theorem 8.4.9];
this property will be useful in the proof of one of our main results, in particular, Proposition
1.

In the following paragraphs, we identify an approximation algorithm for solving Problem (I′),
and correspondingly, the ε-close, NP-hard Problem (I).

3.3.2. Approximation Algorithm for Problem (I′)

We �rst prove that all solutions of (I′) for 0 < ε ≤ min{1/2, e−Ẽ} render the system
controllable, notwithstanding that no controllability constraint is imposed by this program
on the choice of the actuator sets. Moreover, we show that the involved ε-close energy
metric is supermodular with respect to the choice of actuator sets and then we present our
approximation algorithm, followed by a discussion of its e�ciency which ends this subsection.
Proposition 1. Consider a constant ω > 0, ε such that 0 < ε < min{1/2, e−ω}, and any
∆ ⊆ V: If log det(W̃∆ + εI)−1 ≤ ω, then (A,B(∆)) is controllable.

Proof: Assume that (A,B(∆)) is not controllable and let k be the corresponding number of
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non-zero eigenvalues of W∆ which we denote as λ1, λ2, . . . , λk; therefore, k ≤ n− 1. Then,

log det(W̃∆ + εI)−1 =
k∑
i=1

log
1

λi
2λmax(WV ) + ε

+ (n− k) log
1

ε
> log

1

ε
> ω,

since λi
2λmax(WV ) + ε < 1 (because λi

2λmax(WV ) ≤ 1/2 and ε < 1/2), and ε < e−ω. Therefore, we
have a contradiction. �

Note that ω is chosen independently of the parameters of system (3.1). Therefore, the
absence of the controllability constraint in Problem (I′) for 0 < ε ≤ min{1/2, e−Ẽ} is
�ctitious; nonetheless, it obviates the necessity of considering only actuator sets that render
the system controllable.

The next proposition is also essential and suggests an e�cient approximation algorithm for
solving (I′).
Proposition 2 (Supermodularity). The function log det(W̃∆ + εI)−1 : ∆ ⊆ V 7→ R is
supermodular and non-increasing set with respect to the choice of ∆.

Proof: To prove that the log det(W̃∆ + εI)−1 is non-increasing, recall from (3.5) that for any
∆1 ⊆ ∆2 ⊆ [n], W̃∆1 � W̃∆2 . Therefore, from [93, Theorem 8.4.9], log det(W̃∆2 + εI)−1 �
log det(W̃∆1 + εI)−1, and as a result, log det(W̃∆ + εI)−1 is non-increasing.

Next, to prove that log det(W̃∆ + εI)−1 is a supermodular set function, recall from Section
3.2.4 that it su�ces to prove that log det(W̃∆ + εI) is a submodular one. In particular,
recall that a function h : 2[n] 7→ R is submodular if and only if, for any a ∈ [n], the function
ha : 2[n]\{a} 7→ R, where ha(∆) ≡ h(∆ ∪ {a}) − h(∆), is a non-increasing set function.
Therefore, to prove that h(∆) = log det(W̃∆ + εI) is submodular, we may prove that the
ha(∆) is a non-increasing set function. To this end, we follow the proof of Theorem 6 in
[52]: �rst, observe that

ha(∆) = log det(W̃∆∪{a} + εI)− log det(W̃∆ + εI)

= log det(W̃∆ + W̃a + εI)− log det(W̃∆ + εI).

Now, for any ∆1 ⊆ ∆2 ⊆ [n] and z ∈ [0, 1], de�ne Ω(z) ≡ εI + W̃∆1 + z(W̃∆2 − W̃∆1)
and h̄(z) ≡ log det(Ω(z) + W̃a) − log det (Ω(z)) ; it is h̄(0) = ha(∆1) and h̄(1) = ha(∆2).
Moreover, since d log det(Ω(z)))/dz = tr

(
Ω(z)−1dΩ(z)/dz

)
(cf. equation (43) in [95]),

dh̄(z)

dz
= tr[((Ω(z) + W̃a)

−1 − Ω(z)−1)O21],

where O21 ≡ W̃∆2 − W̃∆1 . From [93, Proposition 8.5.5], (Ω(z) + W̃a)
−1 � Ω(z)−1, because

Ω(z) � 0 for all z ∈ [0, 1], since εI � 0, W̃∆1 � 0, and W̃∆2 � W̃∆1 . Thereby, from [93,
Corollary 8.3.6], all eigenvalues of ((Ω(z) + W̃a)

−1 − Ω(z)−1)O21 are non-positive. As a
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result, dh̄(z)/dz ≤ 0, and

ha(∆2) = h̄(1) = h̄(0) +

∫ 1

0

dh̄(z)

dz
dz ≤ h̄(0) = ha(∆1).

Therefore, ha(∆) is a non-increasing set function, and the proof is complete. �

Therefore, the hardness of the ε-close Problem (I) is in agreement with that of the class of
minimum set-covering problems subject to submodular constraints. Inspired by this litera-
ture [16, 94, 96], we have the following e�cient approximation algorithm for Problem (I′),
and as we show by the end of this section, for Problem (I) as well.

Algorithm 3 Approximation Algorithm for the Problem (I′).

Input: Bound Ẽ, parameter ε ≤ min{1/2, e−Ẽ}, matrices W1,W2, . . . , Wn.
Output: Actuator set ∆.

∆← ∅
while log det(W̃∆ + εI)−1 > Ẽ do

ai← a′ ∈ arg maxa∈V\∆{log det(W̃∆ + εI)−1 − log det(W̃∆∪{a} + εI)−1}
∆← ∆ ∪ {ai}

end while

Regarding the quality of Algorithm 3 the following is true.
Theorem 1 (A Submodular Set Coverage Optimization). Denote as ∆? a solution to Prob-
lem (I′) and as ∆ the selected set by Algorithm 3. Then,

(A,B(∆)) is controllable, (3.7)

log det(W̃∆ + εI)−1 ≤ Ẽ, (3.8)

|∆|
|∆?|

≤ 1 + log
n log(ε−1)− log det(W̃V + εI)−1

Ẽ − log det(W̃V + εI)−1
≡ F, (3.9)

F = O(log n+ log log(ε−1) + log
1

Ẽ − log det(W̃−1
V )

). (3.10)

Finally, the computational complexity of Algorithm 3 is O(n5).

Proof: We �rst prove (3.8), (3.9) and (3.10), and then, (3.7). We end the proof by clarifying
the computational complexity of Algorithm 3.

First, let ∆0,∆1, . . . be the sequence of sets selected by Algorithm 3 and l the smallest index
such that log det(W̃∆l

+ εI)−1 ≤ E. Therefore, ∆l is the set that Algorithm 3 returns, and
this proves (3.8).

Moreover, from [94], since for any ∆ ⊆ V, h(∆) ≡ − log det(W̃∆ + εI)−1 + n log(ε−1) is a
non-negative, non-decreasing, and submodular function (cf. Proposition 2), it is guaranteed
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for Algorithm 3 that (cf. Fact 1)

l

|∆?|
≤ 1 + log

h(V)− h(∅)
h(V)− h(∆l−1)

= 1+

log
n log(ε−1)− log det(W̃V + εI)−1

log det(W̃∆l−1
+ εI)−1 − log det(W̃V + εI)−1

.

Now, l is the �rst time that log det(W̃∆l
+εI)−1 ≤ Ẽ, and a result log det(W̃∆l−1

+εI)−1 > Ẽ.
This implies (3.9).

Moreover, observe that 0 < log det(W̃V + εI)−1 < log det(W̃−1
V ) so that from (3.9) we get

F ≤ 1 + log[n log(ε−1)/(Ẽ − log det(W̃−1
V ))], which in turn implies (3.10).

On the other hand, since 0 < ε ≤ min{1/2, e−Ẽ} and log det(W̃∆l
+εI)−1 ≤ Ẽ, Proposition 1

is in e�ect, i.e., (3.7) holds true.

Finally, with respect to the computational complexity of Algorithm 3, note that the while

loop is repeated for at most n times. Moreover, the complexity to compute the determinant
an n × n matrix, using Gauss-Jordan elimination decomposition, is O(n3). Additionally,
at most n matrices must be inverted so that the �arg maxa∈V\∆{log det(W̃∆ + εI)−1 −
log det(W̃∆∪{a} + εI)−1}� can be computed. Furthermore, O(n) time is required to �nd a
maximum element between n available. Therefore, the computational complexity of Algo-
rithm 3 is O(n5). �

Therefore, Algorithm 3 returns a set of actuators that meets the corresponding control energy
bound of Problem (I′) while it renders system (3.1) controllable. Moreover, the cardinality
of this set is up to a multiplicative factor of F from the minimum cardinality actuator sets
that meet the same control energy bound.

The dependence of F on n, ε and E was expected from a design perspective: Increasing
the network size n or improving the accuracy by decreasing ε, as well as demanding a
better energy guarantee by decreasing E should all push the cardinality of the selected
actuator set upwards. Also, log log(ε−1) is the design cost for circumventing the di�cult
to satisfy controllability constraint of (I) [82], i.e., for assuming no pre-existing actuators
that renders (3.1) controllable and choosing all the actuators towards the satisfaction of an
energy performance criterion.

From a computational perspective, the computation of the determinant is the only intensive
procedure of Algorithm 3, requiring O(n3) time, if we use the Gauss-Jordan elimination
decomposition. On the other hand, to apply this algorithm on large-scale systems, we can
speed up this procedure using the Coppersmith-Winograd algorithm [97], which requires
O(n2.376) time. Alternatively, we can use numerical methods, which e�ciently compute
an approximate the determinant of a matrix even if its size is of several thousands [98].
Moreover, we can speed up Algorithm 3 using a method proposed in [99], which avoids the
computation of log det(W̃∆ + εI)−1 − log det(W̃∆∪{a} + εI)−1 for unnecessary choices of a,
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towards the computation of the arg maxa∈V\∆{log det(W̃∆+εI)−1−log det(W̃∆∪{a}+εI)−1},
by taking advantage of the supermodularity of log det(W̃(·) + εI)−1.

Finally, for large values of n, the computation of W1,W2, . . . , Wn is demanding as well. On
the other hand, in the case of stable systems, as many physical, e.g., biological, networks are,
the corresponding controllability Gramians can be used instead, which for a stable system
can be calculated from the Lyapunov equations AGi + GiA

T = −I(i), for i = 1, 2, . . . , n,
respectively, and are given in closed-form by

Gi =

∫ ∞
t0

eA(t−t0)I(i)eA
T (t−t0) dt. (3.11)

Using these Gramians for the evaluation of W in (3.4) corresponds to the minimum state
transfer energy with no time constraints. The advantage of this approach is that (3.11) can
be solved e�ciently using numerical methods, even when the system's size n has a value of
several thousands [100].

In Section 3.3.3 we �nalize our treatment of Problem (I) by employing Algorithm 3 to
approximate its solutions.

3.3.3. Approximation Algorithm for Problem (I)

We present an e�cient approximation algorithm for Problem (I) that is based on Algo-
rithm 3. Let ∆ be the actuator set returned by Algorithm 3, so that (A,B(∆)) is control-
lable and log det(W̃∆ + εI)−1 ≤ Ẽ. For any c > 0, there exists su�ciently small ε(c) such
that:

log det(W̃∆ + ε(c)I)−1 ≥ log det(W̃−1
∆ )− cẼ. (3.12)

Moreover, log det(W̃∆ +ε(c)I)−1 ≤ Ẽ, and therefore we get from (3.12) that log det(W̃−1
∆ ) ≤

(1 + c)Ẽ, or

log det(W−1
∆ ) ≤ E + cẼ. (3.13)

Hence, we refer to c as approximation error.

On the other hand, ε(c) is not known a priori. Hence, we need to search for a su�ciently small
ε so that (3.13) holds true. One way to achieve this since ε is lower and upper bounded by 0

and min{1/2, e−Ẽ}, respectively, is to perform a search using bisection. We implement this
procedure in Algorithm 4, where we denote as [Algorithm 3](Ẽ, ε) the set that Algorithm 3
returns for given Ẽ and ε.

In the worst case, when we �rst enter the inner while loop, the if condition is not satis�ed,
and as a result ε is set to a lower value. This process continues until the if condition is
satis�ed for the �rst time, given that a0 is su�ciently small for the speci�ed c, from which
point and on this while loop converges up to the accuracy level a0 to the largest value ε̄ of
ε such that log det(W̃−1

∆ )− log det(W̃∆ + εI)−1 ≤ cẼ; speci�cally, |ε− ε̄| ≤ a0/2, due to the
mechanics of the bisection method. On the other hand, if a0 is not su�ciently small, the
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Algorithm 4 Approximation Algorithm for the Problem (I).

Input: Bound E, approximation error c, bisection's initial accuracy level a0, matrices
W1,W2, . . . ,Wn.

Output: Actuator set ∆.
a← a0, �ag← 0, l← 0, u← min{1/2, e−Ẽ}, ε← (l + u)/2
while �ag 6= 1 do
while u− l > a do
∆← [Algorithm 3](Ẽ, ε)
if log det(W̃−1

∆ )− log det(W̃∆ + εI)−1 > cẼ then
u← ε

else
l← ε

end if
ε← (l + u)/2
end while
if log det(W̃−1

∆ )− log det(W̃∆ + εI)−1 > cẼ then
u← ε, ε← (l + u)/2

end if
∆← [Algorithm 3](Ẽ, ε)
if log det(W̃−1

∆ )− log det(W̃∆ + εI)−1 ≤ cẼ then
�ag← 1

else
a← a/2

end if
end while

value of a decreases within the last if statement of the algorithm, the variable �ag remains
zero and the outer loop is executed again, until the convergence within the inner while is
feasible. Then, the if statement that follows the inner while loop ensures that ε is set below
ε̄, so that log det(W̃−1

∆ )− log det(W̃∆ + εI)−1 ≤ cẼ. Finally, the last if statement sets the
�ag to 1 and the algorithm terminates. The e�ciency of this algorithm for Problem (I) is
summarized below.
Theorem 2. (Approximation E�ciency and Computational Complexity of Algo-
rithm 4 for Problem (I)) Denote as ∆? a solution to Problem (I) and as ∆ the selected
set by Algorithm 4. Then,

(A,B(∆)) is controllable,

log det(W−1
∆ ) ≤ E + cẼ, (3.14)

|∆|
|∆?|

≤ F, (3.15)

F = O(log n+ max{log log(n/(cẼ)), log Ẽ}+

log
1

Ẽ − log det(W̃−1
V )

). (3.16)
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Finally, let a be the bisection's accuracy level that Algorithm 4 terminates with. Then, if
a = a0, the computational complexity of Algorithm 4 is O(n5 log2(1/a0), else it is:

O(n5 log2(1/a) log2(a0/a)).

Proof: We only prove statements (3.14), (3.15) and (3.16), while the �rst follows from
Theorem 1. We end the proof by clarifying the computational complexity of Algorithm 4.

First, when Algorithm 4 exits the while loop, and after the following if statement,

log det(W̃−1
∆ )− log det(W̃∆ + εI)−1 ≤ cẼ,

and since log det(W̃∆ + εI)−1 ≤ Ẽ, this implies (3.14).

To show (3.15), consider any solution ∆? to Problem (I) and any solution ∆• to Problem (I′).
Then, |∆?| ≥ |∆•|; to see this, note that for any ∆?, log det(W̃∆? + εI)−1 < log det(W̃−1

∆? ) ≤
Ẽ since ε > 0, i.e., ∆? is a candidate solution to Problem (I′) because it satis�es all of its
constraints. Therefore, |∆?| ≥ |∆•|, and as a result |∆|/|∆?| ≤ |∆|/|∆•| ≤ F per (3.9).

Next, note that (3.14) holds true when, e.g., ε is equal to cẼ/(2n). Therefore, since also
ε ≤ e−Ẽ , log log ε−1 = O(max{log log(n/(cẼ)), log Ẽ}) and this proves (3.16).

Finally, with respect to the computational complexity of Algorithm 4, note that the in-
ner while loop is repeated for at most log2(1/(2a)) times (since ε ≤ 1/2), in the worst
case. Moreover, the time complexity of the procedures within this loop is of order O(n5),
due to Algorithm 3. Finally, if a = a0, the outer while loop runs for one time, and oth-
erwise, for log2(a0/a) times. Therefore, the computational complexity of Algorithm 4 is
O(n5 log2(1/a0)), or O(n5 log2(1/a) log2(a0/a)), respectively. �

From a computational perspective, we can speed up Algorithm 4 using the methods we
discussed in the end of Section 3.3.2. Moreover, for a wide class of systems, e.g., when
a = O(nn

c1 ), where c1 is a positive constant, independent of n, this algorithm runs in
polynomial time, due to the logarithmic dependence on a.

From an approximation e�ciency perspective we have that F = O(log(n)), whenever E =
O(nc1), λmax(WV) = O(nn

c2 ) and 1/(Ẽ − log det(W̃−1
V )) = O(nc3), where c1, c2 and c3 are

positive constants and independent of n. In other words, the cardinality of the actuator
set that Algorithm 4 returns is up to a multiplicative factor of O(log n) from the minimum
cardinality actuator sets that meet the same energy bound. Indeed, this is the best achievable
bound in polynomial time for the set covering problem in the worst case [13], while (I) is a
generalization of it [82]. Thus, Algorithm 4 is a best-approximation of (I) for this class of
systems.

3.4. Minimum Energy Control by a Cardinality-Constrained Actuator Set

We present an approximation algorithm for Problem (II) following a parallel line of thought
as in Section 3.3: First, we circumvent the restrictive controllability constraint of (II) using

39



the ε-close generalized energy metric de�ned in Section 3.3. Then, we propose an e�cient
approximation algorithm for its solution that makes use of Algorithm 4; this algorithm
returns an actuator set that always renders (3.1) controllable while it guarantees a value
for (II) that is provably close to its optimal one. We end the analysis of (II) by explicating
further the e�ciency of this procedure.

3.4.1. An ε-close Auxiliary Problem

For ε > 0 consider the following approximation to (II)

minimize
∆⊆V

log det(W̃∆ + εI)−1

subject to

|∆| ≤ r.

(II′)

In contrast to (II), the domain of this problem consists of all subsets of V since W̃(·) + εI is
always invertible. Moreover, its objective is ε-close to that of Problem (II).

In the following paragraphs, we identify an e�cient approximation algorithm for solving
Problem (II′), and correspondingly, the ε-close, NP-hard Problem (II). We note that the
hardness of the latter is in accordance with that of the general class of supermodular function
minimization problems, as per Proposition 2 the objective log det(W̃∆ +εI)−1 is supermodu-
lar. The approximation algorithms used in that literature however [16, 94, 96], fail to provide
an e�cient solution algorithm for (II′) � for completeness, we discuss this direction in the
Appendix 3.6.1. In the next subsection we propose an e�cient approximation algorithm for
(II) that makes use of Algorithm 4.

3.4.2. Approximation Algorithm for Problem (II)

We provide an e�cient approximation algorithm for Problem (II) that is based on Algo-
rithm 4. In particular, since (II) �nds an actuator set that minimizes log det(W−1

(·) ), and

any solution to (I) satis�es log det(W−1
(·) ) ≤ E, one may repeatedly execute Algorithm 4 for

decreasing values of E as long as the returned actuators are at most r and E satis�es the
feasibility constraint E ≥ log det(W−1

V ) (cf. Section 3.2.3). Therefore, for solving (II) we
propose a bisection-type execution of Algorithm 4 with respect to E.

To this end, we also need an upper bound for the value of (II): Let ∆C be a small actuator
set that renders system (3.1) controllable; it is e�ciently found using Algorithm 4 for large
E or the procedure proposed in [82]. Then, for any r ≥ |∆C |, log det(W̃−1

∆C
) upper bounds

the value of (II) since log det(W̃−1
(·) ) is monotone.

Thus, having a lower and upper bound for the value of (II), we implement Algorithm 5 for
approximating the solutions of (II); we consider only the non-trivial case where r < n and
denote the set that Algorithm 4 returns as [Algorithm 4](Ẽ, c, a0) for given Ẽ, c and a0.

In the worst case, when we �rst enter the while loop, the if condition is not satis�ed, and as
a result Ẽ is set to a greater value. This process continues until the if condition is satis�ed
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Algorithm 5 Approximation algorithm for Problem (II).

Input: Set ∆C , maximum number of actuators r such that r ≥ |∆C |, approximation error
c for Algorithm 4, bisection's accuracy level a0 for Algorithm 4, bisection's accuracy level
a′0 for current algorithm, matrices W1,W2, . . . ,Wn.

Output: Actuator set ∆.
∆← ∅, l← log det(W̃−1

V ), u← tr(W−1
∆C

), Ẽ ← (l + u)/2, ε← min{1/2, e−Ẽ}
while u− l > a′0 do
∆← [Algorithm 4](Ẽ, c, a0)
if |∆| > r then
l← Ẽ, Ẽ ← (l + u)/2

else
u← Ẽ, Ẽ ← (l + u)/2

end if
ε← 1/Ẽ
end while
if |∆| > r then
l← Ẽ, Ẽ ← (l + u)/2

end if
∆← [Algorithm 4](Ẽ, c, a0)

for the �rst time from which point and on the algorithm converges up to the accuracy level
a0 to the smallest value Ẽ of Ẽ such that |∆| ≤ r; speci�cally, |Ẽ − Ẽ| ≤ a′0/2 due to
the mechanics of the bisection method, where Ẽ ≡ min{Ẽ : |[Algorithm 4](Ẽ, c, a0)| ≤ r}.
Hereby Ẽ is the least bound Ẽ for which Algorithm 4 returns an actuator set of cardinality at
most r for the speci�ed c and a0 � Ẽ may be larger than the value of (II) due to worst-case
approximability of the involved problems (cf. Theorem 2). Then, Algorithm 5 exits the while
loop and the last if statement ensures that Ẽ is set below Ẽ so that |∆| ≤ r. Moreover, per
Theorem 2 this set renders (3.1) controllable and guarantees that log det(W̃−1

∆ ) ≤ E + cẼ.
Finally, with respect to the computational complexity of Algorithm 5, note that the while

loop is repeated for at most log2

[
(log det(W̃−1

∆C
)− log det(W̃−1

V ))/a′0

]
times. Moreover, the

time complexity of the procedures within this loop are, in the worst case, of the same order
as that of Algorithm 4 when it is executed for Ẽ equal to Ẽ. Regarding Theorem 2, denote
this time complexity as C(Ẽ, c, a0). Therefore, the computational complexity of Algorithm

4 is O
(
C(Ẽ, c, a0) log2

[
(log det(W̃−1

∆C
)− log det(W̃−1

V ))/a′
])
.

We summarize the above in the next corollary, which also ends the analysis of Problem (II).
Corollary 1. (Approximation E�ciency and Computational Complexity of Al-
gorithm 5 for Problem (II)) Denote as ∆ the selected set by Algorithm 5. Then,

(A,B(∆)) is controllable,

log det(W−1
∆ ) ≤ E + cẼ,

|Ẽ − Ẽ| ≤ a′/2,
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where Ẽ = min{Ẽ : |[Algorithm 4](Ẽ, c, a)| ≤ r} is the least bound Ẽ that Algorithm 4
satis�es with an actuator set of cardinality at most r for the speci�ed c and a. Finally, the
computational complexity of Algorithm 5 is

O

(
C(Ẽ, c, a0) log2

(
log det(W̃−1

∆C
)− log det(W̃−1

V )

a′

))
,

where C(Ẽ, c, a0) denotes the computational complexity of Algorithm 4, with respect to The-
orem 2, when it is executed for Ẽ equal to Ẽ.

From a computational perspective, we can speed up Algorithm 5 using the methods we
discussed in the end of Section 3.3.2. Moreover, for a wide class of systems, e.g., when
a = O(nn

c1 ), where c1 is a positive constant, independent of n, and similarly for a′ and
log det(W̃−1

∆C
), this algorithm runs in polynomial time, due to the logarithmic dependence

on a, a′ and log det(W̃−1
∆C

), respectively.

3.5. Concluding Remarks & Future Work

We addressed two actuator placement problems in linear systems: First, the problem of
minimal actuator placement so that the volume of the set of states reachable with one or
less units of input energy is lower bounded by a desired value, and then the problem of
cardinality-constrained actuator placement for minimum control e�ort, where the optimal
actuator set is selected so that the volume of the set of states that can be reached with one
unit or less of input energy is maximized. Both problems were shown to be NP-hard, while
for the �rst one we provided a best approximation algorithm for a given range of the problem
parameters. Next, we proposed an e�cient approximation algorithm for the solution of the
second problem as well. Our future work is focused on exploring the e�ect that the under-
lying network topology of the involved system has on these actuator placement problems,
as well as investigating distributed implementations of their corresponding algorithms.

3.6. Appendix: Computational Complexity

We prove that Problem I is NP-hard, providing an instance that reduces to the NP-hard
controllability problem introduced in [82]. In particular, it is shown in [82] that deciding if
(3.1) is controllable by a zero-one diagonal matrix B with r + 1 non-zero entries reduces to
the r-hitting set problem, as we de�ne it below, which is NP-hard [101].
De�nition 11 (r-hitting set problem). Given a �nite setM and a collection C of non-empty
subsets of M, �nd an M′ ⊆ M of cardinality at most r that has a non-empty intersection
with each set in C.

Without loss of generality, we assume that every element ofM appears in at least one set in
C and all sets in C are non-empty. Moreover in De�nition 11, we let |C| = p andM = {1, 2,
. . . ,m}, and de�ne C ∈ Rp×m such that Cij = 1 if the i-th set contains the element j and
zero otherwise.

We show that Problem (I) for A as described below and with E = n(2n)2n2+12n+2 − n is
equivalent to the NP-hard controllability problem introduced in [82]. Therefore, since E
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can be described in polynomial time, as log(E) = O(n3), we conclude that Problem (I) is
NP-hard.

In particular, as in [82], let n = m + p + 1 and A = V −1DV , where D ≡ diag(1, 2, . . . , n)
and2

V =

 2Im×m 0m×p em×1

C (m+ 1)Ip×p 0p×1

01×m 01×p 1

 . (3.17)

It is shown in [82] that deciding if A is controllable by a zero-one diagonal matrix B with
r + 1 non-zero entries is NP-hard.

Now, observe that all the entries of V are integers either zero or at most m+ 1. Moreover,
with respect to the entries of V −1, it is shown in [82] that:

• For i = 1, 2, . . . ,m: It has a 1/2 in the (i, i)-th place and a −1/2 in the (i, n)-th place,
and zeros elsewhere.

• For i = m+1,m+2, . . . ,m+p: It has a 1/(m+1) in the (i, i)-th place, a −1/(2(m+1))
in the (i, j)-th place where j ∈ Ci (Ci is the corresponding set of the collection C), and
|Ci|/(2(m+ 1)) in the (i, n)-th place; every other entry of the i-th row is zero.

• Finally, the last row of V −1 is [0, 0, . . . , 0, 1].

Therefore, 2(m+ 1)V −1 has all its entries as integers that are either zero or at most n2, in
absolute value.

Consider the controllability matrix associated with this system, given a zero-one diagonal
B that makes it controllable, and denote it as WB. Then,

WB =

∫ t1

t0

eA(t−t0)BBT eA
T (t−t0) dt

= V −1

∫ t1

t0

eD(t−t0)V BV T eD
T (t−t0) dtV −T .

Let t1 − t0 = ln(n). Then, (2n)!
∫ t1−t0

0 eDtV BV T eD
T t dt evaluates to a matrix that has

entries of the form c0 +c1n+c2n
2 + . . .+cnn

n, where c0, c1, . . . , cn are non-negative integers
and all less than (2n)! ≤ (2n)2n. Thereby,

W ′B ≡ 4(m+ 1)2(2n)!V −1

∫ t1−t0

0
eDtV BV T eD

T t dtV −T ,

has entries of the form c′0 + c′1n+ c′2n
2 + . . .+ c′nn

n, where c′0, c
′
1, . . . , c

′
n are integers and all

less than (2n)2(n+3) in absolute value due to the pre and post multiplications by 2(m+1)V −1

and 2(m+ 1)V −T , respectively.

2V is invertible since it is strictly diagonally dominant.
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We are interested on upper bounding log det(W−1
B ): since for x > 0, log(x) ≤ x − 1,

log det(W−1
B ) ≤ tr(W−1

B )− n. In addition,

tr(W−1
B ) = 4(m+ 1)2(2n)!tr(W ′B

−1
) ≤ (2n)2(n+1)tr(W ′B

−1
).

Therefore, we upper bound tr(W ′B
−1): Using Crammer's rule to compute W ′B

−1, due to the
form of the entries of W ′B, all of its elements, including the diagonal ones, if they approach
in�nity, they approach it with at most n!nn(2n)2n(n+3) < (2n)2n(n+5) speed, and as a result
tr(W ′B

−1) ≤ n(2n)2n(n+5). Hence, tr(W−1
B ) ≤ n(2n)2n(n+5)+2(n+1) = n(2n)2n2+12n+2, for

any B that makes (3.1) controllable. Thus, if we set E = n(2n)2n2+12n+2−n (which implies
log(E) = O(n3) so that E can be described polynomially), Problem (I) is equivalent to the
controllability problem of [82], which is NP-hard. �

An immediate consequence of the above is the following one.
Corollary 2 (Computational Complexity of Problem (II)). Problem (II) is NP-hard.

3.6.1. The Greedy Algorithm used in the Supermodular Minimization Literature is Ine�cient
for solving Problem (II′)

Consider Algorithm 6 which is in accordance with the supermodular minimization litera-
ture [16, 94, 96].

Algorithm 6 Greedy algorithm for Problem (II′).

Input: Maximum number of actuators r, approximation parameter ε, number of steps that
the algorithm will run l, matrices W1,W2, . . . ,Wn.

Output: Actuator set ∆l

∆0 ← ∅ , i← 0
while i < l do
ai ← argmaxa∈V\∆{log det(W∆i + εI)−1 − log det(W∆i∪{a} + εI)−1}
∆i+1 ← ∆i ∪ {ai}, i← i+ 1

end while

The following is true for its performance.
Fact 2. Let v? denote the value of Problem (II′). Then, Algorithm 6 guarantees that for
any positive integer l,

log det(W∆l
+ εI)−1 ≤ (1− e−l/r)v? + n log(ε−1)e−l/r.

Proof: It follows from Theorem 9.3, Ch. III.3.9. of [96], since − log det(W∆l
+ εI)−1 +

n log(ε−1) is a non-negative, non-decreasing, and submodular function with respect to the
choice of ∆ (cf. Proposition 2). �

Algorithm 6 su�ers from an error term that is proportional to n log(ε−1). Moreover, it is
possible that Algorithm 6 returns an actuator set that does not render (3.1) controllable.
Therefore, Algorithm 6 is ine�cient for solving Problem (II′).
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CONTRIBUTIONS TO
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CHAPTER 4 : Sensor Placement for Optimal Kalman Filtering: Fundamental
Limits, Submodularity, and Algorithms

In this chapter, we focus on sensor placement in linear dynamic estimation, where the
objective is to place a small number of sensors in a system of interdependent states so to
design an estimator with a desired estimation performance. In particular, we consider a
linear time-variant system that is corrupted with process and measurement noise, and study
how the selection of its sensors a�ects the estimation error of the corresponding Kalman
�lter over a �nite observation interval. Our contributions are threefold: First, we prove
that the minimum mean square error of the Kalman �lter decreases only linearly as the
number of sensors increases. That is, adding extra sensors so to reduce this estimation error
is ine�ective, a fundamental design limit. Similarly, we prove that the number of sensors
grows linearly with the system's size for �xed minimum mean square error and number
of output measurements over an observation interval; this is another fundamental limit,
especially for systems where the system's size is large. Second, we prove that the log det of
the error covariance of the Kalman �lter, which captures the volume of the corresponding
con�dence ellipsoid, with respect to the system's initial condition and process noise is a
supermodular and non-increasing set function in the choice of the sensor set. Therefore,
it exhibits the diminishing returns property. Third, we provide an e�cient approximation
algorithm that selects a small number sensors so to optimize the Kalman �lter with respect to
this estimation error �the worst-case performance guarantees of this algorithm are provided
as well.1

4.1. Introduction

In this chapter, we consider a linear time-variant system corrupted with process and measure-
ment noise. Our �rst goal is to study how the placement of their sensors a�ects the minimum
mean square error of their Kalman �lter over a �nite observation interval [103]. Moreover, we
aim to select a small number of sensors so to minimize the volume of the corresponding con-
�dence ellipsoid of this estimation error. Thereby, this study is an important distinction in
the minimal sensor placement literature [7, 8, 84, 104, 105, 106, 107, 108, 109, 110, 111, 112],
since the Kalman �lter is the optimal linear estimator �in the minimummean square sense�
given a sensor set [113].

Our contributions are threefold:

Fundamental limits. First, we identify fundamental limits in the design of the Kalman
�lter with respect to its sensors. In particular, given any �nite number of output measure-
ments over an observation interval, we prove that the minimum mean square error of the
Kalman �lter decreases only linearly as the number of sensors increases. That is, adding
extra sensors so to reduce this estimation error of the Kalman �lter is ine�ective, a fun-
damental design limit. Similarly, we prove that the number of sensors grows linearly with
the system's size for �xed minimum mean square error; this is another fundamental limit,
especially for systems where the system's size is large. Overall, our novel results quantify
the trade-o� between the number of sensors and that of output measurements so to achieve

1This chapter is based on the paper by Tzoumas et al. [102].
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a speci�ed value for the minimum mean square error.

These results are the �rst to characterize the e�ect of the sensor set on the minimum mean
square error of the Kalman �lter. In particular, in [84], the authors quantify only the trade-
o� between the total energy of the consecutive output measurements and the number of
its selected sensors. Similarly, in [111], the authors consider only the maximum-likelihood
estimator for the system's initial condition and only for a special class of stable linear
time-invariant systems. Moreover, they consider systems that are corrupted merely with
measurement noise, which is white and Gaussian. Finally, they also assume an in�nite
observation interval, that is, in�nite number of consecutive output measurements. Nonethe-
less, we assume a �nite observation interval and study the Kalman estimator both for the
system's initial condition and for the system's state at the time of the last output mea-
surement. In addition, we consider general linear time-variant systems that are corrupted
with both process and measurement noise, of any distribution (with zero mean and �nite
variance). Overall, our results characterize the e�ect of the cardinality of the sensor set on
the minimum mean square error of the Kalman �lter, that is, the optimal linear estimator.

Submodularity. Second, we identify properties for the log det of the error covariance of
the Kalman �lter, which captures the volume of the corresponding con�dence ellipsoid, with
respect to the system's initial condition and process noise over a �nite observation interval
as a sensor set function �the design of an optimal Kalman �lter with respect to the system's
initial condition and process noise implies the design of an optimal Kalman �lter with respect
to the system's state. Speci�cally, we prove that it is a supermodular and non-increasing
set function in the choice of the sensor set.

In contrast, in [114], the authors study sensor placement for monitoring static phenomena
with only spatial correlations. To this end, they prove that the mutual information between
the chosen and non-chosen locations is submodular. Notwithstanding, we consider dynamic
phenomena with both spatial and temporal correlations, and as a result, we characterize as
submodular a richer class of estimation performance metrics. Furthermore, in the sensor
scheduling literature [20], the log det of the error covariance of the Kalman �lter has been
proven submodular but only for special cases of systems with zero process noise [115] and
[5]. Nevertheless, we consider the presence of process noise, and prove our supermodularity
result for the general case.2

Algorithms. Third, we consider the problem of sensor placement so to optimize the log det
of the error covariance of the Kalman �lter with respect to the system's initial condition and
process noise over a �nite observation interval �henceforth, we refer to this error as log det
error, and to the latter problem as P1. Naturally, P1 is combinatorial, and in particular,
it involves the minimization of a supermodular set function, that is, the minimum mean
square error. Because the minimization of a general supermodular function is NP-hard [13],

2In [5], the authors prove with a counterexample in the context of sensor scheduling that the minimum
mean square error of the Kalman �lter with respect to the system's state is not in general a supermodular
set function. We can extend this counterexample in the context of minimal sensor placement as well: the
minimum mean square error of the Kalman with respect to the system's state is not in general a supermodular
set function with respect to the choice of the sensor set.
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we provide e�cient approximation algorithms for their general solution, along with their
worst-case performance guarantees. Speci�cally, we provide an e�cient algorithm for P1

that returns a sensor set that satis�es the estimation guarantee of P1 and has cardinality
up to a multiplicative factor from the minimum cardinality sensor sets that meet the same
estimation bound. Moreover, this multiplicative factor depends only logarithmically on the
problem's P1 parameters.3

In contrast, the related literature has focused either on the optimization of average esti-
mation performance metrics, such as the log det of the error's covariance, or on heuristic
algorithms that provide no worst-case performance guarantees. In particular, in [119], the
authors minimize the log det of the error's covariance matrix of the Kalman estimator for the
case where there is no process noise in the system's dynamics �in contrast, in our frame-
work we assume both process and measurement noise. Moreover, to this end they use convex
relaxation techniques that provide no performance guarantees. Furthermore, in [120] and
[121], the authors design an H2-optimal estimation gain with a small number of non-zero
columns. To this end, they also use convex relaxation techniques that provide no perfor-
mance guarantees. Finally, in [122], the author designs an output matrix with a desired
norm so to minimize the minimum mean square error of the corresponding Kalman estima-
tor; nonetheless, the author does not minimize the number of selected sensors. Overall, with
this chapter we are the �rst to optimize the minimum mean square error of the Kalman
�lter using a small number of sensors and to provide worst-case performance guarantees.

The remainder of this chapter is organized as follows. In Section 4.2, we introduce our model,
and our estimation and sensor placement framework, along with our sensor placement prob-
lems. In Section 4.3, we provide a series of design and performance limits and characterize
the properties of the Kalman estimator with respect to its sensor set; in Section 4.4, we
prove that the log det estimation error of the Kalman �lter with respect to the system's
initial condition and process noise is a supermodular and non-increasing set function in the
choice of the sensor set; and in Section 4.5, we provide e�cient approximation algorithms
for selecting a small number of sensors so to design an optimal Kalman �lter with respect to
its log det error �the worst-case performance guarantees of these algorithms are provided
as well. Finally, Section 4.6 concludes the chapter. Due to space limitations, the proofs of
all of our results, as well as, the corresponding simulations, are omitted; they can be found
in the full version of this chapter, located at our websites.

4.2. Problem Formulation

Notation. We denote the set of natural numbers {1, 2, . . .} as N, the set of real numbers
as R, and the set {1, 2, . . . , n} as [n], where n ∈ N. Given a set X , |X | is its cardinality.
Matrices are represented by capital letters and vectors by lower-case letters. For a matrix
A, A> is its transpose and Aij its element located at the i−th row and j−th column.

3Such algorithms, that involve the minimization of supermodular set functions, are also used in the
machine learning [116], leader selection [8, 91, 92], sensor scheduling [5, 115], actuator placement [7, 106,
107, 110, 112, 117] and sensor placement in static environments [114, 118] literature. Their popularity is
due to their simple implementation � they are greedy algorithms � and provable worst-case approximation
factors, that are the best one can achieve in polynomial time for several classes of supermodular functions
[13, 40].
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‖A‖2 ≡
√
A>A is its spectral norm, and λmin(A) and λmax(A) its minimum and maximum

eigenvalues, respectively. Moreover, if A is positive semi-de�nite or positive de�nite, we
write A � 0 and A � 0, respectively. Furthermore, I is the identity matrix �its dimension
is inferred from the context; similarly for the zero matrix 0. Finally, for a random variable
x ∈ Rn, E(x) is its expected value, and C(x) ≡ E

(
[x− E(x)] [x− E(x)]>

)
its covariance.

The rest of our notation is introduced when needed.

4.2.1. Model and Estimation Framework

For k ≥ 0, we consider the linear time-variant system

xk+1 = Akxk + wk,

yk = Ckxk + vk,
(4.1)

where xk ∈ Rn (n ∈ N) is the state vector, yk ∈ Rc (c ∈ [n]) the output vector, wk the
process noise and vk the measurement noise �without loss of generality, the input vector is
assumed zero. The initial condition is x0.
Assumption 2. (For all k ≥ 0, the initial condition, the process noise and the
measurement noise are uncorrelated random variables) x0 is a random variable
with covariance C(x0) = σ2I, where σ ≥ 0. Moreover, for all k ≥ 0, C(wk) = C(vk) = σ2I
as well. Finally, for all k, k′ ≥ 0 such that k 6= k′, x0, wk and vk, as well as, wk, wk′ , vk
and vk′, are uncorrelated.

4

Moreover, for k ≥ 0, consider the vector of measurements ȳk, the vector of process noises
w̄k and the vector of measurement noises v̄k, de�ned as follows: ȳk ≡ (y>0 , y

>
1 , . . . , y

>
k )>,

w̄k ≡ (w>0 , w
>
1 , . . . , w

>
k )>, and v̄k ≡ (v>0 , v

>
1 , . . . , v

>
k )>, respectively; the vector ȳk is known,

while the w̄k and v̄k are not.
De�nition 12 (Observation interval and its length). The interval [0, k] ≡ {0, 1, . . . , k} is
called the observation interval of (4.1). Moreover, k + 1 is its length.

Evidently, the length of an observation interval [0, k] equals the number of measurements
y0, y1, . . . , yk.

In this chapter, given an observation interval [0, k], we consider the minimum mean square
linear estimators for xk′ , for any k′ ∈ [0, k] [103]. In particular, (4.1) implies

ȳk = Okzk−1 + v̄k, (4.2)

where Ok is the c(k+ 1)×n(k+ 1) matrix [L>0 C
>
0 , L

>
1 C
>
1 , . . . , L

>
k C
>
k ]>, L0 the n×n(k+ 1)

matrix [I, 0], Li, for i ≥ 1, the n× n(k + 1) matrix [Ai−1 · · ·A0, Ai−1 · · ·A1, . . . , Ai−1, I, 0],
and zk−1 ≡ (x>0 , w̄

>
k−1)>. As a result, the minimum mean square linear estimate of zk−1 is

4This assumption is common in the related literature [119], and it translates to a worst-case scenario for
the problem we consider in this chapter.
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the ẑk−1 ≡ E(zk−1) +O>k
(
OkO>k + I

)−1
(ȳk −OkE(zk−1)− E(v̄k)); its error covariance is

Σzk−1
≡ E

(
(zk−1 − ẑk−1)(zk−1 − ẑk−1)>

)
= σ2

(
I −O>k

(
OkO>k + I

)−1
Ok
)

(4.3)

and its minimum mean square error

mmse(zk−1) ≡ E
(

(zk−1 − ẑk−1)>(zk−1 − ẑk−1)
)

= tr
(
Σzk−1

)
.

(4.4)

As a result, the corresponding minimum mean square linear estimator of xk′ , for any k′ ∈
[0, k], is

x̂k′ = Lk′ ẑk−1, (4.5)

(since xk′ = Lk′zk−1), with minimum mean square error

mmse(xk′) ≡ tr
(
Lk′Σzk−1

L>k′
)
. (4.6)

In particular, the recursive implementation of (4.5) results to the Kalman �ltering algorithm
[123].

In this chapter, in addition to the minimum mean square error of x̂k′ , we also consider per
(4.5) the estimation error metric that is related to the η-con�dence ellipsoid of zk−1 − ẑk−1

[119]. Speci�cally, this is the minimum volume ellipsoid that contains zk−1 − ẑk−1 with
probability η, that is, the Eε ≡ {z : z>Σzk−1

z ≤ ε}, where ε ≡ F−1
χ2
n(k+1)

(η) and Fχ2
n(k+1)

is

the cumulative distribution function of a χ-squared random variable with n(k + 1) degrees
of freedom [124]. Therefore, the volume of Eε,

vol(Eε) ≡
(επ)n(k+1)/2

Γ (n(k + 1)/2 + 1)
det
(

Σ1/2
zk−1

)
, (4.7)

where Γ(·) denotes the Gamma function [124], quanti�es the estimation's error of ẑk−1, and
as a result, for any k′ ∈ [0, k], of x̂k′ as well, since per (4.5) the optimal estimator for zk−1

de�nes the optimal estimator for xk′ .

Henceforth, we consider the logarithm of (4.7),

log vol(Eε) = β + 1/2 log det
(
Σzk−1

)
; (4.8)

β is a constant that depends only on n(k+ 1) and ε, in accordance to (4.7), and as a result,
we refer to the log det

(
Σzk−1

)
as the log det estimation error of the Kalman �lter of (4.1):

De�nition 13 (log det estimation error of the Kalman �lter). Given an observation interval
[0, k], the log det

(
Σzk−1

)
is called the log det estimation error of the Kalman �lter of (4.1).

In the following paragraphs, we present our sensor placement framework, that leads to our
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sensor placement problems.

4.2.2. Sensor Placement Framework

In this chapter, we study among others the e�ect of the selected sensors in (4.1) on mmse(x0)
and mmse(xk). Therefore, this translates to the following conditions on Ck, for all k ≥ 0,
in accordance with the minimal sensor placement literature [7].
Assumption 3 (C is a full row-rank constant zero-one matrix). For all k ≥ 0, Ck = C ∈
Rc×n, where C is a zero-one constant matrix. Speci�cally, each row of C has one element
equal to one, and each column at most one, such that C has rank c.

In particular, when for some i, Cij is one, the j-th state of xk is measured; otherwise, it is
not. Therefore, the number of non-zero elements of C coincides with the number of placed
sensors in (4.1).
De�nition 14 (Sensor set and sensor placement). Consider a C per Assumption 3 and
de�ne S ≡ {i : i ∈ [n] and Cji = 1, for some j ∈ [r]}; S is called a sensor set or a sensor
placement and each of its elements a sensor.

4.2.3. Sensor Placement Problems

We introduce three objectives, that we use to de�ne the sensor placement problems we
consider in this chapter.
Objective 1 (Fundamental limits in optimal sensor placement). Given an observation in-
terval [0, k], i ∈ {0, k} and a desired mmse(xi), identify fundamental limits in the design of
the sensor set.

As an example of a fundamental limit, we prove that the number of sensors grows linearly
with the system's size for �xed estimation error mmse(xi) �this is clearly a major limitation,
especially when the system's size is large. This result, as well as, the rest of our contributions
with respect to Objective 1, is presented in Section 4.3.
Objective 2 (log det estimation error as a sensor set function). Given an observation in-
terval [0, k], identify properties of the log det

(
Σzk−1

)
as a sensor set function.

We address this objective in Section 4.4, where we prove that log det
(
Σzk−1

)
is a supermod-

ular and non-increasing set function with respect to the choice of the sensor set �the basic
de�nitions of supermodular set functions are presented in that section as well.
Objective 3 (Algorithms for optimal sensor placement). Given an observation interval
[0, k], identify a sensor set S that solves the minimal sensor placement problem:

minimize
S⊆[n]

|S|

subject to log det
(
Σzk−1

)
≤ R.

(P1)

That is, with P1 we design an estimator that guarantees a speci�ed error and uses a minimal
number of sensors. The corresponding algorithm is provided in Section 4.5.

All of our contributions with respect to the Objectives 1, 2 and 3 are presented in the
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following sections.

4.3. Fundamental Limits in Optimal Sensor Placement

In this section, we present our contributions with respect to Objective 1. In particular, given
any �nite observation interval, we prove that the minimum mean square error decreases only
linearly as the number of sensors increases. That is, adding extra sensors so to reduce the
minimum mean square estimation error of the Kalman �lter is ine�ective, a fundamental
design limit. Similarly, we prove that the number of sensors grows linearly with the system's
size for �xed minimum mean square error; this is another fundamental limit, especially for
systems where the system's size is large. On the contrary, given a sensor set of �xed cardi-
nality, we prove that the length of the observational interval increases only logarithmically
with the system's size for �xed minimum mean square error. Overall, our novel results
quantify the trade-o� between the number of sensors and that of output measurements so
to achieve a speci�ed value for the minimum mean square error.

To this end, given i ∈ {0, k}, we �rst determine a lower and upper bound for mmse(xi).5

Theorem 3. (A lower and upper bound for the estimation error with respect
to the number of sensors and the length of the observation interval) Consider
a sensor set S, any �nite observation interval [0, k] and a non-zero σ. Moreover, let µ ≡
maxm∈[0,k] ‖Am‖2 and assume µ 6= 1. Given i ∈ {0, k},

nσ2li

|S|
(
1− µ2(k+1)

)
/ (1− µ2) + 1

≤ mmse(xi) ≤ nσ2ui, (4.9)

where l0 = 1, u0 = 1, lk = λmin

(
L>k Lk

)
and uk = (k + 1)λmax

(
L>k Lk

)
.

The upper bound corresponds to the case where no sensors have been placed (C = 0). On
the other hand, the lower bound corresponds to the case where |S| sensors have been placed.

As expected, the lower bound in (4.9) decreases as the number of sensors or the length of
the observational interval increases; the increase of either should push the estimation error
downwards. Overall, this lower bound quanti�es fundamental limits in the design of the
Kalman estimator: �rst, this bound decreases only inversely proportional to the number
of sensors. Therefore, the estimation error of the optimal linear estimator decreases only
linearly as the number of sensors increases. That is, adding extra sensors so to reduce the
minimum mean square estimation error of the Kalman �lter is ine�ective, a fundamental
design limit. Second, this bound increases linearly with the system's size. This is another
fundamental limit, especially for systems where the system's size is large. Finally, for �xed
and non-zero λmin

(
L>k Lk

)
, these scaling extend to the mmse(xk) as well, for any �nite k.

Corollary 3. (Trade-o� among the number of sensors, estimation error and the
length of the observation interval) Consider any �nite observation interval [0, k], a
non-zero σ, and for i ∈ {0, k}, that the desired value for mmse(xi) is α (α > 0). Moreover,
let µ ≡ maxm∈[0,k] ‖Am‖2 and assume µ 6= 1. Any sensor set S that achieves mmse(xi) = α

5The extension of Theorem 3 to the case µ = 1 is straightforward, yet notationally involved; as a result,
we omit it.
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satis�es:

|S| ≥
(
nσ2li/α− 1

) 1− µ2

1− µ2(k+1)
. (4.10)

where l0 = 1 and lk = λmin

(
L>k Lk

)
.

The above corollary shows that the number of sensors increases as the minimum mean square
error or the number of output measurements decreases. More importantly, it shows that the
number of sensors increases linearly with the system's size for �xed minimum mean square
error. This is again a fundamental design limit, especially when the system's size is large.6

4.4. Submodularity in Optimal Sensor Placement

In this section, we present our contributions with respect to Objective 2. In particular, we
�rst derive a closed formula for log det

(
Σzk−1

)
and then prove that it is a supermodular and

non-increasing set function in the choice of the sensor set.

We now give the de�nition of a supermodular set function, as well as, that of an non-
decreasing set function �we follow [94] for this material.

Denote as 2[n] the power set of [n].
De�nition 15 (Submodularity and supermodularity). A function h : 2[n] 7→ R is submod-
ular if for any sets S and S ′, with S ⊆ S ′ ⊆ [n], and any a /∈ S ′,

h(S ∪ {a})− h(S) ≥ h(S ′ ∪ {a})− h(S ′).

A function h : 2[n] 7→ R is supermodular if (−h) is submodular.

An alternative de�nition of a submodular function is based on the notion of non-increasing
set functions.
De�nition 16 (Monotone set function). A function h : 2[n] 7→ R is a non-increasing set
function if for any S ⊆ S ′ ⊆ [n], h(S) ≥ h(S ′). Moreover, h is a non-decreasing set function
if (−h) is a non-increasing set function.

Therefore, a function h : 2[n] 7→ R is submodular if, for any a ∈ [n], the function ha :
2[n]\{a} 7→ R, de�ned as ha(S) ≡ h(S ∪ {a}) − h(S), is a non-increasing set function. This
property is also called the diminishing returns property.

The �rst major result of this section follows, where we let

Ok ≡ O>k Ok,

given an observation interval [0, k].
Proposition 3 (Closed formula for the log det error as a sensor set function). Given any

6For �xed and non-zero λmin

(
L>k Lk

)
, the comments of this paragraph extend to the mmse(xk) as well,

for any �nite k �on the other hand, if λmin

(
L>k Lk

)
varies with the system's size, since λmin

(
L>k Lk

)
≤ 1,

the number of sensors can increase sub-linearly with the system's size for �xed mmse(xk).
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�nite observation interval [0, k] and non-zero σ, irrespective of Assumption 3,

log det
(
Σzk−1

)
=

2n(k + 1) log (σ)− log det (Ok + I) . (4.11)

Therefore, the log det
(
Σzk−1

)
depends on the sensor set through Ok. Now, the main result

of this section follows, where we make explicit the dependence of Ok on the sensor set S.
Theorem 4. The log det error is a supermodular and non-increasing set function
with respect to the choice of the sensor set Given any �nite observation interval [0, k],
the

log det
(
Σzk−1

,S
)

=

2n(k + 1) log (σ)− log det (Ok,S + I) : S ∈ 2[n] 7→ R

is a supermodular and non-increasing set function with respect to the choice of the sensor
set S.

The above theorem states that for any �nite observation interval, the log det error of the
Kalman �lter is a supermodular and non-increasing set function with respect to the choice
of the sensor set for any �nite k. Hence, it exhibits the diminishing returns property: its rate
of reduction with respect to newly placed sensors decreases as the cardinality of the already
placed sensors increases. On the one hand, this property implies another fundamental design
limit, in accordance to that of Theorem 3: adding new sensors, after a �rst few, becomes
ine�ective for the reduction of the estimation error. On the other hand, it also implies that
greedy approach for solving P1 is e�ective [13, 40]. Thereby, we next use the results from
the literature on submodular function maximization [96] and provide an e�cient algorithm
for P1.

4.5. Algorithms for Optimal Sensor Placement

In this section, we present our contributions with respect to Objective 3: P1 is combinatorial,
and in Section 4.4 we proved that it involves the minimization of the supermodular set
function log det error. In particular, because the minimization of a general supermodular
function is NP-hard [13], in this section we provide e�cient approximation algorithms for
the general solution of P1, along with their worst-case performance guarantees.

Speci�cally, we provide an e�cient algorithm for P1 that returns a sensor set that satis�es
the estimation bound of P1 and has cardinality up to a multiplicative factor from the mini-
mum cardinality sensor sets that meet the same estimation bound. More importantly, this
multiplicative factor depends only logarithmically on the problem's P1 parameters.

To this end, we �rst present a fact from the supermodular functions minimization literature
that we use so to construct an approximation algorithm for P1 �we follow [94] for this
material. In particular, consider the following problem, which is of similar structure to P1,
where h : 2[n] 7→ R is a supermodular and non-increasing set function:
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minimize
S⊆[n]

|S|

subject to h(S) ≤ R.
(P)

The following greedy algorithm has been proposed for its approximate solution, for which,
the subsequent fact is true.

Algorithm 7 Approximation Algorithm for P.
Input: h, R.
Output: Approximate solution for P.
S ← ∅
while h(S) > R do

ai ← a′ ∈ arg maxa∈[n]\S (h(S)− h(S ∪ {a}))
S ← S ∪ {ai}

end while

Fact 3. Denote as S? a solution to P and as S0,S1, . . . the sequence of sets picked by
Algorithm 7. Moreover, let l be the smallest index such that h(Sl) ≤ R. Then,

l

|S?|
≤ 1 + log

h([n])− h(∅)
h([n])− h(Sl−1)

.

For several classes of submodular functions, this is the best approximation factor one can
achieve in polynomial time [13]. Therefore, we use this result to provide the approximation
Algorithm 8 for P1, where we make explicit the dependence of log det

(
Σzk−1

)
on the selected

sensor set S. Moreover, its performance is quanti�ed with Theorem 5.

Algorithm 8 Approximation Algorithm for P1.

For h(S) = log det
(
Σzk−1

,S
)
, where S ⊆ [n], Algorithm 8 is the same as Algorithm 7.

Theorem 5 (A Submodular Set Coverage Optimization for P1). Denote a solution to P1

as S? and the selected set by Algorithm 8 as S. Then,

log det
(
Σzk−1

,S
)
≤ R, (4.12)

|S|
|S?|

≤ 1 + log
log det

(
Σzk−1

, ∅
)
− log det

(
Σzk−1

, [n]
)

R− log det
(
Σzk−1

, [n]
)

≡ Fi, (4.13)

where log det
(
Σzk−1

, ∅
)
≤ n(k + 1) log(σ2). Finally, the computational complexity of Algo-

rithm 8 is O(n2(nk)3).

Therefore, Algorithm 8 returns a sensor set that meets the estimation bound of P1. More-
over, the cardinality of this set is up to a multiplicative factor of Fi from the minimum
cardinality sensor sets that meet the same estimation bound �that is, Fi is a worst-case
approximation guarantee for Algorithm 8. Additionally, Fi depends only logarithmically on
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the problem's P1 parameters. Finally, the dependence of Fi on n, R and σ2 is expected from
a design perspective: increasing the network size n, requesting a better estimation guarantee
by decreasing R, or incurring a noise of greater variance, should all push the cardinality of
the selected sensor set upwards.

4.6. Concluding Remarks & Future Work

We considered a linear time-variant system and studied the properties of its Kalman es-
timator given an observation interval and a sensor set. Our contributions were threefold.
First, in Section 4.3 we presented several design limits. For example, we proved that the
number of sensors grows linearly with the system's size for �xed minimum mean square
error; this is a fundamental limit, especially for systems where the system's size is large.
Second, in Section 4.4 we proved that the log det error is a supermodular and non-increasing
set function with respect to the choice of the sensor set. Third, in Section 4.5, we used this
result to provide an e�cient approximation algorithm for the solution of P1, along with its
worst-case performance guarantees. Our future work is focused on extending the results of
this chapter to the problem of sensor scheduling.

4.7. Appendix: Proof of Results

• Theorem 3

Proof: We �rst prove the lower bound in (4.9): observe �rst that mmse(x0) ≥ mmse(x0)w·=0,
where mmse(x0)w·=0 is the minimum mean square error of x0 when the process noise wk
in (4.1) is zero for all k ≥ 0. To express mmse(x0)w·=0 in a closed form similar to (4.11),
note that in this case (4.2) becomes ȳk = Õkx0 + v̄k, where Õk ≡

[
C>0 ,Φ

>
1 C
>
1 , . . . ,Φ

>
k C
>
k

]>
and Φm ≡ Am−1 · · ·A0, for m > 0, and Φm ≡ I, for m = 0. Thereby, from Corollary
E.3.5 of [123], the minimum mean square linear estimate of x0, denoted as x̂w·=0

k0
, has error

covariance

Σw·=0
k0

≡ E
(

(x0 − x̂w·=0
k0

)(x0 − x̂w·=0
k0

)>
)

= σ2

(
I − Õ>k

(
ÕkÕ>k + I

)−1
Õk
)
, (4.14)

and minimum mean square error

mmse(x0)w·=0 ≡ tr
(

Σw·=0
k0

)
= σ2tr

[(
Õ>k Õk + I

)−1
]

(4.15)

≡ σ2tr
[(
Õk + I

)−1
]
, (4.16)

where we deduce (4.15) from (4.14) using the Woodbury matrix identity (Corollary 2.8.8
of [93]), and (4.16) from (4.15) using the notation Õk ≡ Õ>k Õk. In particular, Õk is the
observability matrix Õk =

∑k−1
m=0 Φ>mC

>
k CkΦm of (4.1) ([85]).
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Hence, mmse(x0) ≥ σ2tr
[(
Õk + I

)−1
]
, and since the arithmetic mean of a �nite set of

positive numbers is at least as large as their harmonic mean, using (4.16),

mmse(x0) ≥ n2σ2

tr
(
Õk + I

) ≥ n2σ2

tr
(
Õk

)
+ n

.

Now, for i ∈ [n], let I(i) be the n × n matrix where Iii is one, while Ijk is zero, for all

(j, k) 6= (i, i). Then, tr(Õk) = tr
(∑k

m=0 Φ>mC
>CΦm

)
=
∑n

i=1 sitr
(∑k

m=0 Φ>mI
(i)Φm

)
;

now,

tr

(
k∑

m=0

Φ>mI
(i)Φm

)
≤ nλmax

(
k∑

m=0

Φ>mI
(i)Φm

)
= n‖

k∑
m=0

Φ>mI
(i)Φm‖2 ≤ n

k∑
m=0

‖Φm‖22,

because ‖I(i)‖2 = 1, and from the de�nition of Φm and Proposition 9.6.1 of [93],

k∑
m=0

‖Φm‖22 ≤
1− µ2(k+1)

1− µ2
.

Therefore, tr(Õk) ≤
∑n

i=1 sin
1−µ2(k+1)

1−µ2 = n|S|1−µ
2(k+1)

1−µ2 , and as a result, the lower bound in
(4.9) for mmse(x0) follows.

Next, we prove the upper bound in (4.9), using (4.19), which is proved in the proof of
Proposition 3, and (4.6) for k′ = 0: Ok + I � σ2I, and as a result, from Proposition 8.5.5 of
[93], (Ok + I)−1 � σ−2I. Hence, mmse(x0) ≤ tr

[
L0σ

2IL>0
]
≤ nσ2.

Finally, to derive the lower and upper bounds for mmse(xk), observe that mmse(x0) ≤
mmse(zk−1) and mmse(zk−1) ≤ n(k+ 1)σ2 �the proof follows using similar steps as above.
Then, from Theorem 1 of [125],

λmin

(
L>k Lk

)
mmse(zk−1) ≤mmse(xk) ≤

λmax

(
L>k Lk

)
mmse(zk−1).

The combination of these inequalities completes the proof. �

• Proposition 3

Proof: From x̂i = Li−1ẑk−1,

mmse(xi) = tr(Li−1Σzk−1
L>i−1).
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Also,

Σzk−1
= σ2

(
I −O>k

(
OkO>k + I

)−1
Ok
)

(4.17)

= σ2
(
O>k Ok + I

)−1
(4.18)

= σ2 (Ok + I)−1 , (4.19)

where we deduce (4.18) from (4.17) using the Woodbury matrix identity (Corollary 2.8.8 of
[93]), and (4.19) from (4.18) using the fact that Ok = O>k Ok. �

• Theorem 4

Proof: To prove that the mmse(xi) is non-increasing, observe that

Ok,S =

n∑
m=1

sm

k∑
j=0

M>j I
(m)Mj =

n∑
m=1

smOk,{m}, (4.20)

where Mj is the n× nk matrix
Mj ≡ [Lj−1, 0] .

Then, for any S1 ⊆ S2 ⊆ [n], (4.20) and that fact that Ok,{1}, Ok,{2}, . . . , Ok,{n} � 0 imply
Ok,S1 � Ok,S2 , and as a result, Ok,S1 + I � Ok,S2 + I. Therefore, from Proposition 8.5.5 of
[93],

(Ok,S2 + I)−1 � (Ok,S1 + I)−1 ,

This implies

Li−1 (Ok,S2 + I)−1 L>i−1 � Li−1 (Ok,S1 + I)−1 L>i−1,

and as a result, mmse(xi) is non-increasing.

Next, observe that

tr
[
Li−1 (Ok,S + I)−1 L>i−1

]
= tr

[
(Ok,S + I)−1 L>i−1Li−1

]
,

and consider the eigenvector decomposition of L>i−1Li−1,
∑n

m=1 λmqmq
>
m, where λm and qm

is the m-th eigenvalue and eigenvector of L>i−1Li−1, respectively. Thereby,

tr
[
Li−1 (Ok,S + I)−1 L>i−1

]
=

n∑
m=1

λmtr
[
(Ok,S + I)−1 qmq

>
m

]
=

n∑
m=1

λmq
>
m (Ok,S + I)−1 qm.
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Since L>i−1Li−1 � 0, λm ≥ 0, for all m ∈ [n]. Therefore, since the non-negative sum of
supermodular set functions is a supermodular set function, it remains to prove that for any
q ∈ Rn, q> (Ok,S + I)−1 q is such. This follows from the proof of Proposition 2 of [110], and
the proof is complete. �

• Theorem 5

Proof: First, let S0,S1, . . . be the sequence of sets selected by Algorithm 8 and l the smallest
index such that mmse(xi,Sl) ≤ R. Therefore, Sl is the set that Algorithm 8 returns, and
this proves (4.12).

Moreover, from Fact 3,

l

|S?|
≤ 1 + log

h([n])− h(∅)
h([n])− h(Sl−1)

= 1 + log
mmse(xi, ∅)−mmse(xi, [n])

mmse(xi,Sl−1)−mmse(xi, [n])
.

Now, l is the �rst time that mmse(xi,Sl) ≤ R, and a result mmse(xi,Sl−1) > R. This
implies (4.13).

Furthermore, for i = 0, mmse(x0, ∅) = nσ2. On the other hand, for i = k, �rst set for
m ≥ j ≥ 0, Φm,j ≡ AmAm−1 · · ·Aj and Φm,m+1 ≡ I; then,

mmse(xk, ∅) = σ2tr
(
Lk−1L

>
k−1

)
= σ2tr

(
k∑

m=0

Φ>k−1,mΦk−1,m

)

≤ nσ2λmax

(
k∑

m=0

Φ>k−1,mΦk−1,m

)

= nσ2‖
k∑

m=0

Φ>k−1,mΦk−1,m‖2

≤ nσ2
k∑

m=0

‖Φk−1,m‖22 ≤ nσ2 1− µ2(k+1)

1− µ2
.

Finally, with respect to the computational complexity of Algorithm 8, note that the while

loop is repeated for at most n times. Moreover, the complexity to invert an nk×nk matrix,
using Gauss-Jordan elimination decomposition, is O((nk)3) (this is also the complexity
to multiply two such matrices). Additionally, at most n matrices must be inverted so
that the arg maxa∈[n]\S (mmse(xi,S)−mmse(xi,S ∪ {a})) can be computed. Furthermore,
O(n) time is required to �nd a maximum element between n available. Therefore, the
computational complexity of Algorithm 8 is O(n2(nk)3). �
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CHAPTER 5 : Near-optimal sensor scheduling for batch state estimation:
Complexity, algorithms, and limits

In this chapter, we focus on batch state estimation for linear systems. This problem is
important in applications such as environmental �eld estimation, robotic navigation, and
target tracking. Its di�culty lies on that limited operational resources among the sensors,
e.g., shared communication bandwidth or battery power, constrain the number of sensors
that can be active at each measurement step. As a result, sensor scheduling algorithms
must be employed. Notwithstanding, current sensor scheduling algorithms for batch state
estimation scale poorly with the system size and the time horizon. In addition, current
sensor scheduling algorithms for Kalman �ltering, although they scale better, provide no
performance guarantees or approximation bounds for the minimization of the batch state
estimation error. In this chapter, one of our main contributions is to provide an algorithm
that enjoys both the estimation accuracy of the batch state scheduling algorithms and the
low time complexity of the Kalman �ltering scheduling algorithms. In particular: 1) our
algorithm is near-optimal: it achieves a solution up to a multiplicative factor 1/2 from the
optimal solution, and this factor is close to the best approximation factor 1/e one can achieve
in polynomial time for this problem; 2) our algorithm has (polynomial) time complexity that
is not only lower than that of the current algorithms for batch state estimation; it is also
lower than, or similar to, that of the current algorithms for Kalman �ltering. We achieve
these results by proving two properties for our batch state estimation error metric, which
quanti�es the square error of the minimum variance linear estimator of the batch state vector:
a) it is supermodular in the choice of the sensors; b) it has a sparsity pattern (it involves
matrices that are block tri-diagonal) that facilitates its evaluation at each sensor set.1

5.1. Introduction

Search and rescue [126], environmental �eld estimation [127], robotic navigation [128], and
target tracking [129] are only a few of the challenging information gathering problems that
employ the monitor capabilities of sensor networks [130]. In particular, all these problems
face the following three main challenges:

• they involve systems whose evolution is largely unknown, corrupted with noisy inputs
[129], and sensors with limited sensor capabilities, corrupted with measurement noise
[103].

• they involve systems that change over time [127], and as a result, necessitate both
spacial and temporal deployment of sensors in the environment. At the same time:

• they involve operational constraints, such as limited bandwidth and battery life, which
limit the number of sensors that can be simultaneously used (i.e., be switched-on) in
the information gathering process [131].

As a result of these challenges, researchers focused on the following question: �How do we
select at each measurement step only a few sensors so to minimize the estimation error
despite the above challenges?� The e�ort to answer this question resulted to the problem

1This chapter is based on the paper by Tzoumas et al. [58].
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of sensor scheduling [131]: in particular, sensor scheduling o�ers a formal methodology to
use at each measurement time only a few sensors and obtain an optimal trade-o� between
the estimation accuracy and the usage of the limited operational resource (e.g., the shared
bandwidth). Clearly, sensor scheduling is a combinatorial problem of exponential complexity
[130].

In this chapter, we focus on the following instance of this problem:

Problem 1 (Sensor Scheduling for Minimum Variance Batch State Estimation)
Consider a time-invariant linear system, whose state at time tk is denoted as x(tk), a set of
m sensors, and a �xed set of K measurement times t1, t2, . . . , tK . In addition, consider that
at each tk at most rk sensors can be used, where rk ≤ m. At each tk select a set of rk sensors
so to minimize the square estimation error of the minimum variance linear estimator of the
batch state vector (x(t1), x(t2), . . . , x(tK)).

There are two classes of sensor scheduling algorithms, that trade-o� between the estimation
accuracy of the batch state vector and their time complexity: these for Kalman �ltering,
and those for batch state estimation. In more detail:

Kalman �ltering algorithms: These algorithms sacri�ce estimation accuracy over reduced
time complexity. The reason is that they are sequential algorithms: at each tk, they select the
sensors so to minimize the square estimation error of the minimum variance linear estimator
of x(tk) (given the measurements up to tk). Therefore, their objective is to minimize the
sum of the square estimation errors of x(tk) across the measurement times tk [132]. However,
this sum is only an upper bound to the square estimation error of the batch state vector
(x(t1), x(t2), . . . , x(tK)). Thus, the Kalman �ltering algorithms lack on estimation accuracy
with respect to the batch state estimation algorithms.

Batch state estimation algorithms: These algorithms sacri�ce time complexity over esti-
mation accuracy. The reason is that they perform global optimization, in accordance to
Problem 1. Therefore, however, they lack on time complexity with respect to the Kalman
�ltering algorithms.

Notwithstanding, in several recent robotic applications, batch estimation algorithms have
been proven competitive in their time complexity to their �ltering counterparts [22, 133].
The reason is that sparsity patterns emerge in these applications, that reduce the time
complexity of their batch estimation algorithms to an order similar to that of the �ltering
algorithms [134]. Thereby, the following question on Problem 1 arises:

Question 1. �Is there an algorithm for Problem 1 that enjoys both the estimation accuracy
of the batch state algorithms and the low time complexity of the Kalman �ltering algorithms?�

Literature review on sensor scheduling algorithms for batch state estimation.
The most relevant paper on Problem 1 is [135], where an algorithm based on convex re-
laxation is provided. This algorithm scales poorly with the system's size and number of
measurement times. In addition, it provides no approximation performance guarantees.
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Literature review on sensor scheduling algorithms for Kalman �ltering. Several
papers in this category have focused on myopic algorithms [115]; such algorithms, however,
often perform poorly [136]. Other papers have focused on algorithms that use: tree prun-
ing [137], convex optimization [119], quadratic programming [138], or submodular function
maximization [5, 139]. Nevertheless, these algorithms provide no performance guarantees
on the batch state estimation error, or have time complexity that scales poorly with the
system's size and number of measurement times [137] [138]. To reduce the time complexity
of these algorithms, papers have also proposed periodic sensor schedules [132].

Contributions. We now present our contributions:

1) We prove that Problem 1 is NP-hard.

2) We provide an algorithm for Problem 1 (Algorithm 1) that answers Question 1 positively.
The reasons are two:

i) Algorithm 1 is near-optimal: it achieves a solution that is up to a multiplicative
factor 1/2 from the optimal solution. In addition, this multiplicative factor is close
to the factor 1/e which we prove to be the best approximation factor one can achieve
in polynomial time for Problem 1 in the worst-case.

ii) Algorithm 1 has (polynomial) time complexity that is not only lower than that of
the state of the art scheduling algorithms for batch state estimation; it is also lower
than, or similar to, that of the state of the art scheduling algorithms for Kalman
�ltering. For example, it has similar complexity to the state of the art periodic
scheduling algorithm in [132] (in particular: lower for K large enough), and lower
than the complexity of the algorithm in [119].

Overall, in response to Question 1, Algorithm 1 enjoys both the higher estimation accu-
racy of the batch state estimation approach (compared to the Kalman �ltering approach,
that only approximates the batch state estimation error with an upper bound) and the
low time complexity of Kalman �ltering approach.

3) We prove limits on the minimization of the square error of the minimum variance esti-
mator of (x(t1), x(t2), . . . , x(tK)) with respect to the scheduled sensors. For example,
we prove that the number rk of used sensors at each measurement time must increase
linearly with the system size for �xed estimation error and number of measurement times
K; this is a fundamental limit, especially for large-scale systems.

Our technical contributions. We achieve our aforementioned contributions by proving
the following two:

Supermodularity in Problem 1: We prove that our estimation metric, that quanti�es the
square error of the minimum variance estimator of (x(t1), x(t2), . . . , x(tK)), is a supermod-
ular function in the choice of the used sensors. This result becomes important when we
compare it to results on the multi-step Kalman �ltering that show that the corresponding
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estimation metric in this case is neither supermodular nor submodular [5, 139].2

In addition, this submodularity result cannot be reduced to the batch estimation problem in
[114]. The main reasons are two: i) we consider sensors that can measure any linear combi-
nation of the element of x(tk), in contrast to [114], where each sensor measures directly only
one element of x(tk). Nonetheless, the latter assumption is usually infeasible in dynamical
systems [85]; ii) our error metric is relevant to estimation problems for dynamical systems
and di�erent to the submodular information gain considered in [114].

Sparsity in Problem 1: We identify a sparsity pattern in our error metric, that facilitates
the latter's evaluation at each sensor set. In particular, we prove that the error covariance
of the minimum variance linear estimator of the batch state vector is block tri-diagonal.

We organize the rest of the chapter as follows: In Section 5.2 we present formally Problem 1.
In Section 5.3, we present in three subsections our main results: in Section 5.3.1, we prove
that our sensor scheduling problem is NP-hard. In Section 5.3.2, we derive our near-optimal
approximation algorithm. In Section 5.3.3, we prove limits on the minimization of the batch
state estimation error with respect to the used sensors. Section 5.4 concludes the chapter
with our future work.3

5.2. Problem Formulation

In the following paragraphs, we present our sensor scheduling problem for batch state es-
timation. To this end, we �rst build our system and measurement framework. Then, we
de�ne our sensor scheduling framework and, �nally, present our sensor scheduling problem.

We start in more detail with the system model:

System Model. We consider the linear time-invariant system:

ẋ(t) = Ax(t) +Bu(t) + Fw(t), t ≥ t0, (5.1)

where t0 is the initial time, x(t) ∈ Rn (n ∈ N) the state vector, ẋ(t) the time derivative
of x(t), u(t) the exogenous input, and w(t) the process noise. The system matrices A,B
and F are of appropriate dimensions. We consider that u(t), A,B and F are known. Our
main assumption on w(t) is found in Assumption 4, that is presented after our measurement
model.
Remark 1. Our results extend to continuous and discrete time-variant systems, as explained

2The observation of [5] is also important as it disproves previous results in the literature [140].
3Standard notation is presented in this footnote: We denote the set of natural numbers {1, 2, . . .} as N,

the set of real numbers as R, and the set {1, 2, . . . , n} as [n] (n ∈ N). The empty set is denoted as ∅. Given
a set X , |X | is its cardinality. Matrices are represented by capital letters and vectors by lower-case letters.
We write A ∈ Xn1×n2 (n1, n2 ∈ N) to denote a matrix of n1 rows and n2 columns whose elements take
values in X . Moreover, for a matrix A, A> is its transpose, and [A]ij is its element at the i-th row and j-th
column. In addition, ‖A‖2 ≡

√
A>A is its spectral norm, and det(A) its determinant. Furthermore, if A is

positive semi-de�nite or positive de�nite, we write A � 0 and A � 0, respectively. I is the identity matrix;
its dimension is inferred from the context. Similarly for the zero matrix 0. Finally, for a random variable
x ∈ Rn, E(x) is its expected value, and C(x) its covariance.
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in detail in Section 5.3 (Corollaries 4 and 5).

We introduce the measurement model:

Measurement Model. We consider m sensors:

zi(t) = Cix(t) + vi(t), i ∈ [m], (5.2)

where zi(t) is the measurement taken by sensor i at time t, Ci ∈ Rdi×n (di ∈ N) is sensor's
i measurement matrix, and vi(t) is its measurement noise.

We make the following assumption on x(t0), w(t) and vi(t):
Assumption 4. For all t, t′ ≥ t0, t 6= t′, and all i ∈ [m]: x(t0), w(t), w(t′), vi(t) and vi(t

′)
are uncorrelated; in addition, x(t0), w(t) and vi(t) have positive de�nite covariance.

We now introduce the sensor scheduling model:

Sensor Scheduling Model. The m sensors in (5.2) are used at K scheduled measurement
times {t1, t2, . . . , tK}. Speci�cally, at each tk only rk of these m sensors are used (rk ≤ m),
resulting in the batch measurement vector y(tk):

y(tk) = S(tk)z(tk), k ∈ [K], (5.3)

where z(tk) ≡ (z>1 (tk), z
>
2 (tk), . . . , z

>
m(tk))

>, and S(tk) is the sensor selection matrix: it is
a block matrix, composed of matrices [S(tk)]ij (i ∈ [rk], j ∈ [m]) such that [S(tk)]ij = I if
sensor j is used at tk, and [S(tk)]ij = 0 otherwise. We consider that each sensor can be used
at most once at each tk, and as a result, for each i there is one j such that [S(tk)]ij = I
while for each j there is at most one i such that [S(tk)]ij = I.

We now present the sensor scheduling problem we study in this chapter. To this end, we
use two notations:

Notation. First, we set Sk ≡ {j : there exists i ∈ [rk], [S(tk)]ij = 1}; that is, Sk is the set
of indices that correspond to used sensors at tk. Second, we set S1:K ≡ (S1,S2, . . . ,SK).

Problem 1 (Sensor Scheduling for Minimum Variance Batch State Estimation)
Given a set of measurement times t1, t2, . . . , tK , select at each tk to use a subset of rk
sensors, out of the m sensors in (5.2), so to minimize the log det of the error covariance of
the minimum variance linear estimator of x1:K ≡ (x(t1), x(t2), . . . , x(tK)). In mathematical
notation:

minimize
Sk⊆[m],k∈[K]

log det(Σ(x̂1:K |S1:K))

subject to |Sk| ≤ rk, k ∈ [K],

where x̂1:K is the minimum variance linear estimator of x1:K , and Σ(x̂1:K |S1:K) its error
covariance given S1:K .

Two remarks follow on the de�nition of Problem 1. In the �rst remark we explain why we
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focus on x̂1:K , and in the second why we focus on log det(Σ(x̂1:K)).

Notation. For notational simplicity, we use Σ(x̂1:K) and Σ(x̂1:K |S1:K) interchangeably.
Remark 2. We focus on the minimum variance linear estimator x̂1:K because of its optimal-
ity: it minimizes among all linear estimators of x1:K the estimation error E(‖x1:K− x̂1:K‖22),
where the expectation is taken with respect to y(t1), y(t2), . . . , y(tK) [103]. Because x̂1:K

is also unbiased (that is, E(x̂1:K) = x1:K , where the expectation is taken with respect to
y(t1), y(t2), . . . , y(tK)), we equivalently say that x̂1:K is the minimum variance estimator of
x1:K .

We compute the error covariance of x̂1:K in Appendix 5.5.1.
Remark 3. We focus on the estimation error metric log det(Σ(x̂1:K)) because when it is
minimized the probability that the estimation error ‖x1:K− x̂1:K‖22 is small is maximized. To
quantify this statement, we note that this error metric is related to the η-con�dence ellipsoid
of x1:K − x̂1:K [119]: Speci�cally, the η-con�dence ellipsoid is the minimum volume ellipsoid
that contains x1:K − x̂1:K with probability η, that is, it is the Eε ≡ {x : x>Σ(x̂1:K)x ≤ ε},
where ε is the quantity F−1

χ2
n(k+1)

(η), and Fχ2
n(k+1)

the cumulative distribution function of a

χ-squared random variable with n(k + 1) degrees of freedom [124]. Thus, its volume

vol(Eε) ≡
(επ)n(k+1)/2

Γ (n(k + 1)/2 + 1)
det
(

Σ(x̂1:K)1/2
)
, (5.4)

where Γ(·) denotes the Gamma function [124], quanti�es the estimation error of the optimal
estimator x̂1:K . Therefore, by taking the logarithm of (5.4), we validate that when the
log det(Σ(x̂1:K)) is minimized the probability that the estimation error ‖x1:K − x̂1:K‖22 is
small is maximized.

5.3. Main Results

Our main results are presented in three sections:

• In Section 5.3.1, we prove that Problem 1 is NP-hard.

• In Section 5.3.2, we derive a provably near-optimal approximation algorithm for Prob-
lem 1. In addition, we emphasize on its time complexity and compare it to that of
existing sensor scheduling algorithms for two categories: batch state estimation, and
Kalman �ltering.

• In Section 5.3.3, we prove limits on the optimization of the estimation error E(‖x1:K−
x̂1:K‖22) with respect to the scheduled sensors.

5.3.1. Computational Complexity of Sensor Scheduling for Batch State Estimation

In this section, we characterize the computational complexity of Problem 1. In particular,
we prove:
Theorem 6. The problem of sensor scheduling for minimum variance batch state estimation
(Problem 1) is NP-hard.
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Algorithm 9 Approximation algorithm for Problem 1.

Input: Number of measurement times K, scheduling constraints r1, r2, . . . , rK , estimation
error function log det(Σ(x̂1:K |S1:K)) : Sk ⊆ [m], k ∈ [K] 7→ R

Output: Sensor sets (S1,S2, . . . ,SK) that approximate the solution to Problem 1, as quan-
ti�ed in Theorem 7
k ← 1, S1:0 ← ∅
while k ≤ K do
1. Apply Algorithm 10 to

min
S⊆[m]

{log det(Σ(x̂1:K |S1:k−1,S)) : |S| ≤ rk} (5.5)

2. Denote as Sk the solution Algorithm 10 returns
3. S1:k ← (S1:k−1,Sk)
4. k ← k + 1
end while

Proof: The proof is omitted due to space constraints. Notwithstanding, we note that the
proof is complete by �nding an instance of Problem 1 that is equivalent to the NP-hard
minimal observability problem introduced in [7] [109]. �

Due to Theorem 6, for the polynomial time solution of Problem 1 we need to appeal to
approximation algorithms. To this end, in Section 5.3.2, we provide an e�cient provably
near-optimal approximation algorithm:

5.3.2. Algorithm for Sensor Scheduling for Minimum Variance Batch State Estimation

We propose Algorithm 9 for Problem 1 (Algorithm 9 uses Algorithm 10 as a subroutine);
with the following theorem, we quantify its approximation performance and time complexity.
Theorem 7. The theorem has two parts:

1) Approximation performance of Algorithm 9: Algorithm 9 returns sensors sets S1,S2, . . . ,
SK that:

• satisfy all the feasibility constraints of Problem 1: |Sk| ≤ rk, k ∈ [K]

• achieve an error value log det(Σ(x̂1:K |S1:K)), where S1:K ≡ (S1,S2, . . . ,SK), such
that:

log det(Σ(x̂1:K |S1:K))−OPT
MAX −OPT

≤ 1

2
, (5.6)

where OPT is the (optimal) value to Problem 1, and MAX is the maximum (worst)
value to Problem 1 (MAX ≡ maxS′1:K log det(Σ(x̂1:K |S ′1:K))).

2) Time complexity of Algorithm 9: Algorithm 9 has time complexity of order:

O(n2.4K

K∑
k=1

r2
k).

66



Theorem 7 extends to continuous and discrete time-variant systems as follows:
Corollary 4. Consider the time-variant version of (5.1):

ẋ(t) = A(t)x(t) +B(t)u(t) + F (t)w(t), t ≥ t0. (5.7)

1) Part 1 of Theorem 7 holds.

2) Part 2 of Theorem 7 holds if the time complexity for computing each transition matrix
Φ(tk+1, tk) [85], where k ∈ [K − 1], is O(n3).4

Corollary 5. Consider the discrete time version of (5.7):

x[k + 1] = Akx[k] +Bku[k] + Fkw[k], k ≥ k0. (5.8)

Similarly, consider the discrete time counterparts of the sensor model (5.2), Assumption 4,
and the sensor scheduling model (5.3).

1) Part 1 of Theorem 7 holds.

2) Part 2 of Theorem 7 holds if Ak in (5.8) is full rank for all k ∈ [K].

We follow-up with several remarks on Theorem 7:
Remark 4. (Approximation quality of Algorithm 9) Theorem 7 quanti�es the worst-case
performance of Algorithm 9 across all values of Problem 1's parameters. The reason is that
the right-hand side of (5.6) is constant. In particular, (5.6) guarantees that for any instance
of Problem 1, the distance of the approximate value log det(Σ(x̂1:K |S1:K)) from OPT is at
most 1/2 the distance of the worst (maximum) value MAX from OPT . In addition, this
approximation factor is near to the optimal approximation factor 1/e ∼= .38 one can achieve
in the worst-case for Problem 1 in polynomial time [141]; the reason is twofold: �rst, as
we comment in the next paragraph, we prove that Problem 1 involves the minimization of a
non-increasing and supermodular function [96], and second, as we proved in Section 5.3.1,
Problem 1 is in the worst-case equivalent to the minimal controllability problem introduced
in [7], which cannot be approximated in polynomial time with a better factor than the 1/e
[13].
Remark 5. (Supermodularity of log det(Σ(x̂1:K))) In the proof of Theorem 7 (Appendix
5.5.2), we show that log det(Σ(x̂1:K)) is a non-increasing and supermodular function with
respect to the sequence of selected sensors. Speci�cally, the proof of (5.6) follows by combin-
ing these two results and results on the maximization of submodular functions over matroid
constraints [12] �we present these three derivations in Appendices 5.5.2, 5.5.2, and 5.5.2,
respectively.

We continue with our third remark on Theorem 7:
Remark 6. (Time complexity of Algorithm 9) Algorithm 9's time complexity is broken down
into two parts: the �rst part is the number of evaluations of log det(Σ(x̂1:K)) required by the
algorithm, and the second part is the time complexity of each such evaluation. In particular,
Algorithm 9 requires at most r2

k evaluations of log det(Σ(x̂1:K)) at each tk. Therefore, Algo-

4The matrices Φ(tk+1, tk), where k ∈ [K − 1], are used in the computation of Σ(x̂1:K) (cf. proof of
Theorem 7 in Appendix 5.5.2).
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Algorithm 10 Single step greedy algorithm (subroutine in Algorithm 9).

Input: Current iteration k (corresponds to tk), selected sensor sets (S1,S2, . . . ,Sk−1)
up to the current iteration, scheduling constraint rk, estimation error function
log det(Σ(x̂1:K |S1:K)) : Sk ⊆ [m], k ∈ [K] 7→ R

Output: Sensor set Sk that approximates the solution to Problem 1 at tk
S0 ← ∅, X 0 ← [m], and t← 1
Iteration t:
1. If X t−1 = ∅, return St−1

2. Select i(t) ∈ X t−1 for which ρi(t)(St−1) = maxi∈X t−1 ρi(St−1), with ties settled arbi-
trarily, where:

ρi(St−1) ≡ log det(Σ(x̂1:K |S1:k−1,St−1))−
log det(Σ(x̂1:K |S1:k−1,St−1 ∪ {i}))

and S1:k−1 ≡ (S1,S2, . . . ,Sk−1)
3.a. If |St−1 ∪ {i(t)}| > rk, X t−1 ← X t−1 \ {i(t)}, and go to Step 1
3.b. If |St−1 ∪ {i(t)}| ≤ rk, St ← St−1 ∪ {i(t)} and X t ← X t−1 \ {i(t)}
4. t← t+ 1 and continue

rithm 9 achieves a time complexity that is only linear in K with respect to the total number of
evaluations of log det(Σ(x̂1:K)). The reason is that

∑K
k=1 r

2
k ≤ maxk∈[K](r

2
k)K. In addition,

for w(t) zero mean and white Gaussian �as commonly assumed in the literature of sensor
scheduling� the time complexity of each such evaluation is at most linear in K: the reason
is that this w(t) agrees with Assumption 4, in which case we prove that the time complexity
of each evaluation of log det(Σ(x̂1:K)) is O(n2.4K) (linear in K).5

Remark 7. (Sparsity of Σ(x̂1:K)) We state the three properties of log det(Σ(x̂1:K)) we prove
to obtain the time complexity for Algorithm 9. The �rst two properties were mentioned in
Remark 5: the monotonicity and supermodularity of log det(Σ(x̂1:K)). These two properties
are responsible for that Algorithm 9 requires at most r2

k evaluations at each tk. The third
property, which follows, is responsible for the low time complexity for each evaluation of
log det(Σ(x̂1:K)):

• Σ(x̂1:K) is the sum of two nK×nK sparse matrices: the �rst matrix is block diagonal,
and the second one is block tri-diagonal. As a result, given that both of these matrices
are known, each evaluation of log det(Σ(x̂1:K)) has time complexity O(n2.4K), linear
in K (using the results in [142] �cf. Theorem 2 therein).

We show in Appendix 5.5.2 that after we include at each evaluation step of log det(Σ(x̂1:K))
the complexity to compute the two sparse matrices in Σ(x̂1:K), the total time complexity of
Algorithm 9 is as given in Theorem 7.

Our �nal remark on Theorem 7 follows:
Remark 8. (Comparison of Algorithm 9's time complexity to that of existing scheduling

5We can also speed up Algorithm 9 by implementing in Algorithm 10 the method of lazy evaluations [99]:
this method avoids in Step 2 of Algorithm 10 the computation of ρi(St−1) for unnecessary choices of i.
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algorithms) We do the comparison for two cases: batch state estimation, and Kalman �lter-
ing. In particular, we show that the time complexity of our algorithm is lower than that of
existing sensor scheduling algorithms for batch state estimation, and of the similar order, or
lower, of existing algorithms for Kalman �ltering.

Comparison with algorithms for batch state estimation. In [135], Problem 1 is con-
sidered, and a semi-de�nite programming (SDP) algorithm is proposed; its time complexity is
of the order O(maxk∈[K](rk)K(nK)3.5 + (maxk∈[K](r

2
k)K

2(nK)2.5) [143]. Clearly, this time
complexity is higher than that of Algorithm 9, whose complexity is O(maxk∈[K](rk)

2K2n2.4).
In addition, the algorithm presented in [135] provides no worst-case approximation guaran-
tees (5.6), in contrast to Algorithm 9 that provides (5.6).

Comparison with algorithms for Kalman �ltering. We do the comparison in two
steps: �rst, we consider algorithms based on the maximization of submodular functions, and
second, algorithms based on convex relaxation techniques or the alternating direction method
of multipliers (ADMM):

• Algorithms based on the maximization of submodular functions: In [5], an algorithm
is provided that is valid for a restricted class of linear systems: its time complex-
ity is O(maxk∈[K](rk)mn

2K + n2.4K). This time complexity is of similar order to
that of Algorithm 9, whose complexity is of the order O(maxk∈[K](rk)

2Kn2.4K), since
maxk∈[K](rk) < m. Speci�cally, we observe in Algorithm 9's time complexity the ad-
ditional multiplicative factor K (linear in K); this di�erence emanates from that Al-
gorithm 9 o�ers a near-optimal guarantee over the whole time horizon (t1, t2, . . . , tK)
whereas the algorithm in [5] o�ers a near-optimal guarantee only for the last time step
tK . In addition, Algorithm 9 holds for any linear continuous time-invariant system
(no restrictions are necessary), in contrast to the algorithm in [5], and it holds for any
discrete time-variant systems where Ak in (5.8) is full rank; the latter assumption is
one of the four restrictive conditions in [5] (Theorem 13).

• Algorithms based on convex relaxation techniques or ADMM: In [119], the authors
assume a single sensor (rk = 1 across tk), and their objective is to achieve a min-
imal estimation error by minimizing the number of times this sensor will be used
over the horizon t1, t2, . . . , tK . The time complexity of the proposed algorithm is
O(n2.5K2 + n3.5K). This time complexity is higher than that of Algorithm 9, whose
complexity for rk = 1 is of the order O(n2.4K2). In [132], the authors employ
ADMM techniques to solve a periodic sensor scheduling problem. They consider a
zero mean and white Gaussian w(t). The time complexity of the proposed algorithm is
O((nK)3 +(maxk∈[K](rk)K)n2K2 +max(rk)

2nK3). This time complexity is of similar
order to that of Algorithm 9, whose complexity in this case is O(maxk∈[K](r

2
k)n

2.4K2),
since maxk∈[K](rk) ≤ K; in particular, for K > n0.4 maxk∈[K](rk), Algorithm 9 has
lower time complexity.6

6More algorithms exist in the literature, that also use convex relaxation [144] or randomization techniques
[20], and have similar time complexity to Algorithm 9. They achieve this complexity using additional
approximation methods: e.g., they optimize instead an upper bound to the involved estimation error metric.
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With the above remarks we conclude: Algorithm 9 enjoys both the estimation accuracy of
the batch state scheduling algorithms and the low time complexity of the Kalman �ltering
scheduling algorithms, since:

• Algorithm 9 o�ers a near-optimal worst-case approximation guarantee for the batch
state estimation error. This estimation error is only approximated by the Kalman
�ltering sensor scheduling algorithms: the reason is that they aim instead to minimize
the sum of each of the estimation errors for x(tk) (across tk). However, this sum only
upper bounds the batch state estimation error.

• Algorithm 9 has time complexity lower than the state of the art batch estimation
algorithms, and at the same time, lower than, or similar to, the time complexity of
the corresponding Kalman �ltering algorithms.

In addition: Algorithm 9's approximation guarantee holds for any linear system (contin-
uous or discrete time). Moreover, Algorithm 9's time complexity guarantee holds for any
continuous time system, and for discrete time systems where Ak in (5.8) is full rank across k.

The proof of Theorem 7 can be found in Appendix 5.5.2.

5.3.3. Limits on Sensor Scheduling for Minimum Variance Batch State Estimation

In this section, we derive two trade-o�s between three important parameters of our sensor
scheduling problem:7

• the number of measurements times (t1, t2, . . . , tK)

• the number rk of sensors that can be used at each tk

• the value of the estimation error E(‖x1:K − x̂1:K‖22).

The �rst of the two trade-o�s is captured in the next theorem:
Theorem 8. Let σ

(−1)
w ≡ maxi∈[nK][C(x1:K)−1]ii and σ

(−1)
v ≡ ‖C(v1:K)−1‖2. Also, let C1:K

be the block diagonal matrix where each of its K diagonal elements is equal to C, where C
is the matrix [C>1 , C

>
2 , . . . , C

>
m]>. For the variance of the error of the minimum variance

estimator x̂1:K :

E(‖x1:K − x̂1:K‖22) ≥
n

σ
(−1)
v maxk∈[K](rk)‖C1:K‖22 + σ

(−1)
w /K

. (5.9)

The lower bound in (5.9) decreases as the number of used sensors for scheduling rk increases
or the number measurement times K increases, and increases as the system's size increases.
Since these qualitative relationships were expected, the importance of this theorem lies on
the quanti�cation of these relationships (that also includes the dependence on the noise

7We recall from Section 5.2 that the objective of Problem 1 is related to E(‖x1:K − x̂1:K‖22) in that when
log det(Σ(x̂1:K)) is minimized the probability that the estimation error ‖x1:K− x̂1:K‖22 is small is maximized.
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parameters σ(−1)
w and σ(−1)

v ): for example, (5.9) decreases only inversely proportional with
the number of sensors for scheduling; that is, increasing the number rk so to reduce the
variance of the error of the minimum variance estimator is ine�ective, a fundamental limit.
In addition, this bound increases linearly with the system's size; this is another limit for
large-scale systems.

Similar results are proved in [145] for the steady state error covariance of scalar systems in
the case that the number of sensors goes to in�nity. In more detail, the authors in [145]
account for di�erent types of multi-access schemes, as well as, for fading channels between
the sensors and the fusion centre that combines the sensor measurements.

The next corollary presents our last trade-o�:
Corollary 6. Consider that the desired value for E(‖x1:K−x̂1:K‖22) is α. Any set of scheduled
sensors at t1, t2, . . . , tK that achieves this error satis�es:

max
k∈[K]

(rk) ≥
n/α− σ(−1)

w /K

σ
(−1)
v ‖C1:K‖22

. (5.10)

Eq. (5.10) implies that the number of sensors used for scheduling at each tk increases as the
error of the minimum variance estimator or the number of measurements times K decreases.
More importantly, it quanti�es that this number increases linearly with the system's size for
�xed error variance. This is again a fundamental limit, meaningful for large-scale systems.

5.4. Concluding Remarks & Future Work

We work on extending the results of this chapter to largely unknown systems, under the
presence of non-linear measurements. The �rst of these extensions allows systems whose
evolution is captured by, e.g., Gaussian processes or random networks (the former example
is a widely used assumption for motion models; cf. [133] and references therein). The
second of these extensions allows complex measurement environments, such as camera-sensor
environments, that can enable the application of our results in domains such as robotics and
the automotive sector.

5.5. Appendix: Proof of Results

5.5.1. Closed formula for the error covariance of x̂1:K

We compute the error covariance of x̂1:K : Denote as S1:K the block diagonal matrix with
diagonal elements the sensor selection matrices S(t1), S(t2), . . . , S(tK). Moreover, denote
as C the matrix [C>1 , C

>
2 , . . . , C

>
m]>. Finally, denote y1:K ≡ (y(t1)>, y(t2)>, . . . , y(tk)

>)>,
w1:K ≡ (w(t1)>, w(t2)>, . . . , w(tk)

>)>, and v1:K ≡ (v(t1)>, v(t2)>, . . . , v(tk)
>)>, where

v(tk) ≡ (v1(tk)
>, v2(tk)

>, . . . , vm(tk)
>)>. Then, from (5.1), (5.2) and (5.3):

y1:K = O1:Kx1:K + S1:Kv1:K , (5.11)
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where O1:K is the
∑K

k=1 rk×nK block diagonal matrix with diagonal elements the matrices
S(t1)C, S(t2)C, . . . , S(tK)C. x̂1:K has the error covariance Σ(x̂1:K) = E((x1:K−x̂1:K)(x1:K−
x̂1:K)>) [103]:

Σ(x̂1:K) = C(x1:K)− C(x1:K)O>1:KΞO1:KC(x1:K), (5.12)

where Ξ ≡ (O1:KC(x1:K)O>1:K + S1:KC(v1:K)S>1:K)−1.

We simplify (5.12) in the following lemma:
Lemma 1. The error covariance of x̂1:K has the equivalent form:

Σ(x̂1:K) =

(
K∑
k=1

m∑
i=1

si(tk)U
(ki) + C(x1:K)−1

)−1

, (5.13)

where si(tk) is a zero-one function, equal to 1 if and only if sensor i is used at tk, and U
(ki)

is the block diagonal matrix C>1:KI
(ki)C(v1:K)−1I(ki)C1:K ; C1:K is the block diagonal matrix

where each of its K diagonal elements is equal to C, and I(ki) is the block diagonal matrix
with mK diagonal elements such that: the ((k − 1)m+ i)-th element is the di × di identity
matrix I, and the rest of the elements are equal to zero.

5.5.2. Proof of Theorem 7

We prove Theorem 7 in three steps: we �rst show that log det(Σ(x̂1:K)) is a non-increasing
function in the choice of the sensors; we then show that log det(Σ(x̂1:K)) is a supermod-
ular function in the choice of the sensors; �nally, we prove Theorem 7 by combining the
aforementioned two results and results on the maximization of submodular functions over
matroid constraints [12].

Notation. We recall that any collection (x1, x2, . . . , xk) is denoted as x1:k (k ∈ N).

Monotonicity in Sensor Scheduling for Minimum Variance Batch State Estima-
tion

We �rst provide two notations, and then the de�nition of non-increasing and non-decreasing
set functions. Afterwards, we present the main result of this subsection.

Notation. Given K disjoint �nite sets X1,X2, . . . ,XK and Ai, Bi ∈ Xi, we write A1:K �
B1:K to denote that for all i ∈ [K], Ai ⊆ Bi (Ai is a subset of Bi). Moreover, we denote
that Ai ∈ Xi for all i ∈ [K] as A1:K ∈ X1:K .
De�nition 17. Consider K disjoint �nite sets X1,X2, . . . ,XK . A function h : X1:K 7→ R
is non-decreasing if and only if for all A,B ∈ X1:K such that A � B, h(A) ≤ h(B);
h : X1:K 7→ R is non-increasing if −h is non-decreasing.

The main result of this subsection follows:
Proposition 4. For any �nite K ∈ N, consider K distinct copies of [m], denoted as
M1,M2, . . . ,MK . The estimation error metric log det(Σ(x̂1:K |S1:K)) : M1:K 7→ R is a
non-increasing function in the choice of the sensors S1:K .
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We next show that log det(Σ(x̂1:K |S1:K)) is a supermodular function with respect to the
selected sensors S1:K .

Submodularity in Sensor Scheduling for Minimum Variance Batch State Esti-
mation

We �rst provide a notation, and then the de�nition of submodular and supermodular set
functions. Afterwards, we present the main result of this subsection.

Notation. Given K disjoint �nite sets X1,X2, . . . ,XK and A1:K , B1:K ∈ X1:K , we write
A1:K ]B1:K to denote that for all i ∈ [K], Ai ∪Bi (Ai union Bi).
De�nition 18. Consider K disjoint �nite sets X1,X2, . . . , XK . A function h : X1:K 7→ R
is submodular if and only if for all A,B,C ∈ X1:K such that A � B, h(A ] C) − h(A) ≥
h(B ] C)− h(B); h : X1:K 7→ R is supermodular if −h is submodular.

According to De�nition 18, set submodularity is a diminishing returns property: a function
h : X1:K 7→ R is set submodular if and only if for all C ∈ X1:K , the function hC : X1:K 7→ R
de�ned for all A ∈ X1:K as hC(A) ≡ h(A ] C)− h(A) is non-increasing.

The main result of this subsection follows:
Proposition 5. For any �nite K ∈ N, consider K distinct copies of [m], denoted as
M1,M2, . . . ,MK ; the estimation error metric log det(Σ(x̂1:K |S1:K)) : M1:K 7→ R is a
set supermodular function in the choice of the sensors S1:K .

Proposition 5 implies that as we increase at each tk the number of sensors used, the marginal
improvement we get on the estimation error of x1:K diminishes.

We are now ready for the proof of Theorem 7.

Proof of Theorem 7

We �rst provide the de�nition of a matroid, and then continue with the main proof:
De�nition 19. Consider a �nite set X and a collection C of subsets of X . (X , C) is:

• an independent system if and only if:

� ∅ ∈ C, where ∅ denotes the empty set

� for all X ′ ⊆ X ⊆ X , if X ∈ C, X ′ ∈ C.

• a matroid if and only if in addition to the previous two properties:

� for all X ′, X ∈ C where |X ′| < |X|, there exists x /∈ X ′ and x ∈ X such that
X ′ ∪ {x} ∈ C.

Proof:[of Part 1 of Theorem 7] We use the next result from the literature of maximization
of submodular functions over matroid constraints:
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Lemma 2 (Ref. [12]). Consider K independence systems {(Xk, Ck)}k∈[K], each the intersec-
tion of at most P matroids, and a submodular and non-decreasing function h : X1:K 7→ R.
There exist a polynomial time greedy algorithm that returns an (approximate) solution S1:K

to:
maximize
S1:K�X1:K

h(S1:K)

subject to Sk ∩ Xk ∈ Ck, k ∈ [K],
(5.14)

that satis�es:
h(O)− h(S1:K)

h(O)− h(∅)
≤ P

1 + P
, (5.15)

where O is an (optimal) solution to (5.14).

In particular, we prove:
Lemma 3. Problem 1 is an instance of (5.14) with P = 1.

This observation, along with Lemmas 2 and 3 complete the proof of (5.6), since the adap-
tation to Problem 1 of the greedy algorithm in [12] (Theorem 4.1) results to Algorithm 9.

�

Proof of Part 2 of Theorem 7: In Lemma 1 in Appendix 5.5.1 we prove that Σ(x̂1:K) is
the sum of two matrices: the �rst matrix is a block diagonal matrix, and the second one
is the inverse of the covariance of x1:K , C(x1:K). The block diagonal matrix is computed
in O(n2.4K) time. Moreover, by extending the result in [133] (Theorem 1), we get that
C(x1:K)−1 is a block tri-diagonal matrix, that is described by the (K−1) transition matrices
Φ(tk+1, tk) [85], where k ∈ [K − 1], and K identity matrices. For continuous time systems,
the time complexity to compute all the block elements in C(x1:K)−1 is O(n3K) [146]; for
discrete time systems, it is O(n2.4K) [85]. This computation of C(x1:K)−1 is made only once.
Finally, from Theorem 2 in [142], we can now compute the det(Σ(x̂1:K)) in O(n2.4K) time,
since Σ(x̂1:K) is block tri-diagonal. Therefore, the overall time complexity of Algorithm
9 is: O(n3K) + O(2n2.4K

∑K
k=1 r

2
k) = O(n2.4K

∑K
k=1 r

2
k) for K large, since C(x1:K)−1 is

computed only once, and Algorithm 9 requests at most
∑K

k=1 r
2
k evaluations of Σ(x̂1:K).

The proof is complete. �
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CHAPTER 6 : Selecting sensors in biological fractional-order systems

In this chapter, we focus on sensor selection, i.e., determine the minimum number of state
variables that need to be measured, to monitor the evolution of the entire biological system,
i.e., all the state variables, when modeled by discrete-time fractional-order systems (DT-
FOS) that are subject to modeling errors, process and measurement noise. These systems
are particularly relevant when modeling of spatiotemporal dynamics of processes in which the
impact of long-range memory cannot be properly modeled by multivariate auto-regressive in-
tegrative moving-average models. Therefore, DTFOS enable a uni�ed state-space framework
to model the evolution of several biological (e.g., stem cell growth and bacteria evolution)
and physiological signals (e.g., electroencephalogram and electromyogram).

Therefore, in this chapter, we focus on the solution to four di�erent (yet related) problems of
sensor selection for DTFOS, that are motivated by constraints on the data acquisition that
are enforced by the detrimental impact of the sensing mechanisms to the biological system,
the cost of performing the measurements with the current sensing technology, or spatial
constraints that limit the number of sensors that can be deployed. Towards determining the
solution to these problems that we show to be NP-hard, we leverage the representation of
the DTFOS to derive new objectives and conditions that, ultimately, enable us to e�ciently
approximate a solution to the di�erent problems by exploiting the submodularity structure,
which enables us to establish sub-optimality guarantees.1

6.1. Introduction

A multitude of complex systems exhibits long-range (non-local) properties, interactions
and/or dependencies (e.g., power-law decays in the weights of linear combination of past
data) used to describe the biological system evolution. Example of such systems includes
Hamiltonian systems, where the memory (i.e., dependence on the past data) is the result
of stickiness of trajectories in time to the islands of regular motion [147]. Alternatively, it
has been rigorously con�rmed that viscoelastic properties are typical for a wide variety of
biological entities like stem cells, liver, pancreas, heart valve, brain, muscles [147, 148, 149,
149, 150, 151, 152, 153, 154, 155], suggesting that the long-range memory of these systems
obey the power law distributions. These dynamical systems can be characterized by the well-
established mathematical theory of fractional calculus [156], and the corresponding systems
could be described by fractional di�erential equations [157, 158, 159, 160, 161]. However,
it is until recently that fractional order system (FOS) starts to �nd its strong position in
a wide spectrum of applications in di�erent domains due to the availability of computing
and data acquisition methods to evaluate its e�cacy in terms of capturing the underlying
system states evolution.

Speci�cally, in [157], by the adoption of non-Gaussian statistical approaches, the authors
identify the co-existence of fast and slow dividing subpopulations, and quiescent cells, in stem
cells from three species. The mathematical analysis also shows that, instead of developing
independently, stem cells exhibit a time-dependent fractal behavior as they interact with
each other through molecular and tactile signals. In [158], the existence of a statistical

1This chapter is based on the paper by Tzoumas et al. [21].
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fractal behavior and inadequacy of modeling blood glucose dynamics via linear state space
models, is proved by the multi-fractal spectrum computed from the blood glucose time
series of four individuals. A fractional order system model is alternatively proposed and
evaluated to have superior regarding predictive power and controller synthesis. In [159], a
multi-dimensional FOS is considered to capture the muscular dynamics in the process of fore-
arm movement. The motivation comes from the power-law correlation decay as opposed to
the exponential law, which is fundamentally assumed by the popular autoregressive moving
average model. After the retrieval of the FOS model from the observations, it is shown that
the model output is superior to ARMA to capture the observed spatial and temporal long-
range dependence. In [160], a more comprehensive set of physiological processes (i.e., neural,
muscular and vascular processes) are considered to study the minimal sensor placement
problem in the context of the multi-dimensional FOS. The experimental results suggest that
the adoption of FOS and the control theory developed based on it can help improve the
design of e�cient and reliable cyber-physical systems in the biomedical domain. In [161],
the authors propose a statistical non-extensive causal inference framework and construct the
generalized master equation (GME) to characterize the dynamics of complex systems that
exhibit power-law spatiotemporal dependencies. The solution of the GME suggests a FOS be
considered to capture the dynamical behaviors of the systems. In addition to the application
of fractional order calculus to di�erentiable dynamical systems, very recent e�orts have
also been very successful to extend local fractional calculus to non-di�erentiable, irregular
sets like fractals or fractal networks [162, 163, 164, 165]. The fractality/multifractality of
network, their characterization, computation, their in�uence on the dynamics of complex
networked systems is attracting greater attention from a multi-disciplinary perspective. The
possibility to extend the fractional to self-similar non-smooth objects is opening new frontiers
in science. Non-linear analysis of data o�ers still unsolved analytical problems related not
only to complex physics and abstract mathematical theories including fractals and fractional
calculus [166].

Subsequently, because the current sensing technology is mainly digital, we focus on discrete-
time fractional-order systems (DTFOS) [167], whose parameterization consists of a relatively
small number of parameters, and the dynamics subject to modeling errors and external
disturbances. Furthermore, in addition to modeling errors and external disturbances in the
DTFOS dynamics, we also account for external disturbances in the sensing technology since
our motivating technology, i.e., the EEG, uses sensing technology where noise commonly
corrupts the collected data. Subsequently, in this chapter, we propose to explore and exploit
the trade-o�s between the selected sensors and the capability to assess the process state
over time, which we refer to as estimation performance since the state is obtained up to a
con�dence level subject to disturbance and noise. In other words, the combined e�ect of
the modeling errors and external disturbances in the spatiotemporal dynamical processes
requires the proper deployment of sensing technology that guarantees the best estimation
performance (that is, the least estimation error) given the modeling errors' and external
disturbances' characteristics.

In the last years, we have witnessed a growing interest on the trade-o� between the number
of used sensors and the degree of observability of linear time-invariant (LTI) systems [7,
52, 53, 84, 105, 110, 111, 168], which are a particular case of DTFOS. In particular, this
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trade-o� has been explored under the assumption that either the exact LTI system model is
available, in which case one needs to ensure observability [7, 52, 53, 84, 105, 110, 111, 168],
or only the structure of the LTI system model is available, in which case one needs to ensure
structural observability [109] or strong structural observability [169]. More recently, this
interest as extended to deal with DTFOS, either when the models are exact [170], or in the
context of structural observability [171]. Although ensuring observability is key towards the
implementation of stable estimators, it does not explicitly explore the trade-o�s between the
chosen sensors and the quality of the state estimate and the model uncertainty, which is of
utmost importance in biological settings, e.g., in EEG applications. These trade-o� has been
studied so far only for LTI systems, as we brie�y review next. In [139, 172, 173], the authors
explore the trade-o�s for LTI systems in the context of Kalman estimation. Speci�cally,
in [172], the authors quantify the trade-o� between the number of sensors and the output
measurements to achieve a speci�ed value for the minimum mean square error (MMSE)
of the Kalman estimator, whereas in [139] the authors consider to place small numbers of
sensors to optimize the resultant MMSE, and in [173] the author designs an output matrix
with a desired norm that minimizes the MMSE.

In this chapter, we extend the current literature to address the trade-o� between the chosen
sensors and the quality of the state estimate for the case of DTFOS with known parametric
model and under possible uncertainties in the dynamics, as well as, noise in the measure-
ments collected by the sensing technology. Speci�cally, we address the following problems:
(i) determine the minimum number of sensors to ensure bounded process disturbance error
within a prescribed threshold; (ii) determine the placement of a speci�ed number of sensors
to minimize the process disturbance error; (iii) determine the minimum number of sensors
to ensure bounded state estimation error within a prescribed threshold; and (iv) determine
the placement of a speci�ed number of sensors to minimize the state estimation error. It
is worth noticing that among these four problems, the �rst couple of problems enforces the
validity of the model by quantifying the uncertainty of the system's evolution, whereas the
remaining two aim to determine the most likely state of the process across a time-window.

The main contributions of this chapter can be cast in the following three domains:

Translational � it equips scientists (e.g., biologists and neuroscientists) and engineers alike
with a uni�ed framework to decide upon the sensor measurements to be considered to per-
form state estimation, i.e., to perform sensor selection to quantify uncertainty in the state
and unknown disturbances and noises, in the context of fractional-order state-space repre-
sentations capable of modeling spatiotemporal dynamics of processes in which the impact of
long-range memory cannot be properly modeled by multivariate auto-regressive integrative
moving-average models.

Theoretical � we propose to derive observability conditions that enable the quanti�cation of
the uncertainty of biological processes modeled by the proposed state-space representation,
as well as identify the state variables that play a key role in monitoring the evolution of
the dynamics while making the trade-o� with the accuracy of the estimation. Speci�cally,
we propose computationally e�cient algorithms to provide sub-optimal solutions to the
minimum number of variables that need to be measured (that is NP-hard), while establishing
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guarantees on the optimality gap.

Application � recently there is a renewed interest in neuro-wearable devices largely boosted
by initiatives sponsored by either the Facebook that aims to use wearable devices to write
100 words per minute, and the NeuraLink by Elon Musk that aims to develop implantable
brain-computer interfaces. Subsequently, we propose to revisit the neuro-wearables that
rely on electroencephalogram, and determine the sensor location that seems to be the most
e�ective with respect to a pre-speci�ed number of sensors. In particular, we argue that for
a variety of tasks the location of sensors currently used in such wearable devices is sub-
optimal with respect to the proposed objectives that aim to ensure the quality of estimated
state, process and measurement noise. Consequently, we conclude that at the light of this
framework, some of the neuro-wearables should be re-designed to enhance dynamic systems
properties such as observability.

In summary, our main contributions are as follows: (i) we formalize the sensor placement
problems in context of four di�erent (yet related) problems pertaining to sensor placement
to minimize the process disturbance error and state estimation error; (ii) we show that these
problems are NP-hard; (iii) we present approximation schemes for their solution that have
provably optimal approximation performance; and (iv) we illustrate the proposed approaches
using EEG signal data associated with a variety of tasks.

The remainder of this chapter is organized as follows. In Section 6.2, we provide our setup
and problem formulation. In Section 6.3, we present our main results. In Section 6.4,
we illustrate how the main results can be applied in the context of real EEG signal data.
Section 6.5 concludes the chapter.

6.2. Problem Statement

In this section, we introduce the problems addressed in the present chapter. First, we
introduce the DTFOS model used in Section 6.2.1, while revisiting some of its properties,
and the best linear estimator for it in Section 6.2.2. Then, in Section 6.2.3, we introduce
the optimal sensor placement problem for DTFOS, which seeks to determine the minimum
collection of sensors that ensure a pre-speci�ed estimation performance, or the con�guration
of a given number of sensors that attain the best process disturbance and estimate quality.

6.2.1. DTFOS Model

We consider the linear DTFOS described by

∆xk+1 = Axk + wk,

yk = Cxk + vk, k = 0, 1, . . .
(6.1)

where xk = [x1
k, x

2
k, . . . , x

n
k ]> ∈ Rn (n ∈ N) is the state vector, yk ∈ Rc the measured

output vector, wk the process disturbance and vk the measurement noise, and x0 the initial
condition. Additionally, ∆ ≡ diag

(
∆α1
k+1,∆

α2
k+1, . . . ,∆

αn
k+1

)
is the diagonal matrix operator,
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where ∆αi
k+1 is the discrete fractional-order di�erence operator such that

∆αi
k+1x

i
k+1 ≡

k+1∑
j=0

(−1)j
(
αi
j

)
xik−j+1,

and
(
αi
j

)
= Γ(αi+1)

Γ(j+1)Γ(αi−j+1) , where αi > 0 is the fractional-order exponent, and Γ(x) =∫∞
0 tx−1e−tdt is the Gamma function. In summary, the matrix A captures the spatial
coupling (i.e., dependency) of the process, whereas αi capture the temporal dependency
of the process associated with xi.

Also, we notice that it is possible to provide a closed-form solution to (6.1), following [174],
and which can be described as follows.
Lemma 4. For all k ≥ 1, the solution to (6.1) is given by xk = Gkx0 +

∑k−1
j=0 Gk−1−jwj,

where

Gk ≡
{

I, k = 0∑k−1
j=0 AjGk−1−j , k ≥ 1,

where A0 = A, and Aj is a diagonal matrix whose i-th entry is (−1)j
(
αi
j+1

)
. �

In particular, Lemma 4 states that a linear DTFOS can be interpreted as a linear time-
variant switching system, where transitions are known. Subsequently, we can develop a
Kalman-like estimator for this process, which estimates' characterization is leveraged to
study the trade-o�s between performance of the estimator and a speci�ed sensor placement.

6.2.2. Minimum Variance Linear Estimator

For any estimation horizon K (that is, k in (6.1) varies from 0 to K), we �rst present the
minimum mean square linear estimator of zK ≡ (x>0 , w

>
0 , w

>
1 , . . . , w

>
K−1)>. This estimator

is particularly useful in biological systems to assess the validity of the model, since a quan-
ti�cation of uncertainty is obtained. To this end, we use the following common assumption.
Assumption 5. Let the initial condition be unknown and modeled by a random variable
whose expected value is x̄0 and its covariance is C(x0) � 0. In addition, let the process
disturbance wk and the measurement noise vk to be described by zero-mean random variables,
whose covariance is described respectively by C(wk) � 0 and C(vk) � 0, for all k ≥ 0, where
C(vk) is a diagonal matrix; that is, the measurement noises between any two sensors that
correspond to two rows of C are uncorrelated. Furthermore, for all k, k′ ≥ 0 with k 6= k′, let
the x0, wk and vk, as well as, the wk, wk′, vk and vk′ to be uncorrelated.

◦

Moreover, we consider the following notations: let the vector of measurements y0:K ≡
(y>0 , y

>
1 , . . . , y

>
K)>, the vector of process noises w0:K−1 ≡ (w>0 , w

>
1 , . . . , w

>
K−1)> and the

vector of measurement noises v0:K ≡ (v>0 , v
>
1 , . . . , v

>
K)>. Notice that whereas the vector

y0:K is known, the vectors w0:K−1 and v0:K are not. Additionally, we refer to the interval
[0,K] ≡ {0, 1, . . . ,K} as the estimation horizon of (6.1), and its length is K + 1.

Next, given an estimation horizon [0,K], to derive the minimum mean square linear estima-
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tor of zK , from (6.1) and Lemma 4, we have

y0:K = OKzK + v0:K , (6.2)

whereOK = [L>0 C
>, L>1 C

>, . . . , L>KC
>]> with the n×n(K+1) matrix Li = [Gi, Gi−1, . . . , G0,

0], and 0 is the zero matrix with appropriate dimensions.

Thus, following similar steps to those performed for linear time-invariant systems [172], the
minimum mean square linear estimate of zK is given by

ẑK ≡ E(zK) + C(zK)O>K(OKC(zK)O>K + C(v0:K))−1

(y0:K −OKE(zK)− E(v0:K)),

where E(x) is the expected value of x, and C(x) ≡ E([x− E(x)][x− E(x)]>) its covariance.
Furthermore, the error covariance of ẑK is given by

ΣẑK ≡ E((zK − ẑK)(zK − ẑK)>)

= C(zK)− C(zK)O>K(OKC(zK)O>K + C(v0:K))−1

OKC(zK). (6.3)

In this chapter, we capture the estimation performance of ẑK with the metric log det(ΣẑK ),
which is proportional to the conditional entropy of zK given the measurements y0:K , and as
a result, captures how well zK is explained by y0:K [175, Proposition 2]. In particular, the
metric log det(ΣẑK ) captures the probability that the estimation error ‖zK − ẑK‖22 is small.
To explain this, consider the η-con�dence ellipsoid of zK − ẑK [119]: The η-con�dence ellip-
soid is the minimum volume ellipsoid that contains zK − ẑK with probability η. Speci�cally,
it is encapsulated by Eε(ẑK) ≡ {z : z>ΣẑKz ≤ ε}, where ε ≡ F

−1
χ2
n(K+1)

(η) and Fχ2
n(K+1)

is the

cumulative distribution function of a χ-squared random variable with n(K + 1) degrees of
freedom [124]. Therefore, the volume of Eε(ẑK) that quanti�es the estimation's error of ẑK
is given as follows:

vol(Eε(ẑK)) ≡ (επ)n(K+1)/2

Γ (n(K + 1)/2 + 1)
det(Σ

1/2
ẑK

). (6.4)

Henceforth, if we consider the logarithm of (6.4), we obtain

log vol(Eε(ẑK)) = β + 1/2 log det(ΣẑK ), (6.5)

where β is a constant that depends only on n(K + 1) and ε, and, as a result, we refer to
the log det(ΣẑK ) as the log det initial state-uncertainty estimation error of the minimum
variance linear estimator of (6.1).

Alternatively, we might be interested in determine the minimum variance linear estimator
of x0:K ≡ (x0, x1, . . . , xK), denoted by x̂0:K . To this end, the collection of measurements
is given by y0:K = OKx0:K + v0:K , where OK is the block diagonal matrix with diagonal
elements K + 1 copies of the matrix C. Subsequently, following similar steps to those in
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[103], the state estimation x̂0:K error covariance is given by

Σx̂0:K = C(x0:K)− C(x0:K)O>K(OKC(x0:K)O>K+

C(v0:K))−1OKC(x0:K). (6.6)

Besides, by proceeding similarly to the reasoning above, we can de�ne the log det batch-state
estimation error of the minimum variance linear estimator of (6.1) as follows:

log vol(Eε(x̂0:K)) = β + 1/2 log det (Σx̂0:K ) . (6.7)

6.2.3. Optimal Sensor Placement

Now, we introduce four di�erent (yet, related) problems to assess the optimal sensor place-
ment with respect to the log det of the initial state-uncertainty and batch-state estimation
error of the minimum variance linear estimator of (6.1). Speci�cally, we propose for each
to determine the placement of r sensors such that the overall estimation error is minimized,
and determine a placement of sensors such that the estimation error satis�es a speci�ed
threshold.

Therefore, we propose to use the following sensor placement model: across the estimation
horizon [0,K], a unique subset of r sensors in (6.1) is placed and used, that corresponds to
r of the c rows of C (r ≤ c). In particular, for all k ∈ [0,K] in (6.1),

yk = SCxk + vk, k ∈ [0,K], (6.8)

where S is the sensor placement matrix (constant across the estimation horizon [0,K]); that
is, it is a zero-one matrix such that Sij = 1 if sensor j is placed (which corresponds to the
j-th row of C), and Sij = 0 otherwise. We assume that a sensor can be placed at most once,
and as a result, for each i there is one j such that Sij = 1 while for each j there is at most
one i such that Sij = 1. Hence, given a sensor selection matrix S, the indices of the rows of
C that correspond to used sensors is denoted by S, i.e., S ≡ {j : exists i such that Sij = 1}.

Consequently, given the DTFOS in (6.1) and a �nite estimation horizon [0,K], we consider
the following four problems:

Initial State-Uncertainty Estimation Error

(i) Provided a speci�ed error threshold R ∈ R+, determine the initial state-uncertainty
minimal sensor placement problem that is a solution to the following problem:

minimize
S⊆{1,2,...,c}

|S|

subject to log det (ΣẑK (S)) ≤ R,
(P1)

where det (ΣẑK (S)) is the determinant of ΣẑK in (6.3) when OK is replaced by OK(S), with
explicit dependence on S, and described byOK(S) = [L>0 C(S)>, L>1 C(S)>, . . . , L>KC(S)>]>,
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and C(S) denotes the rows of C with indices in S;

(ii) Provided a maximum number r of sensors to be placed, determine the initial state-
uncertainty cardinality-constrained sensor placement problem for minimum estimation error
that consists of a solution to the following problem:

minimize
S⊆{1,2,...,c}

log det (ΣẑK (S))

subject to |S| ≤ r.
(P2)

Batch-State Estimation Error

(iii) Provided a speci�ed error threshold R ∈ R+, determine the minimal sensor placement
problem that is a solution to the following problem:

minimize
S⊆{1,2,...,c}

|S|

subject to log det (Σx̂0:K (S)) ≤ R,
(P3)

where det (Σx̂0:K (S)) is the determinant of Σx̂0:K in (6.6) when OK is replaced by OK(S),
which is the block diagonal matrix with diagonal elements K copies of the matrix C(S),
and C(S) denotes the rows of C with indices in S; and

(iv) Provided a maximum number r of sensors to be placed, determine the cardinality-
constrained sensor placement problem for minimum estimation error that consists of a so-
lution to the following problem:

minimize
S⊆{1,2,...,c}

log det (Σx̂0:K (S))

subject to |S| ≤ r.
(P4)

◦

Problems (P1) − (P4) address di�erent problems that focus on di�erent practical consid-
erations. Speci�cally, (P1) aims to determine the minimum number of sensors to ensure
bounded process disturbance error within a prescribed threshold, which enables the mini-
mization of the estimation of the uncertainty that drives the system; thus, equipping us with
an uncertainty quanti�cation of the process evolution. In contrast, (P2) addresses the prob-
lem of determining the placement of a speci�ed number of sensors to minimize the process
disturbance error, which captures the situations where one has a budget on the available
sensing technology, and wants to deploy the sensors to maximize the performance of the
process captured by minimizing the system's uncertainty.

Problem (P3) focus on determining the minimum number of sensors to ensure bounded state
estimation error within a prescribed threshold, which might be related with the satisfaction
of some standard or accuracy required to have a sound estimate of the system's state. Finally,
(P4) targets the placement of a speci�ed number of sensors to minimize the state estimation
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error when the number of sensing mechanisms is limited and one aims to minimize the
system's state estimate uncertainty.

Notwithstanding, as it will become clear in the upcoming sections, the underlying optimiza-
tion structure is similar, which enables us to study them in a uni�ed fashion. Speci�cally,
to address these problems, we will show that both log det (ΣẑK ) and log det(Σx̂0:K ) are
supermodular and non-increasing (formally de�ned in Section 6.3). As a consequence, ap-
proximation algorithms for these type of functions can be leveraged to provide approximate
solutions to these problems with worst-case performance guarantees.

6.3. Sensor Placement for DTFOS

We present the main results of the present chapter. First, we show that (P1)-(P4) are
NP-hard (Theorem 9), which implies that optimal polynomial solutions to these problems
are unlikely to exist. Next, we propose polynomial algorithms (Algorithm 11 and 12) to
obtain an approximate solution to these problems, while ensuring worst-case performance
guarantees (Theorem 11 and 12). In more detail, in Theorem 10, we show that the constraint
and objective function in (P1)/(P3) and (P2)/(P4), respectively, are supermodular. Thereby,
greedy algorithms can be provided to approximate the solution to these problems while
ensuring a worst case scenario bounded optimality gap. Finally, in Theorem 13, we provide
a discussion on the fundamental limits on the state-uncertainty estimation error and batch-
state estimation, while exploring the trade-o� with problems' parameters.

We start by showing the computational complexity of our problems in the next result.
Theorem 9. The problems (P1)-(P4) are NP-hard. �

Subsequently, we need to devise a strategy that approximates the solutions to the proposed
problems. Towards this goal, consider the following de�nitions.
De�nition 20. A function h : 2[c] 7→ R is submodular, where [c] = {1, . . . , c}, if for any
sets S and S ′, with S ⊆ S ′ ⊆ [c], and any a /∈ S ′,

h(S ∪ {a})− h(S) ≥ h(S ′ ∪ {a})− h(S ′).

A function h : 2[c] 7→ R is supermodular if (−h) is submodular. �
De�nition 21. A function h : 2[c] 7→ R is a non-increasing set function if for any S ⊆ S ′ ⊆
[c] it follows that h(S) ≥ h(S ′). Moreover, h is a non-decreasing set function if (−h) is a
non-increasing set function. �

Furthermore, a function h : 2[c] 7→ R is submodular if, for any a ∈ [c], the function ha :
2[c]\{a} 7→ R de�ned as ha(S) ≡ h(S ∪ {a}) − h(S) is a non-increasing set function. This
property is commonly referred to as the diminishing returns property [116].

Now, we show that the constraint and objective function of (P1)/(P3) and (P2)/(P4), re-
spectively, are supermodular and non-increasing.
Theorem 10. Let c be the number of rows of C, and si ∈ {0, 1} be 1 if and only if i-th
sensor (i-th row of C) is placed, and L0:K ≡ [L>0 , L

>
1 , . . . , L

>
K ]>. In addition, let M (i) ≡

C>0:KI
(i)C(v0:K)−1I(i)C0:K , where C0:K is the block diagonal matrix where each of its K + 1

diagonal elements is equal to C, and I(i) is the diagonal matrix with c(K + 1) diagonal
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elements such that, for all k ∈ [0,K], the (kc + i)-th element is 1, and the rest of the
elements are equal to zero. Then, given any �nite estimation horizon [0,K], the following
two equalities hold:

log det (ΣẑK (S)) =

− log det

(
c∑
i=1

siL
>
0:KM

(i)L0:K + C(zK)−1

)
,

and

log det (Σx̂0:K (S)) = − log det

(
c∑
i=1

siM
(i) + C(x0:K)−1

)
.

Furthermore, both log det (ΣẑK (S)) and log det (Σx̂0:K (S)) are supermodular and non-increa-
sing set functions with respect to the choice of the sensor set S ⊂ [c] = {1, . . . , c}. �

As consequence of Theorem 10, it follows that the functions exhibit the diminishing returns
property, i.e., its rate of reduction with respect to newly placed sensors decreases as the
cardinality of the already placed sensors increases. Therefore, some well known approxi-
mation schemes [13, 40] can be leveraged to obtain sub-optimal solutions to (P1)-(P4) with
optimality guarantees.

In Algorithm 11 and Algorithm 12, we present strategies to approximate the solutions to
(P1)/(P3) and (P2)/(P4), respectively. Speci�cally, in Algorithm 11, we provide an e�cient
algorithm for (P1)/(P3) that returns a sensor set that satis�es the prescribed threshold and
has cardinality up to a multiplicative factor from the minimum cardinality sensor sets that
meet the same estimation bound. More importantly, this multiplicative factor depends only
logarithmically on the problems' parameters. These properties and the time complexity are
described in the following result.

Algorithm 11 Approximation Algorithm for (P1)/(P3)

Input: hα(S) = log det (Σα(S)), where α ∈ {x̂0:K , ẑK} for k ∈ [0,K], and a threshold R on
the total estimation error incurred by hα(S).

Output: Approximate solution Sα for (P1)/(P3).
Sα ← ∅
while hα(Sα) > R do

ai ← a′ ∈ arg maxa∈[c]\Sα (hα(Sα)− hα(Sα ∪ {a}))
Sα ← Sα ∪ {ai}

end while

Theorem 11. Let a solution to (P1)/ (P3) be denoted by S?α, and the set obtained by Algo-
rithm 11 be denoted by Sα. Moreover, denote the maximum diagonal element of C(x0) and
C(wk), among all k ∈ [0,K], as σ2

0 and σ2
w, respectively. Then,

log det (Σα(Sα)) ≤ R, (6.9)
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and the optimality gap bounded as follows:

|Sα|
|S?α|

≤ 1 + log

{
log det (Σα(∅))− log det (Σα([c]))

R− log det (Σα([c]))

}
≡ η (6.10)

where log det (ΣẑK (∅)) ≤ n(K + 1) log max(σ2
0, σ

2
w).

Furthermore, the time complexity of Algorithm 11 is O(c2(nK)2.4). �

Therefore, Algorithm 11 returns a sensor set that meets the estimation threshold of (P1)/(P3).
Moreover, the cardinality of this set is up to a multiplicative factor of η from the minimum
cardinality sensor sets that meet the same estimation bound. In other words, η is a worst-
case approximation guarantee for Algorithm 11. Besides, η depends only logarithmically
on the problems' parameters. Additionally, the dependence of η on n, R and max(σ2

0, σ
2
w)

is expected from a design perspective. Speci�cally, by increasing the state space size n,
requesting a better estimation guarantee by decreasing R, or incurring a noise of greater
variance, should all push the cardinality of the selected sensor set upwards.

Next, in Algorithm 12, we provide an e�cient algorithm for (P2)/(P4) that returns a sensor
set of cardinality r, where r is chosen by the designer. In the next result, we provide opti-
mality guarantees of the solution obtained with Algorithm 12, as well as the computational
complexity incurred by the algorithm.
Theorem 12. Let a solution to (P2)/ (P4) be denoted by S?α, and the set obtained by Algo-
rithm 12 be denoted by Sα. Then,

log det(Σα(Sα))− log det(Σα(∅))
log det(Σα(S?α))− log det(Σα(∅))

≥ 1− 1

e
, (6.11)

where the approximation factor 1 − 1/e in (6.11) is the best one can achieve in polynomial
time for this problem.

Furthermore, the time complexity of Algorithm 12 is O(cr(nK)2.4). �

Algorithm 12 Approximation Algorithm for (P2)/(P4)

Input: hα(S) = log det (Σα(S)), where α ∈ {x̂0:K , ẑK} for k ∈ [0,K], and a bound on the
number r of sensors used to minimize hα(S).

Output: Approximate solution Sα for (P2)/(P4).
Sα ← ∅, i← 0
while i < r do

ai ← a′ ∈ arg maxa∈[c]\Sα (hα(Sα)− hα(Sα ∪ {a}))
Sα ← Sα ∪ {ai}, i← i+ 1

end while

Notice that from Theorem 12 it follows the approximation quality depends on n, r and
max(σ2

0, σ
2
w) as expected from a design perspective. Speci�cally, by increasing the state

space size n, requesting a smaller sensor set by decreasing r, or incurring a noise of greater
variance should all push the quality of the approximation level downwards.
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Limits on Selecting Sensors in DTFOS

Next, we provide explicit bounds on the variance of the state-uncertainty estimation error,
while exploring the trade-o� with the following quantities: (i) the length of the estimation
horizon [0,K]; (ii) the number of placed sensors r; and (iii) the characteristics of the noises
wk and vk. In particular, the next result imposes limitations on the assessment of the results
that cannot be overcome.
Theorem 13. Let σ

(−1)
0 ≡ maxi∈[n][C(x0)−1]ii, σ

(−1)
w ≡ maxi∈[n(K+1)][C(w0:K)−1]ii, and

σ
(−1)
v ≡ ‖C(v1:K)−1‖2. Also, denote by L̄ the matrix L0:KL

>
0:K . Then, the following inequal-

ity holds for the variance of the error of the minimum variance estimator ẑK :

tr(ΣẑK ) ≥ n(K + 1)

rσ
(−1)
v ‖C‖22‖L̄‖2 + max{σ(−1)

0 , σ
(−1)
w }

. (6.12)

�

In other words, for constant ‖C‖22 and ‖L̄‖2, (6.12) implies that the state-uncertainty esti-
mation error used to assess the validity of the model (6.1) is bounded by a quantity that
decreases as the number of placed sensors r increases, and increases as the system's state
size or the horizon K increases. Subsequently, it implies that tr(ΣẑK ) can decrease only
inversely proportional with the number r of placed sensors, and, as a result, increasing the
number r to reduce the variance of the error of the minimum variance linear estimator is
ine�ective. Additionally, the bound in (6.12) increases linearly with the system's state size,
which imposes additional fundamental limitations for large-scale DTFOS.

Lastly, we notice that similar arguments and fundamental bounds can be readily derived for
the variance of the batch-state estimator error, i.e., tr(Σx̂0:K ), by following the same steps
as in [58].

6.4. EEG Sensor Placement

In this section, we propose to study (P1)-(P4) in a real-world application setting collected
by the BCI2000 system with a sampling rate of 160Hz [176]. Speci�cally, we consider 64-
channel EEG data set which records the brain activity of 10 subjects (S001-S010) when they
are performing motor and imagery tasks [177]. Each subject sits in front of a screen where
targets might appear at the right/left/top/bottom side of the screen. Upon noticing the
target, each subject is asked to open and close the corresponding �sts or feet as a function
of where the target appears. Each individual performed 14 experimental runs consisting of
one minute with eyes open, one minute with eyes closed, and three two-minute runs of 4
interacting tasks with the target: (Task 1 ) open and close left or right �st as the target
appears on either left or right side of the screen; (Task 2 ) imagine opening and closing left
or right �st as the target appears on either left or right side of the screen; (Task 3 ) open
and close both �sts or both feet as the target appears on either the top or the bottom of
the screen; and (Task 4 ) imagine opening and closing both �sts or both feet as the target
appears on either the top or the bottom of the screen.
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Figure 2: EEG data recorded and the simulated using DTFOS at the EEG channel PO8.

First, we estimated the parameters of the DTFOS for the di�erent tasks2, which can be
modeled by DTFOS as argued in [170]. To illustrate the modeling capabilities of the pro-
posed DTFOS model, in Figure 2 we contrast the recorded data at location PO8 against
the one simulated using the DTFOS identi�ed. It is worth mention that similar perfor-
mances are achieved across di�erent channels, subjects and tasks. Besides, the fractional
order exponents range from 0.34 to 1.04 across di�erent tasks, which provides evidence that
these could not be properly modeled by linear time-invariant systems � see [170] for further
details. Lastly, we considered that the initial state, disturbance, and measurement noise
follow a normal distribution with zero mean and covariance described by the identity matrix
(both with appropriate dimensions).

Initial State-Uncertainty Estimation Error

First, we considered a single subject (S002), and determined the di�erent DTFOS systems
associated with the four di�erent tasks. We applied Algorithm 11, with α = ẑK and K = 7,
to solve (P1), and in Figure 3-(a) we plot the minimal number of sensors required as a
function of required initial state-uncertainty log det estimation error for the di�erent tasks.
The following observations are due: (i) given the same level of initial state-uncertainty
estimation error required, the minimal number of sensors varies slightly when the subject is
performing di�erent tasks; and (ii) given a task, the initial state-uncertainty log det error
exhibits supermodular properties (see Theorem 10).

To address (P2), i.e., to evaluate the achievable levels of the initial state-uncertainty esti-
mation error given di�erent sensor deployment budgets, we resorted to Algorithm 12 with

2The identi�cation techniques used were introduced in [178], and the software implementation can be
found at https://github.com/urashima9616/ DFOS_Sensor_Selection.
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Figure 3: (a) Minimal sensor placement to achieve a prescribed initial state-uncertainty
estimation errors. (b) initial state-uncertainty log det errors achieved given di�erent sensor
budgets. (c) The 64-channel geodesic sensor distribution for measurement of EEG, where the
sensors in gray represent those of the Emotiv EPOC and the ones in red are those returned
by Algorithm 12 when solving (P2) (that relieved to be the same for all 4 tasks), given
the identi�ed DTFOS and a deployment budget of 14 sensors. (d) initial state-uncertainty
log det estimation errors associated with the highlighted sensor placements in (c).

α = ẑK and K = 7. In Figure 3-(b), we present the summary of the results, namely, the
log det errors given di�erent cardinality-constrains under the 4 tasks. It can be observed
that the information gain, i.e., the improvement on estimation errors, is diminishing as the
number of sensors used increases � as predicted by Theorem 12.

Additionally, we considered the deployment of 14 sensors, which is the same number of sen-
sors available in some of the current EEG wearable technology, e.g., the Emotiv EPOC [179].
In Figure 3-(c), we report the sensor deployment returned by Algorithm 12 when solv-
ing (P2), which revealed to be the same across all 4 tasks (for the same individual). Specif-
ically, we circled in blue the 14 sensors determined by our framework, whereas the Emotiv
EPOC [179] sensors are colored in gray. From Figure 3-(c), we �rst notice that the sensor
distribution pattern of Emotiv EPOC is symmetrical, whereas the Algorithm 12 places the
sensors asymmetrically. Moreover, even though some of the locations are fairly close to
each other (e.g., 41/43, 16/48, 40/38, 42/44, and 14/7), it turns out that only 5 out of 14
locations (i.e., 25, 29, 44, 48, 63) are identical, and Emotiv EPOC does not consider sensors
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23, 4, and 18.

Subsequently, we assessed how the di�erent sensor distributions, i.e., the proposed by our
framework and the proposed by Emotiv EPOC, a�ect the estimation errors. In Figure 3-(d),
we report the initial state-uncertainty estimation error across the di�erent tasks. It is worth
noticing that the sensors considered by our framework perform considerably better than the
sensor distribution used by the Emotiv EPOC. Speci�cally, the log det estimation errors
attained by the proposed sensor placement are smaller compared to those of Emotiv EPOC.
In fact, it presents considerable gains across the di�erent tasks, and, in particular, in Tasks 2
and 4 that require the use of imagination instead of the motor skills. Lastly, it is important to
notice that the same sensor placement performs almost equally well across di�erent tasks.
Therefore, these results support the fact that from the point-of-view of an initial state-
uncertainty estimation error using a model-based approach, the sensors' locations of the
commercial EEG devices should be re-designed so to ensure better estimation performance.

Batch-State Estimation Error

Now, we address the batch-state estimation problems proposed in (P3)-(P4). Towards this
goal, we consider the DTFOS corresponding to the four di�erent tasks for the same subject
(S002). In particular, we obtain the solution to (P3) by relying on Algorithm 11 with
α = x̂0:K and K = 7, whose solutions are found in Figure 4-(a) for several levels of batch-
state estimation errors. From Figure 4-(a), we observe that for a speci�c level of batch-state
estimation error the variation (across the di�erent tasks) in the minimum number of sensors
is minor. Moreover, we observe that the batch-state log det estimation error exhibits a
diminishing returns property � as per Theorem 10.

Next, we use Algorithm 12 with α = x̂0:K andK = 7 to tackle problem (P4), i.e., to compute
the achievable levels of the batch-state estimation error across several sensor placement
budgets. The results are presented in Figure 4-(b), where we report the batch-state log det
estimation errors given di�erent cardinality-constrains across the 4 tasks. Similarly to the
previous �gure, we notice that the gain, i.e., the improvement on the estimation error, is
diminishing as the number of sensors used increases (see Theorem 12).

Furthermore, using Algorithm 12 to solve (P4) with a budget of 14 sensors, we obtained the
sensor placement illustrated in Figure 4-(c). In Figure 4-(c), we circle in red the 14 sensors'
placement found by our framework, whereas we depict the Emotiv EPOC [179] sensors in
gray. Notice that the sensor placement obtained turned out to be the same across all 4
tasks for the same individual and it is asymmetrical, in contrast with the one of the Emotiv
EPOC. Notably, only 5 out of 14 locations (i.e., 25, 29, 44, 48, 63) in both cases are the
same, even though some of the sensor locations are close to each other (e.g., 41/43, 16/48,
40/38, 42/44, and 14/7). Moreover, the Emotiv EPOC does not consider the sensors 23, 4,
and 18. In Figure 4-(d), we compared the batch-state estimation errors (across the di�erent
tasks) of the sensor deployment returned by our framework against the sensors placement
of the Emotiv EPOC. We make the following observations: �rst, the sensors considered by
our framework perform considerably better than the sensor distribution used by the Emotiv
EPOC, especially with respect to Tasks 2 and 4. Furthermore, it is worth mention that the
same sensor placement returned by our framework performs almost equally well across the
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Figure 4: (a) Minimal sensor placement to achieve a prescribed batch-state estimation errors.
(b) batch-state log det errors achieved given di�erent sensor budgets. (c) The 64-channel
geodesic sensor distribution for measurement of EEG, where the sensors in gray represent
those of the Emotiv EPOC and the ones in red are those returned by Algorithm 12 when
solving (P4) (that relieved to be the same for all 4 tasks), given the identi�ed DTFOS and
a deployment budget of 14 sensors. (d) batch-state log det estimation errors associated with
the highlighted sensor placements in (c).

di�erent tasks.

Assessment of Inter-subject variability

To assess how the inter-subject variability of brain dynamics a�ects the sensor selection
under a �xed budget, we next consider a set of experiments where we solve P2 and P4 for
10 subjects across the four di�erent tasks (Task 1-4). In particular, based on the identi�ed
DTFOS associated with the four tasks for a subject, we apply Algorithm 2 to obtain the
placement of sensors given a deployment budget of 14 sensors by minimizing (i) initial
state-uncertainty estimation error, and (ii) batch-state estimation error, respectively. In
addition, we also identify the most voted 14 sensor locations based on the poll of sub-optimal
solutions returned when solving P2 and P4 individually for all 10 subjects. The results
are summarized in Figure 5-(a-d). We use heat maps to show the distribution of sensor
locations returned by solving P2 and P4 individually in Figure 5-(a) and 5-(c), respectively.
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Figure 5: (a-b) The 64-channel geodesic sensor distribution over 10 subjects under Task 1-4
and the most voted deployment given a 14-sensor budget by minimizing (a) the initial state-
uncertainty estimation error and (b) batch-state estimation error. (c-d) The improvement
on (c) initial state-uncertainty estimation error and (d) batch-state estimation error when
(i) the sub-optimal 14-sensor deployment returned by Algorithm 2 individually (blue bar)
and (ii) the most voted 14-sensor deployment by 10 subjects (red bar) are considered.

We can make the following remarks: (i) there exists a noticeable degree of inter-subject
variabilities in the sensor deployment. This can be evidenced by the fact that the chosen
sensors span over 40, 41, 46, 46 and 37, 43, 43, 46 di�erent locations across the 4 di�erent tasks
when solving P2 and P4, respectively. This suggests that the underlying brain dynamics are
subject to remarkable individual heterogeneities even in response to the same set of tasks.
Subsequently, the best-possible sensor schemes have to be designed to be individual-speci�c.

At the same time, there is good percentage of agreement and lower loss of performance
when planning homogeneous commercial solutions. Speci�cally, sensors 1, 25, 29, 41, 42 are
almost unanimously chosen by all 10 subjects, as result of solving both P2 and P4. This
strongly hinges that (for the proposed tasks) there seems to be some fundamental underlying
dynamics that enables the state estimation and this subset of sensors are responsible for
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accessing them. To see this more clearly, we report the top voted 14 sensor locations as
an average case and color them in descending order of consensus as a function of darkness
in Figure 5-(b) and (d) � as comparison, we also report the sensor deployment proposed
by Emotive EPOC with red circles in both geodesic maps. The following observations
are due. First of all, notice that all 14 sensors are voted by at least 5 subjects while
sensor 1, 25, 29, 41, 42 are chosen by at least 8 subjects. Secondly, when considering the
minimization of batch-state estimation errors instead of initial state-uncertainty estimation
errors, the sensor deployment can be very di�erent. For instance, sensor 63 and 64 are
critically important when solving P4 (as 8 out of 10 subjects choose them) whereas their
in�uence to the initial state-uncertainty estimation are out-weighted by other sensors. Third,
similar with our previous case study, only 7/14 and 6/14 most voted sensor deployment by
10 subjects are identical to those proposed by Emotiv EPOC when solving P2 and P4,
respectively. This potentially suggests the need of the redesign of Emotiv provided the
estimation performance we setup in our study, since under our proposed approach the most
voted deployment and sub-optimal individual deployment (as returned by the algorithms
proposed in this chapter) achieve better performance. Speci�cally, we show the improvement
on the log det estimation error of both initial state-uncertainty and batch state over the one
by Emotiv EPOC when the most voted deployment (red bar) and the sub-optimal individual
deployment (blue bar) are employed � see Figure 5-(e) and (f), respectively. The positive
improvement suggests that our proposed deployment is better than that of Emotiv EPOC.
We notice that the sub-optimal deployment returned by solving P2 and P4 individually
improves the estimation error signi�cantly in all cases, which is aligned with the results of our
previous case study on a single subject. Overall, based on the aforementioned observations
one could conclude that the sensors' locations of the commercial EEG devices could be re-
designed to enhance both their initial state and batch-state estimation error performance.

Discussion of the results

We �rst notice that the proposed sensor locations seem to cope better with scenarios where
the neuro-activation is not as well understood as the motor-related tasks (Tasks 1 and 3),
e.g., imagining actions associated with Tasks 2 and 4. Additionally, we emphasize that the
time-window considered was small (K = 7), since aimed to attain real-time estimation. As
a result, it is expected to obtain even better performance results if we increase the size
window. Besides, the cumulative error increases faster in the Emotiv EPOC.

Although in our case study we relied on EEG data, it is expected that the proposed prob-
lems have distinct value in di�erent biological settings � as explained in the introduction.
Speci�cally, in problems where signals are well modeled by the proposed DTFOS, as it is
the case of other physiological signals such as electromyograms (EMG) and electrocardio-
grams (ECG) [170].

6.5. Concluding Remarks & Future Work

We considered biologically motivated discrete-time linear fractional-order systems and stud-
ied the trade-o� between the sensor placement and the properties that pertain to Kalman-like
�lter performance. Speci�cally, we formalized the sensor placement problems in context of
four di�erent (but related) problems pertaining to the sensor placement to minimize the
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state-uncertainty and batch-state estimation error. We showed that these problems are NP-
hard, and we presented polynomial approximation strategies for their solution that have
sub-optimality guarantees.

Additionally, we explored the di�erent problems in the context of real EEG data during a
period of time where the individuals performed four di�erent tasks. The results obtained
support the capability of the proposed framework to deal with critical sensing deployment
problems, and unveiled that the number and location of the sensors vary across tasks and
subjects for the same experimental setup. Furthermore, we argue that these locations are
not compatible with those used by state-of-the-art EEG wearables (e.g., Emotiv EPOC),
which supports the need for further research and re-design of future EEG wearables that
aim to attain a speci�ed estimation performance for a given task.

Future research will consider the multi-scenario case, where the sensor placement has to
consistently and reliably consider possible dynamics, e.g., multi-tasks simultaneously when
EEG is considered. Additionally, we propose to validate the presented methodology when a
large cohort of individuals and tasks is considered.

6.6. Appendix: Proof of the Results

Proof of Theorem 9: We prove that (P1)-(P4) are NP-hard by focusing on the case where
(i) the measurement matrix C is the identity matrix (C = I), (ii) the measurement noise vk
is Gaussian with zero mean and covariance the identity matrix (C(vk) = I), and (iii) K = 0,
in which case zK = x0:K = x0, and thus, (P1)-(P4) are equivalent to the following problem:

minimize
S⊆{1,2,...,c}

log det(Σ(x̂0))

subject to |S| ≤ r.
(6.13)

In more detail, we prove that the problem in (6.13) is NP-hard by proving that the following
problem is equivalent to (6.13), and that it is NP-hard:

minimize
S⊆{1,2,...,c}

H(x0|y0(S))

subject to |S| ≤ r,
(6.14)

where H(x0|S) is the entropy of x0 given the measurements y0(S) collected by the selected
sensors in S at time k = 0. Speci�cally, we prove that the problem in (6.14) is NP-hard by
proving it is equivalent to the entropy maximization problem

maximize
S⊆{1,2,...,c}

H(y0(S))

subject to |S| ≤ r,
(6.15)

which we prove to have an equivalent instance to the NP-hard instance of the entropy
maximization problem in [180].

To prove that the problems in (6.13) and (6.14) are equivalent, we use [175, Proposition 2],
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which implies for K = 0 that

H(x0|y0(S)) =
log det(Σ(x̂0))

2
+
n log(2πe)

2
, (6.16)

where x̂0 is the minimum mean square estimator of x0 given y0 [123, Appendix E]. There-
fore, (6.16) implies that minimizing the objective in (6.13) is equivalent to minimizing the
objective in (6.14).

We next prove that the problems in (6.14) and (6.15) are equivalent. To this end, �rst
observe that

H(x0|y0(S)) = H(x0) + H(y0(S)|x0)−H(y0(S)), (6.17)

(we derive (6.17) using the conditional entropy chain rule [181]), as well as that:

• H(x0) is constant with respect to S.

• H(y0(S)|x0) is constant for C = I, C(v0) = I, and for �xed |S|, (which is the
case throughout this proof, since due to the monotonicity of the log det and the
entropy, in all problems in (6.13), (6.14), and (6.15), it is |S| = r for any S that
solves (6.13), (6.14), and (6.15)), since if y(i)

0 (S) (x(i)
0 , respectively) denotes the i-th

element of y0(S) (x0, respectively), then

H(y0(S)|x0)

a
=

|S|∑
i=1

H(y
(i)
0 (S)|x0, y

(1)
0 (S), . . . , y

(i−1)
0 (S))

b
=
∑
i∈S

H(y
(i)
0 (S)|x(i)

0 )

c
=

1

2
log(2πe)|S|

In particular, equalities (a), (b) and (c) hold for the following reasons, respectively: (a)

holds due to the conditional entropy chain rule [181]; (b) holds since for all j 6= i, y(i)
0

given x(i)
0 is independent of x(j)

0 and y(j)
0 ; and (c) holds since y(i)

0 given x(i)
0 is Gaussian

with variance 1, since we consider the case where C(v0) = I.

Due to (6.17) and the latter two observations, we conclude that (6.14) is equivalent to (6.15).

Given the equivalence of (6.14) and (6.15), we conclude the proof by �nding an instance for
the problem in (6.13) that is equivalent to an instance for the problem in (6.15) that is NP-
hard. In particular, consider Σ to be any n×n matrix that makes the entropy maximization
problem in [180, Theorem 1] NP-hard: Σ is a positive de�nite symmetric with all the diagonal
entries equal to 3n, and all the o�-diagonal entries equal to 0 or 1. The problem (6.15) is
NP-hard if we can �nd an instance for the problem in (6.13) where y0({1, 2, . . . , c}) is a
Gaussian random variable with covariance Σ. Indeed, let C(x0) be any positive de�nite
symmetric matrix with all diagonal entries equal to 3n−1, and all o�-diagonal entries equal
to 0 or 1 (Σ0 is positive de�ne by construction, since it is both diagonally dominant, and
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as a result invertible, and symmetric). For this selection of parameters, y0 has covariance
Σ; the reason is threefold: (i) y0 = x0 + v0, (ii) x0 and v0 are Gaussian with covariances
Σ0 and I, respectively, and (iii) x0 and v0 are uncorrelated; as a result, y0 is Gaussian with
covariance Σ0 + I = Σ. �

Proof of Theorem 10: In the following paragraphs, we only present the proof for

log det (ΣẑK (S)) ,

since the proof for log det (Σx̂0:K (S)) follows similar steps. In particular, we complete the
proof for log det (ΣẑK (S)) in three steps: (i) we prove its closed formula; (i) we show that
it is non-increasing; and (iii) we prove that it is supermodular.

Given any �nite estimation horizon [0,K], we �rst prove that

log det (ΣẑK (S)) =

− log det

(
c∑
i=1

siL
>
0:KM

(i)L0:K + C(zK)−1

)
. (6.18)

In particular, as in the proof of Lemma 1 in [58], we let S0:K denote the block diagonal
matrix with diagonal elements K + 1 copies of the sensor placement matrix S in (6.8).
Then, using the Woodbury matrix identity [93, Corollary 2.8.8] at (6.3), we obtain ΣẑK (S) =
(O>KΞOK+C(zK)−1)−1, where Ξ ≡ (S0:KC(v0:K)S>0:K)−1, and due to the de�nitions of S0:K ,
C0:K and OK = S0:KC0:KL0:K . Moreover, due to the de�nition of S0:K , i.e., it contains block
of matrices that are only zero or identity matrices, and because C(v0:K) is block diagonal,
it follows that Ξ = S0:KC(v0:K)−1S>0:K , which can be veri�ed by direct calculation. Overall,
we obtain

ΣẑK (S) = (L>0:KC
>
0:KΛC(v0:K)−1ΛC0:KL0:K + C(zK)−1)−1,

where Λ ≡ S>0:KS0:K . Now, since Λ and C(v0:K)−1 are block diagonal, and the blocks of Λ
are either identity or zero matrices, C(v0:K)−1Λ = ΛC(v0:K)−1. Furthermore, the de�nition
of S0:K implies that Λ2 = Λ. Thus, it follows that

ΣẑK (S) = (L>0:KC
>
0:KΛC(v0:K)−1C0:KL0:K + C(zK)−1)−1. (6.19)

For the last step, observe �rst that Λ =
∑c

i=1 siI
(i), so

L>0:KC
>
0:KΛC(v0:K)−1C0:KL0:K

=

c∑
i=1

siL
>
0:KC

>
0:KI

(i)C(v0:K)−1C0:KL0:K (6.20)

=
c∑
i=1

siL
>
0:KM

(i)L0:K , (6.21)

95



where we derive (6.21) from (6.20) by using for I(i) the reverse steps to the ones we used for
Λ to derive (6.19).

Next, to prove that log det (ΣẑK (S)) is a non-increasing set function in the choice of the
sensors S, we follow similar steps to those in Theorem 2 in [58]. Speci�cally, consider
S ⊆ S ′, and observe that (6.18) and from [93, Theorem 8.4.9], ΣẑK (S ′) � ΣẑK (S), since
L>0:KM

(i)L0:K � 0 and C(zK) � 0. As a result, log det(ΣẑK (S ′)) ≤ log det(ΣẑK (S)).

Finally, to prove that log det(ΣẑK (S)) is supermodular, we prove that − log det(ΣẑK (S))
is submodular. In particular, recall that a function h : 2[c] 7→ R is submodular if and
only if, for any a ∈ [c], the function ha : 2[c]\{a} 7→ R, where ha(S) ≡ h(S ∪ {a}) − h(S),
is a non-increasing set function. Therefore, to prove that h(S) = − log det(ΣẑK (S)) is
submodular, we may prove that the ha(S) is a non-increasing set function. To this end,
we denote

∑c
i=1 siL

>
0:KM

(i)L0:K in (6.18) by M(S), and follow similar steps to those in the
proof of Theorem 6 in [52]. Speci�cally, we note that

ha(S) = log det(M(S ∪ {a}) + C(zK)−1)−
log det(M(S) + C(zK)−1)

= log det(M(S) +M({a}) + C(zK)−1)−
log det(M(S) + C(zK)−1).

For S ⊆ S ′ and t ∈ [0, 1], de�ne Φ(t) ≡ C(zK)−1 +M(S) + t(M(S ′)−M(S)) and

g(t) ≡ log det (Φ(t) +M({a}))− log det (Φ(t)) .

Then, g(0) = ha(S) and g(1) = ha(S ′). Moreover, since

d log det(Φ(t))

dt
= tr

(
Φ(t)−1dΦ(t)

dt

)
(as in eq. (43) in [95]), it follows that

ġ(t) = tr
[
((Φ(t) +M({a}))−1 − Φ(t)−1)F

]
,

where F ≡M(S ′)−M(S). Furthermore, from [93, Proposition 8.5.5], we have that

(Φ(t) +M({a}))−1 − Φ(t)−1 � 0,

where Φ(t) is invertible since C(zK)−1 � 0, M(S) � 0, and M(S ′) � M(S)). Since also
F � 0, from [93, Corollary 8.3.6], it readily follows that

λmax[((Φ(t) +M({a}))−1 − Φ(t)−1)F ] ≤ 0.

Thus, ġ(t) ≤ 0, and ha(S ′) = g(1) = g(0)+
∫ 1

0 ġ(t)dt ≤ g(0) = ha(S), i.e., ha is non-increasing.

�
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Proof of Theorem 11: The proof of the theorem in attained in three main steps: (i)
we prove (6.9); (ii) we prove (6.10); and (iii) we prove the computational complexity of
Algorithm 11.

To prove (6.9), let S0,S1, . . . be the sequence of sets selected by Algorithm 11 and l the
smallest index such that log det (ΣẑK ,Sl) ≤ R. Therefore, Sl is the set that Algorithm 11
returns. To prove (6.9), we �rst observe that Theorem 10 implies log det (ΣẑK ,S)) is a
supermodular and non-increasing. Then, from [94], we have that

l

|S?|
≤ 1 + log

log det (ΣẑK , ∅)− log det (ΣẑK , [c])

log det (ΣẑK ,Sl−1)− log det (ΣẑK , [c])
.

Now, l is the �rst time that log det (ΣẑK ,Sl) ≤ R, and as a result log det (ΣẑK ,Sl−1) >
R, and, as a consequence, we have that (6.10) holds. Furthermore, log det (ΣẑK , ∅) =
log det (C(zK)) , and from the geometric-arithmetic mean inequality, we obtain that

log det (C(zK)) ≤ n(K + 1) log
tr(C(zK))

n(K + 1)

≤ n(K + 1) log
n(K + 1) max(σ2

0, σ
2
w)

n(K + 1)

= n(K + 1) log max(σ2
0, σ

2
w).

Finally, to prove the computational complexity of Algorithm 11, note that the while loop
is repeated for at most c times. Moreover, the complexity to compute the determinant
of an n(K + 1) × n(K + 1) matrix, using the Coppersmith-Winograd algorithm [97], is
O((nK)2.4), which is also the complexity incurred by the multiplication between such two
matrices. Additionally, the determinant of at most c+1 matrices must be computed so that
the

arg max
a∈[c]\S

(log det (ΣẑK ,S)− log det (ΣẑK ,S ∪ {a}))

can be computed. Also, O(c) time is required to �nd a maximum element between c
available. Therefore, the overall computational complexity of Algorithm 11 is dominated
by O(c2(nK)2.4). �

Proof of Theorem 12: In the following paragraphs, we complete the proof of the theorem
in three steps: (i) we prove (6.11); (ii) we prove that the approximation factor 1 − 1/e in
(6.11) is the best one can achieve in polynomial time for (P2)/(P4); and (iii) we discuss the
computational complexity of the algorithm.

To prove (6.11), we �rst observe that Theorem 10 implies log det (ΣẑK ,S)− log det (ΣẑK , ∅)
is a supermodular, non-increasing and non-positive set function. Consequently, the results
from [94] can be invoked to obtain (6.11).
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To prove that the approximation factor 1 − 1/e in (6.11) is the best one can achieve in
polynomial time for (P2)/(P4), we recall that in the worst-case (P2)/(P4) are equivalent to
the minimal observability problem (see proof of Theorem 9). Then, the result follows by
noticing that the minimal observability problem has the same computational complexity as
the set cover problem [7], which cannot be approximated in polynomial time with a factor
better than 1− 1/e [13].

Finally, the computational complexity of Algorithm 12 can be derived by following the same
steps and reasoning as the one proposed in the proof of Theorem 11 to show the time
complexity of Algorithm 11. �

Proof of Theorem 13: Since the arithmetic mean of a �nite set of positive numbers is at
least as large as their harmonic mean, the following inequality holds:

tr(ΣẑK ) ≥ (n(K + 1))2

tr
(∑c

i=1 siL
>
0:KM

(i)L0:K + C(zK)−1
) , (6.22)

where we used the closed form for ΣẑK proved in Theorem 10.

Furthermore, in the denominator of (6.22), for the �rst term it is tr(
∑c

i=1 siL
>
0:KM

(i)L0:K) =∑c
i=1 sitr(M

(i)L0:KL
>
0:K), where

tr(L>0:KM
(i)L0:K) ≤ n(K + 1)‖C̄‖22‖C(v1:K)−1‖2‖L0:KL

>
0:K‖2,

since ‖I(i)‖2 = 1, and for the second term it is tr(C(zK)−1) ≤ n(K + 1) max{σ(−1)
0 , σ

(−1)
w }.

Therefore,

tr

(
c∑
i=1

siL
>
0:KM

(i)L0:K + C(zK)−1

)
≤

rn(K + 1)σ(−1)
v ‖C̄‖22‖L̄‖2 + n(K + 1) max{σ(−1)

0 , σ(−1)
w }.

Hence, tr(ΣẑK ) ≥ n(K + 1)/(rσ
(−1)
v ‖C̄‖22‖L̄‖2 + max{σ(−1)

0 , σ
(−1)
w }). �
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CHAPTER 7 : Scheduling Nonlinear Sensors for Stochastic Process Estimation

In this chapter, we focus on activating only a few sensors, among many available, to estimate
the state of a stochastic process of interest. This problem is important in applications such as
target tracking and simultaneous localization and mapping (SLAM). It is challenging since
it involves stochastic systems whose evolution is largely unknown, sensors with nonlinear
measurements, and limited operational resources that constrain the number of active sensors
at each measurement step. We provide an algorithm applicable to general stochastic pro-
cesses and nonlinear measurements whose time complexity is linear in the planning horizon
and whose performance is a multiplicative factor 1/2 away from the optimal performance.
This is notable because the algorithm o�ers a signi�cant computational advantage over the
polynomial-time algorithm that achieves the best approximation factor 1/e. In addition,
for important classes of Gaussian processes and nonlinear measurements corrupted with
Gaussian noise, our algorithm enjoys the same time complexity as even the state-of-the-art
algorithms for linear systems and measurements. We achieve our results by proving two
properties for the entropy of the batch state vector conditioned on the measurements: a)
it is supermodular in the choice of the sensors; b) it has a sparsity pattern (involves block
tri-diagonal matrices) that facilitates its evaluation at each sensor set.1

7.1. Introduction

Adversarial target tracking and capturing [129, 183], robotic navigation and autonomous
construction [128], active perception and simultaneous localization and mapping (SLAM)
[22] are only a few of the challenging information gathering problems that bene�t from the
monitoring capabilities of sensor networks [130]. These problems are challenging because:

• they involve systems whose evolution is largely unknown, modeled either as a stochastic
process, such as a Gaussian process [184], or as linear or nonlinear system corrupted
with process noise [129],

• they involve nonlinear sensors (e.g., cameras, radios) corrupted with noise [103],

• they involve systems that change over time [127], and as a result, necessitate both
spatial and temporal deployment of sensors in the environment, increasing the total
number of needed sensors, and at the same time,

• they involve operational constraints, such as limited communication bandwidth and
battery life, which limit the number of sensors that can simultaneously be active in
the information gathering process [131].

Due to these challenges, we focus on the following question: �How do we select, at each time,
only a few of the available sensors so as to monitor e�ectively a system despite the above
challenges?� In particular, we focus on the following sensor scheduling problem:
Problem 1. Consider a stochastic process, whose realization at time t is denoted by x(t)
and a set of m sensors, whose measurements are nonlinear functions of x(t), evaluated at
a �xed set of K measurement times t1, t2, . . . , tK . In addition, suppose that at each tk a

1This chapter is based on the paper by Tzoumas et al. [182].
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set of at most sk ≤ m sensors can be used. Select the sensor sets so that the error of the
corresponding minimum mean square error estimator of (x(t1), x(t2), . . . , x(tK)) is minimal
among all possible sensor sets.

The reason we focus on estimating the batch state vector (x(t1), x(t2), . . . , x(tK)) is that in
many control problems we need to have a good estimate of the trajectory taken so far, e.g.,
for linearisation purposes.

Literature review: There are two classes of sensor scheduling algorithms, that trade-o�
between the estimation accuracy of the batch state vector and their time complexity [185]:
those used for Kalman �ltering, and those for batch state estimation. The most relevant
papers on batch state estimation are [185] and [135]. However, both of these papers focus on
linear systems and measurements. The most relevant papers for Kalman �ltering consider
algorithms that use: myopic heuristics [115], tree pruning [137], convex optimization [119,
132, 186, 187], quadratic programming [138], Monte Carlo methods [188], or submodular
function maximization [5, 139]. However, these papers focus similarly on linear or nonlinear
systems and measurements, and do not consider unknown dynamics.

At the same time, [114] focuses on sensor selection algorithms for estimating stochastic
processes that are, in contrast to the processes in the present chapter, spatially correlated
and not temporally correlated. In more detail, in [114], x(ti) represents the value of a
parameter of interest at a spatial position ti, and is constant in time. This is notable
since in [114] the proposed algorithms for sensor selection become fast when the covariance
matrix of (x(t1), x(t2), . . . , x(tK)) is sparse (or can be approximated by a sparse matrix).
Notwithstanding, this is not necessarily the case for dynamic stochastic processes, since x(ti)
may be strongly correlated to the trajectory (x(t1), x(t2), . . . , x(ti−1)) taken so far in the
state space.

Main contributions.:

1. We prove that Problem 1 is NP-hard.

2. We prove that the best approximation factor one can achieve in polynomial time for
Problem 1, in the worst case, is 1/e.

3. We provide Algorithm 13 for Problem 1 that:

• for all stochastic processes and nonlinear measurements, achieves a solution that
is up to a multiplicative factor 1/2 from the optimal solution with time complexity
that is only linear in the planning horizon K. This is important, since it implies
that Algorithm 13 o�ers a signi�cant computational advantage with negligible
loss in performance over the polynomial-time algorithm that achieves the best
approximation factor of 1/e,

• for important classes of Gaussian processes, and nonlinear measurements cor-
rupted with Gaussian noise, has the same time complexity as state-of-the-art
algorithms for linear systems and measurements. For example, for Gaussian pro-
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cess such as those in target tracking, or those generated by linear or nonlinear
systems corrupted with Gaussian noise, Algorithm 13 has the same time complex-
ity as the batch state estimation algorithm in [185], and lower than the relevant
Kalman �lter scheduling algorithms in [119, 132].

Therefore, Algorithm 13 can enjoy both the estimation accuracy of the batch state
scheduling algorithms (compared to the Kalman �ltering approach, that only approx-
imates the batch state estimation error with an upper bound [185]) and, surprisingly,
even the low time complexity of the Kalman �ltering scheduling algorithms for linear
systems.

Technical contributions.:

1. Supermodularity in Problem 1 : We achieve the approximation performance of Algo-
rithm 13, and the linear dependence of its time complexity on the planning horizon,
by proving that our estimation metric is a supermodular function in the choice of
the utilized sensors. This is important, since this is in contrast to the case of multi-
step Kalman �ltering for linear systems and measurements, where the corresponding
estimation metric is neither supermodular nor submodular [139] [5].

2. Sparsity in Problem 1 : We achieve the reduced time complexity of Algorithm 13
for Gaussian processes by identifying a sparsity pattern in our estimation metric.
Speci�cally, for Gaussian processes the time complexity of each evaluation of our metric
is decided by the sparsity pattern of either the covariance of (x(t1), x(t2), . . . , x(tK)),
or the inverse of this covariance. This is important since the two matrices are not
usually sparse at the same time, even if one of them is [133].

In more detail, we identify that for Gaussian processes such as those in target tracking,
the �rst matrix is block tri-diagonal, whereas for those in SLAM, or those generated
by linear or nonlinear systems corrupted with Gaussian noise, the second matrix is
block tri-diagonal.

Notation: We denote the set of natural numbers {1, 2, . . .} by N, the set of real numbers
by R, and the set {1, 2, . . . , n} by [n] (n ∈ N). The set of real numbers between 0 and 1 is
denoted by [0, 1], and the empty set by ∅. Given a set X , |X | is its cardinality. In addition,
for n ∈ N, X n is the n-times Cartesian product X ×X × · · · × X . Matrices are represented
by capital letters and vectors by lower-case letters. We write A ∈ X n1×n2 (n1, n2 ∈ N)
to denote a matrix of n1 rows and n2 columns whose elements take values in X ; A> is its
transpose, and [A]ij is its element at the i-th row and j-th column; det(A) is its determinant.
Furthermore, if A is positive de�nite, we write A � 0. In the latter case, A−1 is its inverse.
I is the identity matrix; its dimension is inferred from the context. Similarly for the zero
matrix 0. The ≡ denotes equivalence. Moreover, for a probability space (Ω,F ,P), Ω is
the sample space, F the σ-�eld, and P : F 7→ [0, 1] the function that assigns probabilities
to events in F [189]. We write x ∼ F to denote a random variable x with probability
distribution F ; E(x) is its expected value, and Σ(x) its covariance. x ∼ N (µ,Σ) denotes a
Gaussian random variable x with mean µ and covariance Σ; with a slight abuse of notation,
we equivalently write x ∼ N (E(x),Σ(x)). Finally, we write x|y ∼ G to denote that x's
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probability distribution given y is G.

7.2. Problem Formulation

This section introduces the system, measurement, and scheduling models and presents the
sensor scheduling problem formally.
System 2. We consider two cases:

• Continuous time model: Consider the stochastic process (along with a probability space
(Ω,F ,P)):

xω(t) : ω ∈ Ω, t ≥ t0 7→ Rn (7.1)

where n ∈ N, t0 is the initial time, and xω(t) the state vector given the sample ω.

• Discrete time model: Consider the nonlinear discrete-time system:

xk+1 = lk(x1:k), lk ∼ Lk, k ∈ N (7.2)

where xk ∈ Rn is the state vector, x1:k the batch vector (x1, x2, . . . , xk), and Lk a
probability distribution over functions lk : Rnk 7→ Rn.

Because the system models (7.1) and (7.2) assume no characteristic structure, they are
appropriate for modeling largely unknown dynamics. For example, an instance of (7.1) is
the time-indexed Gaussian process system model:

x(t) ∼ GP(µ(t),Σ(t, t′)), t, t′ ≥ t0, (7.3)

where µ(t) is the mean function and Σ(t, t′) is the covariance function. Similarly, an instance
of (7.2) is the state-indexed Gaussian process system model:

xk+1 = l(xk), l ∼ GP(µ(x),Σ(x, x′)), x, x′ ∈ Rn. (7.4)

Measurement Model 1. Consider m nonlinear sensors that operate in discrete time:

zi,k = gi(xk) + vi,k, i ∈ [m], k ∈ N (7.5)

where for the continuous-time system in (7.1) we let xk := x(tk) at a pre-speci�ed set of
measurement times t1, t2, . . . and vi,k is the measurement noise of sensor i at time k.
Assumption 6. vi,k are independent across i and k. In addition, gi is one-time di�eren-
tiable.
Sensor Scheduling Model 1. The m sensors in (7.5) are used at K scheduled measure-
ment times {t1, t2, . . . , tK}. At each k ∈ [K], only sk of the m sensors are used (sk ≤ m),
resulting in the batch measurement vector yk:

yk = Skzk, k ∈ [K], (7.6)

where Sk is a sensor selection matrix, composed of sub-matrices [Sk]ij (i ∈ [sk], j ∈ [m])
such that [Sk]ij = I if sensor j is used at time k, and [Sk]ij = 0 otherwise. We assume that
a sensor can be used at most once at each k, and as a result, for each i there is one j such
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that [Sk]ij = I while for each j there is at most one i such that [Sk]ij = I.

We now present the sensor scheduling problem formally:

Notation. For i, j ∈ N, φi:j ≡ (φi, φi+1, . . . , φj). In addition, Sk ≡ {j : there exists i ∈
[sk], [Sk]ij = I}: Sk is the set of indices that correspond to utilized sensors at tk.
Problem 1 (Sensor Scheduling in Stochastic Processes with Nonlinear Observations). Select
at each time k a subset of sk sensors, out of the m sensors in (7.5), to use in order to
minimize the conditional entropy of x1:K given the measurements y1:K :

minimize
Sk⊆[m],k∈[K]

H(x1:K |S1:K)

subject to |Sk| ≤ sk, k ∈ [K],

where H(x1:K |S1:K) denotes the conditional entropy H(x1:K |y1:K) of x1:K given the measure-
ments y1:K .

The conditional entropy H(x1:K |y1:K) captures the estimation accuracy of x1:K given y1:K ,
as we explain in the following two propositions:
Proposition 6. H(x1:K |y1:K) is a constant factor away from the mutual information of
x1:K and y1:K . In particular:

H(x1:K |y1:K) = −I(x1:K ; y1:K) + H(x1:K),

where I(x1:K ; y1:K) is the mutual information of x1:K and y1:K , and H(x1:K) is constant.
Proposition 7. Consider the Gaussian process (7.3) and suppose that the measurement
noise in (7.5) is Gaussian, vi,k ∼ N (0,Σ(vi,k)). H(x1:K |y1:K) is a constant factor away
from log det(Σ(x?1:K)), where Σ(x?1:K) is the error covariance of the minimum mean square
estimator x?1:K of x1:K given the measurements y1:K . In particular:2

H(x1:K |y1:K) =
log det(Σ(x?1:K))

2
+
nK log(2πe)

2
.

7.3. Main Results

We �rst prove that Problem 1 is NP-hard, and then derive for it a provably near-optimal
approximation algorithm:
Theorem 14. The problem of sensor scheduling in stochastic processes with nonlinear ob-
servations (Problem 1) is NP hard.

Due to Theorem 14, we need to appeal to approximation algorithms to obtain a solution to
Problem 1 in polynomial-time. To this end, we propose an e�cient near-optimal algorithm
(Algorithm 13 with a subroutine in Algorithm 14) and quantify its performance and time

2We explain x?1:K and log det(Σ(x?1:K)): x?1:K is the optimal estimator for x1:K , since it minimizes among
all estimators of x1:K the mean square error E(‖x1:K − x?1:K‖22) (‖ · ‖2 is the euclidean norm), where the
expectation is taken with respect to y1:K [123, Appendix E]. log det(Σ(x?1:K)) is an estimation error metric
related to ‖x1:K−x?1:K‖22, since when it is minimized, the probability that the estimation error ‖x1:K−x?1:K‖22
is small is maximized [185].
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Algorithm 13 Approximation algorithm for Problem 1.

Input: Horizon K, scheduling constraints s1, s2, . . . , sK , error metric H(x1:K |S1:K) : Sk ⊆
[m], k ∈ [K] 7→ R

Output: Sensor sets (S1,S2, . . . ,SK) that approximate the solution to Problem 1, as quan-
ti�ed in Theorem 15
k ← 1, S1:0 ← ∅
while k ≤ K do
1. Apply Algorithm 14 to

min
S⊆[m]

{H(x1:K |S1:k−1,S) : |S| ≤ sk} (7.7)

2. Denote by Sk the solution Algorithm 14 returns
3. S1:k ← (S1:k−1,Sk)
4. k ← k + 1

end while

complexity in the following theorem.
Theorem 15. The theorem has two parts:

1. Approximation performance of Algorithm 13: Algorithm 13 returns sensors sets S1,S2,
. . . ,SK that:

(a) satisfy all the feasibility constraints of Problem 1: |Sk| ≤ sk, k ∈ [K]

(b) achieve an error H(x1:K |S1:K) such that:

H(x1:K |S1:K)−OPT
MAX −OPT

≤ 1

2
, (7.8)

where OPT is the optimal cost of Problem 1, and MAX ≡ maxS′1:K H(x1:K |S ′1:K) is
the maximum (worst) cost in Problem 1.

2. Time complexity of Algorithm 13: Algorithm 13 has time complexity O(
∑K

k=1 s
2
kT ),

where T is the time complexity of evaluating H(x1:K |S ′1:K) : S ′k ⊆ [m], k ∈ [K] 7→ R at
an S ′1:K .

In the following paragraphs, we discuss Algorithm 13's approximation quality and time
complexity and fully characterize the latter in Theorem 16 and Corollary 7 for Gaussian
processes and Gaussian measurement noise.

Supermodularity and monotonicity of H(x1:K |y1:K). We state H(x1:K |y1:K)'s prop-
erties that are used to prove Theorem 15. In particular, we show that H(x1:K |y1:K) is
a non-increasing and supermodular function with respect to the sequence of selected sen-
sors. Then, Theorem 15 follows by combining these two results with results on submodular
functions maximization over matroid constraints [12].
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Approximation quality of Algorithm 13. Theorem 15 quanti�es the worst-case per-
formance of Algorithm 13 across all values of Problem 1's parameters. The reason is that
the right-hand side of (7.8) is constant. In particular, (7.8) guarantees that for any instance
of Problem 1, the distance of the approximate cost H(x1:K |S1:K) from OPT is at most 1/2
the distance of the worst (maximum) cost MAX from OPT . This approximation factor is
close to the optimal approximation factor 1/e ∼= .38 one can achieve in the worst-case for
Problem 1 in polynomial time [141]; the reason is twofold: �rst, Problem 1 involves the min-
imization of a non-increasing and supermodular function [96], and second, as we proved in
Theorem 14, Problem 1 is in the worst-case equivalent to the minimal observability problem
introduced in [7], which cannot be approximated in polynomial time with a better factor
than the 1/e [13].
Remark 9. We can improve the 1/2 approximation factor of Algorithm 13 to 1/e by utilizing
the algorithm introduced in [190]. However, this algorithm has time complexity O((nK)11T ),
where T is the time complexity of evaluating H(x1:K |S ′1:K) : S ′k ⊆ [m], k ∈ [K] 7→ R at an
S ′1:K .

Time complexity of Algorithm 13. Algorithm 13's time complexity is broken down
into two parts: a) the number of evaluations of H(x1:K |y1:K) required by the algorithm;
b) the time complexity of each such evaluation. In more detail:

Number of evaluations of H(x1:K |y1:K) required by Algorithm 13. Algorithm 13
requires at most s2

k evaluations of H(x1:K |y1:K) at each k ∈ [K]. Therefore, Algorithm 13
achieves a time complexity that is only linear in K with respect to the number of evaluations
of H(x1:K |y1:K); the reason is that

∑K
k=1 s

2
k ≤ maxk∈[K](s

2
k)K. This is in contrast to the al-

gorithm in Remark 9, that obtains the best approximation factor 1/e, whose time complexity
is of the order O((nK)11) with respect to the number of evaluations of H(x1:K |y1:K).3

Time complexity of each evaluation of H(x1:K |y1:K). This time complexity depends
on the properties of both the stochastic process (7.1) (similarly, (7.2)) and the measurement
noise vi,k in (7.5). For the case of Gaussian stochastic processes and measurement noises:
Theorem 16. Consider the Gaussian process model (7.3) and suppose that the measurement
noise is Gaussian: vi,k ∼ N (0,Σ(vi,k)) such that Σ(vi,k) � 0. The time complexity of
evaluating H(x1:K |y1:K) depends on the sparsity pattern of Σ(x1:K) and Σ(x1:K)−1 as follows.

• Each evaluation of H(x1:K |y1:K) has time complexity O(n2.4K), when either Σ(x1:K)
or Σ(x1:K)−1 is exactly sparse (that is, block tri-diagonal).

• Each evaluation of H(x1:K |y1:K) has time complexity O(n2.4K2.4), when both Σ(x1:K)
and Σ(x1:K)−1 are dense.

Theorem 16 implies that when Σ(x1:K) or Σ(x1:K)−1 is exactly sparse, the time complexity
of each evaluation of H(x1:K |y1:K) is only linear in K. This is important because Σ(x1:K) or
Σ(x1:K)−1 is exactly sparse for several applications and system models [191]. For example,
in adversarial target tracking applications, where the target wants to avoid capture and

3We can also speed up Algorithm 13 by implementing in Algorithm 14 the method of lazy evaluations [99]:
this method avoids in Step 2 of Algorithm 14 the computation of ρi(St−1) for unnecessary choices of i.
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Algorithm 14 Single step greedy algorithm (subroutine in Algorithm 13).

Input: Current iteration k, selected sensor sets (S1,S2, . . . , Sk−1) up to the current itera-
tion, constraint sk, error metric H(x1:K |S1:K) : Sk ⊆ [m], k ∈ [K] 7→ R

Output: Sensor set Sk that approximates the solution to Problem 1 at time k
S0 ← ∅, X 0 ← [m], and t← 1
Iteration t:
1. If X t−1 = ∅, return St−1

2. Select i(t) ∈ X t−1 for which ρi(t)(St−1) = maxi∈X t−1 ρi(St−1), with ties settled
arbitrarily, where:

ρi(St−1) ≡ H(x1:K |S1:k−1,St−1)−
H(x1:K |S1:k−1,St−1 ∪ {i})

3.a. If |St−1 ∪ {i(t)}| > sk, X t−1 ← X t−1 \ {i(t)}, and go to Step 1
3.b. If |St−1 ∪ {i(t)}| ≤ sk, St ← St−1 ∪ {i(t)} and X t ← X t−1 \ {i(t)}
4. t← t+ 1 and continue

randomizes its motion in the environment (by un-correlating its movements), Σ(x1:K) can be
considered tri-diagonal (since this implies x(tk) and x(tk′) are uncorrelated for |k−k′| > 2).
Similarly, in SLAM, or in system models where the Gaussian process in (7.3) is generated by
a linear or nonlinear system corrupted with Gaussian noise, Σ(x1:K)−1 is block tri-diagonal
[133]. In particular, for linear systems, Σ(x1:K)−1 is block tri-diagonal [133, Section 3.1],
and for nonlinear systems, Σ(x1:K)−1 is e�ciently approximated by a block tri-diagonal
matrix as follows: for each k, before the k-th iteration of Step 1 in Algorithm 13, we �rst
compute µ̃1:K given y1:(k−1) up to k. This step has complexity O(n2.4K) when Σ(x1:K)−1

is sparse [133, Eq. (5)] [192, Section 3.8], and it does not increase the total time complexity
of Algorithm 13. Then, we continue as in [133, Section 3.2].

Sparsity in H(x1:K |y1:K). We state the two properties of H(x1:K |y1:K) that result to
Theorem 16. In particular, we prove that H(x1:K |y1:K) is expressed in closed form with two
di�erent formulas such that the time complexity for the evaluation of H(x1:K |y1:K) using
the �rst formula is decided by the sparsity pattern of Σ(x1:K), whereas using the second
formula is decided by the sparsity pattern of Σ(x1:K)−1. The reason for this dependence is
that the rest of the matrices in these formulas are sparser than Σ(x1:K) or Σ(x1:K)−1; in
particular, they are block diagonal.

The full characterization of Algorithm 13's time complexity for Gaussian processes and
Gaussian measurement noises follows.
Corollary 7. Consider the Gaussian process model (7.3) and suppose that the measurement
noise is Gaussian: vi,k ∼ N (0,Σ(vi,k)) such that Σ(vi,k) � 0. The time complexity of
Algorithm 13 depends on the sparsity pattern of Σ(x1:K) and Σ(x1:K)−1 as follows.

• Algorithm 13 has time complexity O(n2.4K
∑K

k=1 s
2
k), when either Σ(x1:K) or Σ(x1:K)−1

is exactly sparse (that is, block tri-diagonal).
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• Algorithm 13 has time complexity O(n2.4K2.4
∑K

k=1 s
2
k), when both Σ(x1:K), Σ(x1:K)−1

are dense.

Comparison of Algorithm 13's time complexity for Gaussian processes and Gaus-
sian measurement noises, per Corollary 7, to that of existing scheduling algo-
rithms. The most relevant algorithm to Algorithm 13 is the one provided in [185], where
linear systems with additive process noise and measurement noises with any distribution are
assumed. Algorithm 13 generalizes [185] from linear systems and measurements to Gaus-
sian processes and nonlinear measurements. At the same time, it achieves the same time
complexity as the algorithm in [185] when Σ(x1:K) or Σ(x1:K)−1 is exactly sparse. This is
important since the algorithm in [185] has time complexity lower than the-state-of-the-art
batch estimation sensor scheduling algorithms, such as the algorithm proposed in [135], and
similar to that of the state of the art Kalman �lter scheduling algorithms, such as those
proposed in [5, 119, 132] (in particular, lower for large K).

7.4. Conclusion Remarks & Future Work

In this chapter, we proposed Algorithm 13 for the NP-hard problem of sensor scheduling
for stochastic process estimation. Exploiting the supermodularity and monotonicity of con-
ditional entropy, we proved that the algorithm has an approximation factor 1/2 and linear
complexity in the scheduling horizon. It achieves both the accuracy of batch estimation
scheduling algorithms and, surprisingly, when the information structure of the problem is
sparse, the low time complexity of Kalman �lter scheduling algorithms for linear systems.
This is the case, for example, in applications such as SLAM and target tracking, and for pro-
cesses generated by linear or nonlinear systems corrupted with Gaussian noise. Future work
will focus on an event-triggered version of the scheduling problem, in which the measure-
ment times are decided online based on the available measurements, and on a decentralized
version, in which information is exchanged only among neighboring sensors.

7.5. Appendix: Proof of Results

7.5.1. Proof of Proposition 7

Proof: We �rst show that the conditional probability distribution of x1:K given y1:K is
Gaussian with covariance Σ(x?1:K), and then apply the following lemma:
Lemma 5 (Ref. [181]). Let x ∼ N (µ,Σ) and x ∈ Rm:

H(x) =
1

2
log[(2πe)m det(Σ)].

Speci�cally, due to Assumption 7.6, (x1:K , y1:K) are jointly Gaussian. This has a twofold im-
plication: �rst, the minimum mean square estimator of x1:K given y1:K is linear in y1:K [123,
Proposition E.2]; second, the conditional probability distribution of x1:K given y1:K is Gaus-
sian [124], with covariance Σ(x?1:K). Therefore, due to [123, Proposition E.3], this is also the
covariance of the minimum mean square estimator of x1:K given y1:K . As a result, due to
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Lemma 5:

H(x1:K |y1:K) = Ey1:K=y′1:K

(
H(x1:K |y1:K = y′1:K)

)
= Ey1:K=y′1:K

(
1

2
log[(2πe)nK det(Σ(x?1:K))

)
=
nK log(2πe) + log det(Σ(x?1:K))

2
. (7.9)

We derive a formula for Σ(x?1:K) in the proof of Lemma 8. �

Proof of Theorem 15

Proof: We �rst prove that H(x1:K |S1:K) is a non-increasing and supermodular function in
the choice of the sensors. Then, we prove Theorem 15 by combining these two results and
results on the maximization of submodular functions over matroid constraints [12].

Notation. Given K disjoint �nite sets E1, E2, . . . , EK and Ai, Bi ∈ Ei, we write A1:K �
B1:K to denote that for all i ∈ [K], Ai ⊆ Bi (Ai is a subset of Bi). Moreover, we denote
that Ai ∈ Ei for all i ∈ [K] by A1:K ∈ E1:K . In addition, given A1:K , B1:K ∈ E1:K , we write
A1:K ]B1:K to denote that for all i ∈ [K], Ai ∪Bi (Ai union Bi).
De�nition 22. Consider K disjoint �nite sets E1, E2, . . . , EK . A function h : E1:K 7→ R
is non-decreasing if and only if for all A,B ∈ E1:K such that A � B, h(A) ≤ h(B);
h : E1:K 7→ R is non-increasing if −h is non-decreasing.
Proposition 8. For any �nite K ∈ N, consider K distinct copies of [m], denoted by
R1,R2, . . . ,RK . The estimation error metric H(x1:K |S1:K) : R1:K 7→ R is a non-increasing
function in the choice of the sensors S1:K .

Proof Consider A,B ∈ R1:K such that A � B, and denote by B \ A ≡ {i|i ∈ B, i /∈ A}:
H(x1:K |B) = H(x1:K |A,B \ A) ≤ H(x1:K |A) since conditioning can either keep constant or
decrease the entropy [181]. �
De�nition 23. Consider K disjoint �nite sets E1, E2, . . . , EK . A function h : E1:K 7→ R
is submodular if and only if for all A,B,C ∈ E1:K such that A � B, h(A ] C) − h(A) ≥
h(B ] C)− h(B); h : E1:K 7→ R is supermodular if −h is submodular.
Proposition 9. For any �nite K ∈ N, consider K distinct copies of [m], denoted by
R1,R2, . . . ,RK ; the estimation error metric H(x1:K |S1:K) : R1:K 7→ R is a set supermodular
function in the choice of the sensors S1:K .
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Proof: Let A,B,C ∈ E1:K such that A � B:

H(x1:K |A)−H(x1:K |A ] C) (7.10)

= H(x1:K |A)−H(x1:K |A,C)

= I(x1:K ;C|A) (7.11)

= H(C|A)−H(C|x1:K , A) (7.12)

≥ H(C|B)−H(C|x1:K , B) (7.13)

= I(x1:K ;C|B) (7.14)

= H(x1:K |B)−H(x1:K |B,C) (7.15)

= H(x1:K |B)−H(x1:K |B ] C). (7.16)

Eq. (7.10) and (7.16) follow from our de�nition of ]. (7.11) and (7.12), (7.13) and (7.14),
and (7.14) and (7.15) hold due to the de�nition of mutual information [181]. (7.13) follows
from (7.12) due to two reasons: �rst, H(C|A) ≥ H(C|B), since A � B and conditioning can
either keep constant or decrease the entropy [181]; second, H(C|x1:K , A) = H(C|x1:K , B)
due to the independence of the measurements given x1:K , per Assumption 7.6. �

Proof of Part 1 of Theorem 15: We use the next result from the literature of maximization
of submodular functions over matroid constraints:
De�nition 24. Consider a �nite set E and a collection C of subsets of E. (E , C) is:

• an independent system if and only if:

� ∅ ∈ C, where ∅ denotes the empty set

� for all X ′ ⊆ X ⊆ E, if X ∈ C, X ′ ∈ C.

• a matroid if and only if in addition to the previous two properties:

� for all X ′, X ∈ C where |X ′| < |X|, there exists x /∈ X ′ and x ∈ X such that
X ′ ∪ {x} ∈ C.

Lemma 6 (Ref. [12]). Consider K independence systems {(Ek, Ck)}k∈[K], each the intersec-
tion of at most P matroids, and a submodular and non-decreasing function h : E1:K 7→ R.
There exist a polynomial time greedy algorithm that returns an (approximate) solution S1:K

to:
maximize
S1:K�E1:K

h(S1:K)

subject to Sk ∩ Ek ∈ Ck, k ∈ [K],
(7.17)

that satis�es:
h(O)− h(S1:K)

h(O)− h(∅)
≤ P

1 + P
, (7.18)

where O is an (optimal) solution to (7.17).
Lemma 7. Problem 1 is an instance of (7.17) with P = 1.

Proof: We identify the instance of {Ek, Ck}k∈[K] and h, respectively, that translate (7.17) to
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Problem 1:

Given K distinct copies of [m], denoted by R1,R2, . . . ,RK , �rst consider Ek = Rk and Ck =
{S|S ⊆ Rk, |S| ≤ sk}: (Ek, Ck) satis�es the �rst two points in part 1 of De�nition 24, and
as a result is an independent system. Moreover, by its de�nition, Sk ∩ Ek ∈ Ck if and only
if |Sk| ≤ sk.

Second, for all S1:K � E1:K , consider:

h(S1:K) = −H(x1:K |S1:K).

From Propositions 8 and 9, h(S1:K) is set submodular and non-decreasing. In addition to
Lemma 7, the independence system (Ek, Ck), where Ek = Rk and Ck = {S|S ⊆ Rk, |S| ≤ sk},
satis�es also the point in part 2 of De�nition 24; thereby, it is also a matroid and as a result
P , as in Lemma 6, is 1. � This observation, along
with Lemmas 6 and 7 complete the proof of (5.6), since the adaptation to Problem 1 of the
greedy algorithm in [12, Theorem 4.1] results to Algorithm 13. �

Proof of Part 2 of Theorem 15: Algorithm 13 requires for each k ∈ [K] the application of
Algorithm 14 to (7.8). In addition, each such application requires at most s2

k evaluations of
H(x1:K |y1:K). Therefore, Algorithm 13 has time complexity O(

∑K
k=1 s

2
kT ). � The proof of

Theorem 15 is complete. �

Proof of Theorem 16

Notations. We introduce four notations: �rst, S1:K is the block diagonal matrix with
diagonal elements the sensor selection matrices S1, S2, . . . , SK ; second, C(x1:K) is the block
diagonal matrix with diagonal elements the matrices S1C1, S2C2, . . . , SKCK , where Ck ≡
G(xk) and G(x(t)) ≡ ∂g(x(t))/∂x(t); third, vk is the batch measurement noise vector
(v>1,k, v

>
2,k, . . . , v

>
m,k)

>; and fourth, µ1:K ≡ (µ(t1)>, µ(t2)>, . . . , µ(tK)>)>.

Proof: We �rst derive the two formulas for H(x1:K |y1:K): the �rst formula is expressed in
terms of Σ(x1:K)−1, and the second formula is expressed in terms of Σ(x1:K).
Lemma 8 (Formula of H(x1:K |y1:K) in terms of Σ(x1:K)−1). Consider the start of the k-th
iteration in Algorithm 13. Given the measurements y1:(k−1) up to k, H(x1:K |y1:K) is given
by −T ′1 + nK log(2πe)/2, where:

T ′1 ≡
1

2
log det(Ξ + Σ(x1:K)−1)

Ξ ≡ C(µ̃1:K)>S1:KΣ(v1:K)−1S>1:KC(µ̃1:K)

and µ̃1:K is the maximum a posteriori (MAP) estimate of x1:K given the measurements
y1:(k−1) up to k.
Lemma 9 (Formula of H(x1:K |y1:K) in terms of Σ(x1:K)). Consider the start of the k-th
iteration in Algorithm 13. Given the measurements y1:(k−1) up to k, H(x1:K |y1:K) is given
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by H(x1:K |y1:K) = T1 − T2 + H(x1:K), where:

T1 ≡
1

2

K∑
k=1

log[(2πe)sk det(SkΣ(vk)S
>
k )] (7.19)

T2 ≡
1

2
log[(2πe)

∑K
k=1 sk det(Σ(y1:K))] (7.20)

Σ(y1:K) = S1:KΣ(v1:K)S>1:K + C(µ̃1:K)Σ(x1:K)C(µ̃1:K)>,

and µ̃1:K is the maximum a posteriori (MAP) estimate of x1:K given the measurements
y1:(k−1) up to k.

We complete the proof for each case of Theorem 16:

• Time complexity of each evaluation of H(x1:K |y1:K) when either Σ(x1:K) or Σ(x1:K)−1

is exactly sparse (that is, block tri-diagonal): We present the proof only for the case
where Σ(x1:K)−1 is exactly sparse since the proof for the case where Σ(x1:K) is exactly
sparse is similar. In particular, consider the formula of H(x1:K |y1:K) in Lemma 8: T ′1
involves the log determinant of a matrix that is the sum of two nK × nK sparse ma-
trices: the �rst matrix is block diagonal, and the second one is block tri-diagonal. The
block diagonal matrix is evaluated in O(n2.4K) time, since the determinant of an n×n
matrix is computed in O(n2.4) time using the Coppersmith-Winograd algorithm [97].
Then, T ′1 is evaluated in O(n2.4K) [142, Theorem 2].

• Time complexity of each evaluation of H(x1:K |y1:K) when both Σ(x1:K) and Σ(x1:K)−1

are dense: In this case, T ′1 (and similarly T2 in Lemma 9) is the log determinant of
a dense nK × nK matrix. Therefore, it is evaluated in O((nK)2.4) time, since the
determinant of an n× n matrix is computed in O(n2.4) time using the Coppersmith-
Winograd algorithm [97].

�
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CHAPTER 8 : LQG Control and Sensing Co-design

Linear-Quadratic-Gaussian (LQG) control is concerned with the design of an optimal con-
troller and estimator for linear Gaussian systems with imperfect state information. Standard
LQG control assumes the set of sensor measurements to be fed to the estimator to be given.
However, in many problems arising in networked systems and robotics, one may be interested
in designing a suitable set of sensors for LQG control. In this chapter, we introduce the LQG
control and sensing co-design problem, where one has to jointly design a suitable sensing, es-
timation, and control policy. In particular, we consider two dual instances of the co-design
problem: the sensing-constrained LQG control problem, where the design maximizes the
control performance subject to sensing constraints, and the minimum-sensing LQG con-
trol, where the design minimizes the amount of sensing subject to performance constraints.
We focus on the realistic case in which the sensing design has to be selected among a �nite
set of possible sensing modalities, where each modality is associated with a (possibly) di�er-
ent cost. While we observe that the computation of the optimal sensing design is intractable
in general, we present the �rst scalable LQG co-design algorithms to compute near-optimal
policies with provable sub-optimality guarantees. To this end, (i) we show that a separation
principle holds, which partially decouples the design of sensing, estimation, and control;
(ii) we frame LQG co-design as the optimization of (approximately) supermodular set func-
tions; (iii) we develop novel algorithms to solve the resulting optimization problems; (iv) we
prove original results on the performance of these algorithms and establish connections be-
tween their suboptimality gap and control-theoretic quantities. We conclude the chapter by
discussing two practical applications of the co-design problem, namely, sensing-constrained
formation control and resource-constrained robot navigation.1

8.1. Introduction

Traditional approaches to the control of dynamical systems with partially observable state
assume the choice of sensors used to observe the system to be given [123]. The choice of
sensors usually results from a preliminary design phase in which an expert designer selects
a suitable sensor suite that accommodates estimation requirements (e.g., observability, de-
sired estimation error) and system constraints (e.g., size, cost). However, modern control
applications, from large networked systems to miniaturized robotics systems, pose serious
limitations to the applicability of this traditional paradigm: in particular, in large-scale net-
worked systems (e.g., smart grids, or robot swarms), in which new nodes are continuously
added and removed from the network, a manual re-design of the sensors becomes cumber-
some and expensive, and it is not scalable; in miniaturized robot systems, while the set of
onboard sensors is �xed, it may be desirable to selectively activate only a subset of the sen-
sors during di�erent phases of operation, to minimize power consumption. Overall, in both
applications, although a designer has access to a (possibly large) list of potential sensors,
due to resource constraints (size, weight, power, cost) the designer can utilize only a subset
of them. Thus, the need for online and large-scale sensor selection demands for automated
approaches that e�ciently select a subset of sensors to maximize system performance.

Motivated by the aforementioned need, in this chapter we consider the problem of jointly
1This chapter is based on the paper by Tzoumas et al. [193].
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designing control, estimation, and sensing for systems with partially observable state.

Related work in control theory. Related work in control theory focuses on either the
co-design of estimation and control in presence of communication constraints [123, 194, 195,
196, 197, 198, 199], or on the design of the system's sensing and actuation [5, 20, 52, 54, 60,
102, 119, 200, 201, 202, 203, 204] (sensor and actuator selection). In more detail:

LQG control design: The line of work [123, 194, 195, 196, 197, 198, 199] assumes the set
of sensors and actuators to be given, and either focuses on the co-design of estimation and
control over band-limited communication channels, or investigates the trade-o�s between
communication constraints (e.g., data rate, quantization, delays) and control performance
(e.g., stability) in networked control systems. These works provide results on the impact
of quantization [194], �nite data rates [195, 196], as well as, separation principles for LQG
design with communication constraints [197]. More recent work focuses on privacy con-
straints [198]. In addition, [199] studies rationally inattentive control laws for LQG control
and discusses their e�ectiveness in stabilizing the system. We refer the reader to the sur-
veys [123, 205, 206, 207] for a comprehensive review on LQG control.

Sensor and actuator selection: The line of work [5, 20, 52, 54, 60, 102, 119, 200, 201, 202,
203, 204] focuses on selecting the system's active sensors and actuators, independently of the
control task at hand. In particular, [119] proposes a sensor placement algorithm to maximize
the accuracy of maximum likelihood estimation over static parameters, whereas [5, 20, 54,
102, 200] focus on maximizing the estimation accuracy for non-static parameters; [5, 20, 54,
200] present sensor scheduling algorithms for optimal Kalman �ltering, while [102] presents
sensor scheduling algorithms for optimal batch state estimation (smoothing); [60] considers
�xed-lag smoothing and investigates sensor scheduling and feature selection for vision-based
agile navigation of autonomous robots. Finally, [52, 201, 202, 203, 204] present sensor and
actuator selection algorithms to optimize the average observability and controllability of
systems.

Extending the focus of the aforementioned works, more recent work focuses on the co-design
of control and estimation, as well as, of sensing [208, 209], by augmenting the standard
LQG cost with an information-theoretic regularizer, and by optimizing the sensing capabil-
ities of each of the system's sensors using semi-de�nite programming. The main di�erence
between [208, 209], and our proposal in this chapter is that in [208, 209] the choice of sensors
is arbitrary, rather than being restricted to a �nite set of available sensors.

Related work on set function optimization. The algorithms for sensor and actuator
selection discussed above employ either convex relaxation techniques [20, 54, 119, 200, 202]
or combinatorial optimization techniques [5, 52, 60, 102, 201, 203]. The advantage of the
combinatorial optimization techniques is that they lead to algorithms with provable subop-
timality guarantees and low running time. The literature on combinatorial optimization,
which is more relevant for the discussion in this chapter, includes investigation into (i) sub-
modular optimization subject to cardinality constraints [210]; (ii) submodular optimization
subject to heterogeneous-cost constraints [44, 211, 212]; and (iii) approximately submodular
optimization subject to cardinality constraints [32]. We note that the related literature does
not cover the case of approximately submodular optimization subject to heterogeneous-cost
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constraints, which is indeed the setup of interest for our LQG control and sensing co-design
problems, hence requiring us to develop novel algorithms and results for this case.

Contributions to control theory. We introduce the LQG control and sensing co-design
problem, that involves the joint design of sensing, control, and estimation, by extending
Linear-Quadratic-Gaussian (LQG) control to the case where, besides designing an optimal
controller and estimator, one has to choose a set of sensors to observe the system state.
We consider the realistic case in which the choice of sensors, rather than being arbitrary
(see, e.g., [208]), is restricted to a �nite selection from a set of available sensors. In partic-
ular, in our formulation each available sensor is associated with a cost that quanti�es the
penalty incurred when using that sensor (trivially, if there is no cost associated to using a
sensor, one would always prefer to select and use all available sensors). In more detail, we
consider the general case in which each sensor has a potentially di�erent cost, hence cap-
turing the practical scenarios where each sensor may have a di�erent monetary cost, power
consumption, or bandwidth utilization.

We formulate two dual instances of the LQG co-design problem. The �rst instance, named
sensing-constrained LQG control, involves the joint design of the controller, estimator, and
sensing policies that minimize the LQG objective (quantifying tracking performance and
control e�ort) while satisfying a given constraint on the maximum cost of the selected
sensors. The second instance, named minimum-sensing LQG control, involves the joint
design of the controller, estimator, and sensing that minimizes the cost of the selected
sensors while satisfying a given bound on the LQG performance.

We then leverage a separation principle2 to partially decouple the design of control, esti-
mation, and sensing, and we frame the sensor design subproblem as the optimization of
(approximately) supermodular set functions. While the computation of the optimal sens-
ing strategies is combinatorial in nature, we provide the �rst scalable co-design algorithms,
which retrieve a near-optimal choice of sensors, as well as the corresponding control and
estimation policies. We show that the suboptimality gaps of these algorithms depend on
the supermodularity ratio γf of the set function f appearing in our problem, and we es-
tablish connections between the supermodularity ratio γf and control-theoretic quantities,
providing also a computable lower bound for γf .

Contributions to set function optimization. In proving the aforementioned results, we
extend the literature on supermodular optimization. In particular, (i) we provide the �rst
e�cient algorithms for the optimization of approximately supermodular functions subject to
heterogeneous-cost constraints; and (ii) we improve known suboptimality bounds that also
apply to the optimization of (exactly) supermodular functions: speci�cally, the proposed
algorithm for approximate supermodular optimization with heterogeneous-cost constraints
can achieve in the exactly supermodular case the approximation bound (1− 1/e), which is
superior to the previously established bound 1/2(1− 1/e) in the literature [44].

Application examples. We motivate the importance of the LQG control and sensing co-
2The separation principle leverages standard results in LQG control and follows the line of [208], hence

we do not claim it to be an original contribution.
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design problem, and demonstrate the e�ectiveness of the proposed algorithms in numerical
experiments, by considering two application scenarios, namely, a sensing-constrained forma-
tion control scenario and a resource-constrained robot navigation scenario. In particular, we
present a Monte Carlo analysis for both scenarios, which demonstrates that (i) the proposed
sensor selection strategy is near-optimal, and in particular, the resulting LQG-cost (track-
ing performance) matches the optimal selection in all tested instances for which the optimal
selection could be computed via a brute-force approach; (ii) a more naive selection which
attempts to minimize the state estimation covariance [5] (rather than the LQG cost) has
degraded LQG tracking performance, often comparable to a random selection; and (iii) the
selection of a small subset of sensors using the proposed algorithms ensures an LQG cost
that is close to the one obtained by using all available sensors, hence providing an e�ective
alternative for control under sensing constraints [60].

Comparison with the preliminary results in [213]. This chapter extends our prelim-
inary results [213], and provides a more comprehensive presentation of the LQG co-design
problem, including both sensing-constrained LQG control (introduced in [213]) and the
minimum-sensing LQG control problem (not previously published). Moreover, we general-
ize the original setup in [213] to account for heterogeneous sensor costs (in [213] each sensor
has unit cost) and extend the numerical analysis accordingly. Most of the technical results,
including Theorems 17�19, Proposition 10, as well as Algorithms 16�18 are novel, and have
not been previously published.

Organization of the rest of the chapter. Section 8.2 formulates the LQG control and
sensing co-design problems considered in this chapter. Section 8.3 presents a separation
principle and provides scalable, near-optimal algorithms for the co-design problems. Sec-
tion 8.4 characterizes the running time and approximation performance of the proposed
algorithms, and establishes connections between their suboptimality bounds and control-
theoretic quantities. Section 8.5 presents two practical examples of co-design problems and
provides a numerical analysis of the proposed algorithms. Section 8.6 concludes the chapter.
All proofs are given in the Appendix.

Notation. Lowercase letters denote vectors and scalars (e.g., v), and uppercase letters
denote matrices (e.g., M). We use calligraphic fonts to denote sets (e.g., S). The identity
matrix of size n is denoted with In (the dimension index is omitted when it is clear from the
context). For a matrixM and a vector v of appropriate dimension, we de�ne ‖v‖2M , v>Mv.
For matrices M1,M2, . . . ,Mk, we let diag (M1,M2, . . . ,Mk) be the block diagonal matrix
with diagonal blocks M1,M2, . . . ,Mk.

8.2. LQG Control and Sensing Co-design: Problem Statement

In this section we formalize the LQGcontrol and sensing co-design problem considered in
this chapter. In particular, we present two �dual� statements of the co-design problem:
the sensing-constrained LQGcontrol, where the design maximizes the control performance
subject to sensing constraints, and the minimum-sensing LQGcontrol, where the design
minimizes sensing subject to performance constraints.
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8.2.1. System, sensors, and control policies

We start by introducing the notions of system, sensors, and control policies. These notions
are standard, except that only a subset of sensors is actually used to observe the system's
state (these are referred to as �active� sensors in De�nition 25), and that we associate a cost
to each sensor (De�nition 26).

System We consider a standard discrete-time (possibly time-varying) linear system with
additive Gaussian noise:

xt+1 = Atxt +Btut + wt, t = 1, 2, . . . , T, (8.1)

where xt ∈ Rn represents the state of the system at time t, ut ∈ Rmt represents the control
action, wt represents the process noise, At and Bt are matrices of suitable dimensions, and T
is a �nite horizon. In addition, we consider the system's initial condition x1 to be a Gaussian
random variable with covariance Σ1|0, and wt to be a Gaussian random variable with mean
zero and covariance Wt, such that wt is independent of x1 and wt′ for all t′ = 1, 2, . . . , T ,
t′ 6= t.

Sensors We consider the case in which we have a (potentially large) set of available sensors,
which can take noisy linear observations of the system's state. In particular, let V be a set
of indices such that each index i ∈ V uniquely identi�es a sensor that can be used to observe
the state of the system. We consider sensors of the form

yi,t = Ci,txt + vi,t, i ∈ V, (8.2)

where yi,t ∈ Rpi,t represents the measurement of sensor i at time t, Ci,t is a sensing matrix
of suitable dimension, and vi,t represents the measurement noise of sensor i. We assume vi,t
to be a Gaussian random variable with mean zero and positive de�nite covariance Vi,t, such
that vi,t is independent of x1, and of wt′ for any t′ 6= t, and independent of vi′,t′ for all t′ 6= t,
and any i′ ∈ V, i′ 6= i.

In this chapter we are interested in the case in which we cannot use all the available sensors
and, as a result, we need to select a convenient subset of sensors in the set V to meet given
speci�cations on the control performance (formalized in Problem 2 and Problem 3 below).
De�nition 25 (Active sensor set and measurement model). Given a set of available sensors
V, we say that S ⊆ V is an active sensor set if we can observe the measurements from each
sensor i ∈ S for all t = 1, 2, . . . , T . Given an active sensor set S = {i1, i2 . . . , i|S|}, we
de�ne the following quantities

yt(S) , [y>i1,t, y
>
i2,t, . . . , y

>
i|S|,t

]>, (8.3)

Ct(S) , [C>i1,t, C
>
i2,t, . . . , C

>
i|S|,t

]>, (8.4)

Vt(S) , diag
(
Vi1,t, Vi2,t, . . . , Vi|S|,t

)
, (8.5)
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which lead to the de�nition of the measurement model:

yt(S) = Ct(S)xt + vt(S), (8.6)

where vt(S) is a zero-mean Gaussian noise with covariance Vt(S). Despite the availability
of a possibly large set of sensors V, our observer will only have access to the measurements
produced by the active sensors.

In this chapter we focus on the case where each sensor in the set of available sensors V
is associated with a (possibly di�erent) cost, which captures, for instance, the sensor's
monetary cost, its power consumption, or its bandwidth utilization.
De�nition 26 (Cost of sensor and cost of active sensor set). Given a set of available sensors
V, we denote the cost of sensor i ∈ V by c(i)≥ 0. Moreover, we denote the cost of an active
sensor set S ⊆ V by c(S) and set it equal to the sum of the sensor costs c(i) for all active
sensors i ∈ S:

c(S),
∑
i∈S

c(i). (8.7)

The following paragraph formalizes how the choice of the active sensors a�ects the control
policies.

Control policies We consider control policies ut for all t = 1, 2, . . . , T that are only
informed by the measurements collected by the active sensors:

ut = ut(S) = ut
(
y1(S), y2(S), . . . , yt(S)

)
, t = 1, 2, . . . , T.

Such policies are called admissible.

8.2.2. LQG co-design problems

The LQGco-design problem considered in this chapter consists in the joint design of sensing,
estimation, and control strategies to meet given design speci�cations. We consider two dif-
ferent types of speci�cations that lead to two co-design problems, named sensing-constrained
LQGcontrol (Problem 2) and minimum-sensing LQGcontrol (Problem 3).
Problem 2 (Sensing-constrained LQGcontrol). Given a system, a set of available sensors
V, and a sensor budget b ≥ 0, �nd a sensor set S ⊆ V to be active across all times t =
1, 2, . . . , T , with cost c(S) at most b, and an admissible control policy u1:T (S) , {u1(S),
u2(S), . . . , uT (S)} to minimize the LQGcost function, that is:

min
S ⊆ V,
u1:T (S)

T∑
t=1

E
[
‖xt+1(S)‖2Qt + ‖ut(S)‖2Rt

]
, s.t. c(S) ≤ b, (8.8)

where the state-cost matrices Q1, Q2, . . . , QT are positive semi-de�nite, the control-cost ma-
trices R1, R2, . . . , RT are positive de�nite, and the expectation is taken with respect to the ini-
tial condition x1, the process noises w1, w2, . . . , wT , and the measurement noises v1(S), v2(S),
. . . , vT (S).
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The sensing-constrained LQGcontrol Problem 2 models the practical case in which one
cannot use all the available sensors due to power, cost, or bandwidth constraints, and needs
to compute a suitable set of active sensors and controls that maximize LQG performance.
Note that if the budget constraint is relaxed, all sensors are active (no penalty is incurred
in using all sensors) and Problem 2 reduces to standard LQG control.

While Problem 2 imposes constraints on the maximum amount of sensing, the following
�dual� problem formulation imposes a constraint on the desired LQGperformance.
Problem 3 (Minimum-sensing LQG control). Given a system, a set of available sensors
V, and an upper bound κ > 0 for the LQGcost, �nd a minimum-cost sensor set S ⊆ V to
be active across all times t = 1, 2, . . . , T and an admissible control policy u1:T (S) , {u1(S),
u2(S), . . . , uT (S)} such that the LQG cost is at most κ:

min
S ⊆ V,
u1:T (S)

c(S), s.t.
T∑
t=1

E
[
‖xt+1(S)‖2Qt + ‖ut(S)‖2Rt

]
≤ κ, (8.9)

where the state-cost matrices Q1, Q2, . . . , QT are positive semi-de�nite, the control-cost ma-
trices R1, R2, . . . , RT are positive de�nite, and the expectation is taken with respect to the ini-
tial condition x1, the process noises w1, w2, . . . , wT , and the measurement noises v1(S), v2(S),
. . . , vT (S).

The minimum-sensing LQGcontrol Problem 3 models the practical case in which one wants
to design a system that guarantees a desired level of performance, while incurring in the
smallest sensing cost (again the cost can be monetary or connected to the use of limited
resources).
Remark 10 (Case of uniform-cost sensors). When all sensors i ∈ V have the same cost ,
say c(i) = c̄ > 0, the sensor budget constraint can be rewritten as a cardinality constraint,
since:

c(S) ≤ b ⇔
∑
i∈S

c(i) ≤ b ⇔ |S|c̄ ≤ b ⇔ |S| ≤ b

c̄
, (8.10)

which bounds the cardinality of the set of active sensors. Similarly, under the uniform-cost
assumption, the objective of Problem 3 becomes the minimal cardinality objective |S|.

Problem 2 and Problem 3 generalize the imperfect state-information LQGcontrol problem
from the case where all sensors in the set of available sensors V are active, and only optimal
control policies are to be found [123, Chapter 5], to the case where only a few sensors in V
can be active, and both optimal sensors and control policies are to be found, jointly.

While we noticed that admissible control policies depend on the active sensor set S, it is
worth noticing that this in turn implies that the state evolution will also depend on S, per
the system's dynamics eq. (8.1); for this reason we write xt+1(S) in eqs. (8.8) and (8.9).
Thereby, the intertwining between control and sensing calls for a joint design strategy and,
as a result, in the following section we focus on the design of a jointly optimal control and
sensing solution to Problem 2 and Problem 3.
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8.3. Co-design Principles and E�cient Algorithms

In this section we �rst present a separation principle that decouples sensing, estimation,
and control, and allows designing them in cascade (Section 8.3.1). We then present scal-
able algorithms for the sensing and control design in both Problem 2 (Section 8.3.2) and
Problem 3 (Section 8.3.3). Theoretical guarantees bounding the suboptimality gap of the
proposed algorithms are given in Section 8.4.

8.3.1. Separability of optimal sensing and control design

We characterize the jointly optimal control and sensing solutions for Problem 2 and Prob-
lem 3, and prove they can be found in two separate steps, where �rst the sensing design is
computed, and second the control design is found (Theorem 17).
Theorem 17 (Separability of optimal sensing and control design). For any active sensor
set S ⊆ V, let x̂t(S) be the Kalman estimator of the state xt, i.e.,

x̂t(S) , E[xt|y1(S), y2(S), . . . , yt(S)],

and Σt|t(S) be x̂t(S)'s error covariance, i.e., Σt|t(S) , E[(x̂t(S) − xt)(x̂t(S) − xt)>] [123,
Appendix E]. In addition, let the matrices Θt and Kt be the solution of the following backward
Riccati recursion

St = Qt +Nt+1,

Nt = A>t (S−1
t +BtR

−1
t B>t )−1At,

Mt = B>t StBt +Rt,

Kt = −M−1
t B>t StAt,

Θt = K>t MtKt,

(8.11)

with boundary condition NT+1 = 0 (notably, all matrices in eq. (8.11) are independent of
the active sensor set S).

1. (Separability in Problem 2) Let the sensor set S? and the controllers u?1, u
?
2, . . . , u

?
T be

a solution to the sensing-constrained LQG Problem 2. Then, S? and u?1, u
?
2, . . . , u

?
T

can be computed in cascade as follows:

S? ∈ argmin
S⊆V

T∑
t=1

tr[ΘtΣt|t(S)], s.t. c(S) ≤ b, (8.12)

u?t = Ktx̂t(S?), t = 1, . . . , T. (8.13)

2. (Separability in Problem 3) Let the sensor set S? and the controllers u?1, u
?
2, . . . , u

?
T

be a solution to the minimum-sensing LQG Problem 3. Moreover, de�ne the constant
κ̄ , κ − tr

(
Σ1|0N1

)
−
∑T

t=1 tr (WtSt). Then, S? and u?1, u
?
2, . . . , u

?
T can be computed
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Algorithm 15 Joint Sensing and Control design for Problem 2.

Input: Time horizon T , available sensor set V, sensor selection budget b, covariance Σ1|0
of initial condition x1; for all t = 1, 2, . . . , T , system matrix At, input matrix Bt, pro-
cess noise covariance Wt, and LQG cost matrices Qt and Rt; for all sensors i ∈ V,
measurement matrix Ci,t, measurement noise covariance Vi,t, and sensor cost c(i).

Output: Active sensors Ŝ, and controls û1, û2, . . . , ûT .
1: Compute the matrices Θ1,Θ2, . . . ,ΘT using the backward Riccati recursion in eq. (8.11).
2: Return the sensor set Ŝ as the sensor set returned by Algorithm 16, which �nds a

(possibly approximate) solution to the optimization problem in eq. (9.10);
3: Compute the matricesK1,K2, . . . ,KT using the backward Riccati recursion in eq. (8.11).
4: At time t = 1, 2, . . . , T , compute the Kalman estimate of the state xt, i.e., the estimate:

x̂t , E[xt|y1(Ŝ), y2(Ŝ), . . . , yt(Ŝ)];

5: At time t = 1, 2, . . . , T , return the control ût = Ktx̂t.

in cascade as follows:

S? ∈ argmin
S⊆V

c(S), s.t.
T∑
t=1

tr[ΘtΣt|t(S)] ≤ κ̄, (8.14)

u?t = Ktx̂t(S?), t = 1, . . . , T. (8.15)

Remark 11 (Certainty equivalence principle). The control gain matrices K1,K2, . . . ,KT

are the same as the ones that make the controllers (K1x1, K1x2, . . . ,KTxT ) optimal for
the perfect state-information version of Problem 2, where the state xt is known to the con-
trollers [123, Chapter 4].

Theorem 17 decouples the design of the sensing from the controller design. In particular, it
suggests that once an optimal sensor set S? is found, then the optimal controllers are equal
to Ktx̂t(S?), which correspond to the standard LQG control policy. This should not come
as a surprise, since for a given sensing strategy, Problem 2 reduces to standard LQG control.
Moreover, for a given sensor set, Problem 3 becomes a feasibility problem and, as a result,
admits multiple controls that satisfy the LQG cost bound; one such set of controls are the
control actions computed in eq. (8.15), since they minimize the LQG cost and, hence, they
also belong to Problem 3's feasible set whenever Problem 3 admits a solution.

We conclude the section with a remark providing an intuitive interpretation of the sensor
design steps in eqs. (8.12) and (8.14) for Problem 2 and Problem 3, respectively.
Remark 12 (Control-aware sensor design). In order to provide insight on the function
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Algorithm 16 Sensing design for Problem 2.

Input: Time horizon T , available sensor set V, sensor selection budget b, covariance Σ1|0 of
initial condition x1, and for all t = 1, 2, . . . , T and any sensor i ∈ V, matrix Θt, process
noise covariance Wt, measurement matrix Ci,t, measurement noise covariance Vi,t, and
sensor cost c(i).

Output: Sensor set Ŝ.
1: Ŝ1 ← arg mini∈V,c(i)≤b

∑T
t=1 tr[ΘtΣt|t({i})];

2: Ŝ2 ← ∅; V ′ ← V;
3: while V ′ 6= ∅ and c(Ŝ2) ≤ b do
4: for all a ∈ V ′ do
5: Ŝ2,α ← Ŝ2 ∪ {a}; Σ1|0(Ŝ2,α)← Σ1|0;
6: for all t = 1, . . . , T do

7: Σt|t(Ŝ2,α)←
8: [Σt|t−1(Ŝ2,α)−1 + Ct(Ŝ2,α)>Vt(Ŝ2,α)−1Ct(Ŝ2,α)]−1;
9: Σt+1|t(Ŝ2,α)← AtΣt|t(Ŝ2,α)A>t +Wt;
10: end for
11: gaina ←

∑T
t=1 tr{Θt[Σt|t(Ŝ2)− Σt|t(Ŝ2,α)]};

12: end for
13: s← arg maxa∈V ′ [gaina/c(a)];
14: Ŝ2 ← Ŝ2 ∪ {s};
15: V ′ ← V ′ \ {s};
16: end while
17: if c(Ŝ2) > b then
18: Ŝ2 ← Ŝ2 \ {s};
19: end if
20: Ŝ ← arg minS∈{Ŝ1,Ŝ2}

∑T
t=1 tr[ΘtΣt|t(S)].

∑T
t=1 tr[ΘtΣt|t(S)] appearing in in eqs. (8.12) and (8.14), we rewrite it as:

T∑
t=1

tr[ΘtΣt|t(S)]=
T∑
t=1

E
(
tr{[xt − x̂t(S)]>Θt[xt − x̂t(S)]}

)
=

T∑
t=1

E
(
‖Ktxt −Ktx̂t(S)‖2Mt

)
, (8.16)

where in the �rst line we used the fact that Σt|t(S) = E
[
(xt − x̂t(S))(xt − x̂t(S))>

]
, and in

the second line we substituted the de�nition of Θt = K>t MtKt from eq. (8.11).

From eq. (8.16), it is clear that each term tr[ΘtΣt|t(S)] captures the expected mismatch
between the imperfect state-information controller ut(S) = Ktx̂t(S) (which is only aware of
the measurements from the active sensors) and the perfect state-information controller Ktxt.
This is an important distinction from the existing sensor selection literature. In particular,
while standard sensor selection attempts to minimize the estimation covariance, for instance
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by minimizing
T∑
t=1

tr[Σt|t(S)] ,
T∑
t=1

E
(
‖xt − x̂t(S)‖22

)
, (8.17)

the proposed LQG cost formulation selectively minimizes the estimation error focusing on
the states that are most informative for control purposes. For instance, the contribution to
the total control mismatch in eq. (8.16) of all xt − x̂t(S) in the null space of Kt is zero;
accordingly, the proposed sensor design approach has no incentive in activating sensors to
observe states which are irrelevant for control purposes. Overall, the importance of a state
for control purposes is indeed captured by the weighting matrix Θt. Hence, in contrast to
minimizing the cost function in eq. (8.17), minimizing the cost function in eq. (8.16) results
in a control-aware sensing design.

8.3.2. Scalable near-optimal co-design algorithms for sensing-constrained LQG control (Prob-
lem 2)

This section proposes a practical algorithm for the sensing-constrained LQG control Prob-
lem 2. The pseudo-code of the algorithm is presented in Algorithm 15. Algorithm 15 follows
the result of Theorem 17 and jointly designs sensing and control by �rst computing an active
sensor set (Algorithm 15's lines 1-2) and then computing a control policy (Algorithm 15's
lines 3-5). We discuss each step of the design below.

Near-optimal sensing design for Problem 2. Theorem 17 implies that an optimal sen-
sor design for Problem 2 can be computed by solving the optimization problem in eq. (8.12).
To this end, Algorithm 15 (line 1) �rst computes the matrices Θ1,Θ2, . . . ,ΘT , which appear
in the objective function of the optimization problem in eq. (8.12) and, as result, they are
necessary for its evaluation. Next, since the optimization problem in eq. (8.12) is combinato-
rial in nature, because it requires to select a subset of sensors out of all the available sensors
in V that has sensor cost at most b and induces the smallest LQG cost, Algorithm 15's line 2
proposes a greedy algorithm, whose pseudo-code is given in Algorithm 16, to compute a
(possibly approximate) solution to the problem in eq. (8.12). Our interest towards Algo-
rithm 16 is motivated by that it is scalable and provably close to the solution of the problem
in eq. (8.12) (in Section 8.4 we quantify its running time and provide sub-optimality bounds
for its performance).

The steps that Algorithm 16 follows to compute a (possibly approximate) solution to the
problem in eq. (8.12) are as follows: �rst, Algorithm 16 creates two candidate active sensor
sets Ŝ1 and Ŝ2 (lines 1-2), of which only one will be selected as the (possibly approximate)
solution to the problem in eq. (8.12) (line 20). In more detail, Algorithm 16's line 1 lets the
set Ŝ1 be composed of a single sensor, namely the sensor i ∈ V that achieves the smallest
value of the objective function in eq. (8.12) and having cost not exceeding the sensor selection
budget (c(i) ≤ b). Then, Algorithm 16's line 2 initializes the candidate active sensor set Ŝ2

with the empty set, and after the construction of the set Ŝ2 in Algorithm 16's lines 3�19
(which are explained below), Algorithm 16's line 20 computes which of the two sets Ŝ1 and
Ŝ2 achieves the smallest value for the objective function in eq. (8.12), and returns this set
as the (possibly approximate) solution to the optimization problem in eq. (8.12).
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Algorithm 17 Joint Sensing and Control design for Problem 3.

Input: Time horizon T , available sensor set V, LQG-cost bound κ, covariance Σ1|0 of
initial condition x1; for all t = 1, 2, . . . , T , system matrix At, input matrix Bt, LQG cost
matrices Qt and Rt, process noise covarianceWt; and for all sensors i ∈ V, measurement
matrix Ci,t, measurement noise covariance Vi,t, and sensor cost c(i).

Output: Active sensors Ŝ, and controls û1, û2, . . . , ûT .
1: Compute the matrices Θ1,Θ2, . . . ,ΘT using the backward Riccati recursion in eq. (8.11).
2: Return the sensor set Ŝ as the sensor set returned by Algorithm 18, which �nds a

(possibly approximate) solution to the optimization problem in eq. (8.9) ;
3: Compute the matricesK1,K2, . . . ,KT using the backward Riccati recursion in eq. (8.11).
4: At time t = 1, 2, . . . , T , compute the Kalman estimate of the state xt, i.e., the estimate:

x̂t , E[xt|y1(Ŝ), y2(Ŝ), . . . , yt(Ŝ)];

5: At time t = 1, 2, . . . , T , return the control ût = Ktx̂t.

Lines 3�19 in Algorithm 16 populate the set Ŝ2 as follows: at each iteration of the �while
loop� (lines 3-16) a sensor is greedily added to the set Ŝ2, as long as Ŝ2's sensor cost does
not exceed the sensor selection budget b. In particular, for each available sensor (the set
V ′ contains the available sensors, excluding the ones already included in Ŝ2), the �for loop�
(lines 4-12) computes �rst the estimation covariance resulting by adding the sensor to Ŝ2,
and second the corresponding marginal gain in the objective function in eq. (8.12) (line 11).
Then, the sensor that induces the largest sensor-cost-normalized marginal gain is selected
(line 13), and it is added to the current set Ŝ2 (line 14). Finally, the �if� statement (lines 17-
19) ensures that the constructed set Ŝ2 has sensor cost at most b, by possibly removing the
sensor that was added in Ŝ2 during the last iteration of the �while� loop in lines 3-16.

Control design for Problem 2. Theorem 17 implies that given an active sensor set,
the controls for Problem 2 can be computed according to the eq. (8.13). To this end,
Algorithm 15 �rst computes the matrices K1,K2, . . . ,KT (line 3), and then, at each time
t = 1, 2, . . . , T , the Kalman estimate of the current state xt (line 4), and the corresponding
control (line 5).

8.3.3. Scalable near-optimal co-design algorithms for minimum-sensing LQG control (Prob-
lem 3)

This section proposes a practical algorithm for the minimum-sensing LQG control Problem 3.
The pseudo-code of the algorithm is presented in Algorithm 17. Algorithm 17 follows the
result of Theorem 17 and jointly designs sensing and control by �rst computing an active
sensor set (Algorithm 17's lines 1-2) and then computing a control policy (Algorithm 17's
lines 2-5). We discuss the �rst step (sensor design) in the rest of this section, while the
second step (control design) is as in Algorithm 15's line 2, and is explained in Section 8.3.2.

Near-optimal sensing design for Problem 3. Theorem 17 implies that an optimal sen-
sor design for Problem 3 can be computed by solving the optimization problem in eq. (8.14).
To this end, similarly to Algorithm 15's line 1, Algorithm 17's line 1 computes the matrices
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Θ1,Θ2, . . . ,ΘT , which are necessary for the evaluation of the cost function appearing in
eq. (8.14). Next, Algorithm 17's line 2 calls Algorithm 18 to �nd a (possibly approximate)
solution to the optimization problem in eq. (8.14). Analogously to the previous section,
Algorithm 18 is a greedy algorithm that returns a near-optimal solution for the problem in
eq. (8.14). The running time and the sub-optimality bounds of the algorithm are analyzed
in Section 8.4.

Algorithm 18 computes a (possibly approximate) solution to the optimization problem in
eq. (8.14) as follows: �rst, Algorithm 18 de�nes the constant κ̄ (line 1), appearing in the
de�nition of the optimization problem in eq. (8.14), and then initializes the sensor set Ŝ
with the empty set (line 2). Afterwards, Algorithm 18 populates Ŝ in lines 3�16 using the
following steps: at each iteration of the �while loop� (lines 3-16) a sensor is greedily added
to the set Ŝ, as long as Problem 3's LQG-cost bound κ has not been met, which eq. (8.14)
guarantees to be equivalent to checking whether the second condition in Algorithm 18's line 3
holds. In particular, for each sensor in V ′ (set of available sensors, excluding the ones already
included in Ŝ) the �for loop� (lines 4-12) computes �rst the estimation covariance resulting by
adding the sensor to Ŝ, and then the corresponding marginal gain in the objective function
in eq. (8.12) (line 11). Then, the sensor that induces the largest sensor-cost-normalized
marginal gain is selected (line 13), and added to the current candidate active set Ŝ (line 14).
Finally, the added sensor s is removed from V ′ (line 15).

In the following section we characterize the approximation and running-time performance
of Algorithm 15 and Algorithm 17 for Problem 2 and Problem 3, respectively.

8.4. Performance guarantees for LQG Co-Design

We prove that Algorithm 15 and Algorithm 17 are the �rst scalable algorithms for the joint
sensing and control design Problem 2 and Problem 3, respectively, and that they achieve
an objective value that is close to the optimal. We start by introducing the notion of su-
permodularity ratio (Section 8.4.1), which will enable to bound the sub-optimality gap of
Algorithm 15 (Section 8.4.2) and Algorithm 17 (Section 8.3.3). We then establish connec-
tions between the supermodularity ratio and control-theoretic quantities (Section 8.4.4).

8.4.1. Supermodularity ratio of monotone functions

This section introduces the notion of supermodularity ratio of a monotone set function
(De�nition 29). We start by de�ning the notions of monotonicity (De�nition 27) and of
supermodularity (De�nition 28).
De�nition 27 (Monotonicity). Consider any �nite set V. The set function f : 2V 7→ R is
non-increasing if and only if for any sets A ⊆ B ⊆ V, it holds f(A) ≥ f(B).
De�nition 28 (Supermodularity [70, Proposition 2.1]). Consider any �nite set V. The set
function f : 2V 7→ R is supermodular if and only if for any sets A ⊆ B ⊆ V, and any
element v ∈ V, it holds f(A)−f(A ∪ {v}) ≥ f(B)−f(B ∪ {v}).

In words, a set function f is supermodular if and only if it satis�es the following diminishing
returns property: for any element v ∈ V, the marginal drop f(A) − f(A ∪ {v}) diminishes
as the set A grows; equivalently, for any A ⊆ V and v ∈ V, the drop f(A) − f(A ∪ {v})
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Algorithm 18 Sensing design for Problem 3.

Input: Time horizon T , available sensor set V, LQGperformance bound κ, covariance Σ1|0
of initial condition x1, and for all t = 1, 2, . . . , T and any sensor i ∈ V, matrix Θt, process
noise covariance Wt, measurement matrix Ci,t, measurement noise covariance Vi,t, and
sensor cost c(i).

Output: Sensor set Ŝ.
1: κ̄← κ− tr

(
Σ1|0N1

)
−
∑T

t=1 tr (WtSt)

2: Ŝ ← ∅; V ′ ← V;
3: while V ′ 6= ∅ and

∑T
t=1tr[ΘtΣt|t(Ŝ)] > κ̄ do

4: for all a ∈ V ′ do
5: Ŝα ← Ŝ ∪ {a}; Σ1|0(Ŝα)← Σ1|0;
6: for all t = 1, . . . , T do

7: Σt|t(Ŝα)←
8: [Σt|t−1(Ŝα)−1 + Ct(Ŝα)>Vt(Ŝα)−1Ct(Ŝα)]−1;
9: Σt+1|t(Ŝα)← AtΣt|t(Ŝα)A>t +Wt;
10: end for
11: gaina ←

∑T
t=1 tr{Θt[Σt|t(Ŝ)− Σt|t(Ŝα)]};

12: end for
13: s← arg maxa∈V ′ [gaina/c(a)];
14: Ŝ ← Ŝ ∪ {s};
15: V ′ ← V ′ \ {s};
16: end while

is non-increasing.
De�nition 29 (Supermodularity ratio). Consider any �nite set V, and a non-increasing
set function f : 2V 7→ R. We de�ne the supermodularity ratio of f as

γf , min
A⊆B⊆V,v∈V\B

f(A)− f(A ∪ {v})
f(B)− f(B ∪ {v})

.

In words, the supermodularity ratio of a monotone set function f measures how far f is
from being supermodular. In particular, as per De�nition 29 of the supermodularity ratio,
the supermodularity ratio γf takes values in [0, 1], and

• γf = 1 if and only if f is supermodular, since if γf = 1, then De�nition 29 implies
f(A)−f(A∪{v}) ≥ f(B)−f(B∪{v}), i.e., the drop f(A)−f(A∪{v}) is non-increasing
as new elements are added in the set A.

• 0 <γf < 1 if and only if f is approximately supermodular, in the sense that if γf <
1, then De�nition 29 implies f(A) − f(A ∪ {v}) ≥ γf [f(B)− f(B ∪ {v})], i.e., the
drop f(A) − f(A ∪ {v}) is approximately non-increasing as new elements are added
in A; speci�cally, the ratio γf captures how much ones needs to discount the drop
f(B) − f(B ∪ {v}), such that f(A) − f(A ∪ {v}) remains greater then, or equal to,
f(B)− f(B ∪ {v}).
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We next use the above supermodularity ratio notion to quantify the sub-optimality gap of
Algorithm 15 and Algorithm 17.

8.4.2. Performance analysis for Algorithm 15

In this section we quantify Algorithm 15's running time and approximation performance
(Theorem 18 below), using the notion of supermodularity ratio introduced in Section 8.4.1.
Theorem 18 (Performance of Algorithm 15). For any active sensor set S ⊆ V, and any
admissible control policies u1:T (S) , {u1(S), u2(S), . . . , uT (S)}, let h[S, u1:T (S)] be Prob-
lem 2's cost function, i.e.,

h[S, u1:T (S)] ,
∑T

t=1 E(‖xt+1(S)‖2Qt + ‖ut(S)‖2Rt).

Further de�ne the following set-valued function and scalar:

g(S) , minu1:T (S) h[S, u1:T (S)], (8.18)

g? , minS⊆V,u1:T (S) h[S, u1:T (S)], s.t. c(S) ≤ b;

that is, given a sensor set S ⊆ V, g(S) is the optimal value of h[S, u1:T (S)] across all
admissible control policies u1:T (S), and g? is the optimal objective value of Problem 2.

The following results hold true:

1. (Approximation quality) Algorithm 15 returns an active sensor set Ŝ ⊆ V having cost
c(Ŝ) at most b, and the corresponding admissible control policies u1:T (Ŝ). The active
sensors Ŝ and controls u1:T (Ŝ) are such that:

h[∅, u1:T (∅)]− h[Ŝ, u1:T (Ŝ)]

h[∅, u1:T (∅)]− g?
≥

max
[γg

2

(
1− e−γg

)
, 1− e−γgc(Ŝ)/b

]
,

(8.19)

where γg is the supermodularity ratio of g(S) in eq. (8.18).

2. (Running time) Algorithm 15 runs in O(|V|2Tn2.4) time, where n is the system size
in eq. (8.1).

Note that the term h[∅, u1:T (∅)]− h[Ŝ, u1:T (Ŝ)] quanti�es the marginal gain of selecting the
set Ŝ, and ineq. (8.19) guarantees that the marginal gain is su�ciently large compared to
the optimal marginal gain h[∅, u1:T (∅)]− g?, in the sense that their ratio is lower bounded by
the maximum between γg

2 (1− e−γg) and 1− e−γgc(Ŝ)/b. We further comment on the bound
in ineq. (8.19) in the following proposition and remarks.
Proposition 10 (Extension of the bound in ineq. (8.19) to sensor sets of any cost). Consider
the modi�ed version of Algorithm 15 where Algorithm 16's �if � statement (lines 17-19) is
removed. Then, Algorithm 15's approximation performance bound remains as in ineq. (8.19),
even when Algorithm 15 returns a set Ŝ of cost c(Ŝ) that exceeds Problem 2's budget b.
Remark 13 (Comparison of bounds in ineq. (8.19)). In Fig. 11 we plot Algorithm 15's
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Figure 6: Plot of fi(γg) (i = 1, 2, 3, 4) versus supermodularity ratio γg of a monotone
supermodular function g. By De�nition 29 of supermodularity ratio, γg takes values between
0 and 1. As γg increases from 0 to 1 then: f1(γg) increases from 0 to 1/2(1− e−1) ' 0.32;
f3(γg) increases from 0 to 1−e−2/5 ' 0.32; f2(γg) increases from 0 to 1−e−1 ' 0.64; f4(γg)
increases from 0 to 1− e−2 ' 0.87.

approximation performance bounds in ineq. (8.19), namely the bound γg/2 (1− e−γg) (func-
tion f1(γg) in Fig. 11) and the bound 1 − e−γgc(Ŝ)/b (functions f2(γg), f3(γg), and f4(γg)

in Fig. 11, which correspond to c(Ŝ)/b equal to 2/5, 1, and 2, respectively; we note that
for the latter case where c(Ŝ)/b is equal to 2, we consider that Algorithm 15 has been mod-
i�ed per Proposition 10 to allow for active sensor sets with costs that exceed the selection
budget b). We make two observations from Fig. 11: �rst, we observe that for ratio values

c(Ŝ)/b > 2/5, the bound 1− e−γgc(Ŝ)/b in ineq. (8.19) dominates (i.e., is always larger �for
all values of γg� than) the bound γg/2 (1− e−γg) (compare plot of f2(γg) against that of

f1(γg)). Also, we observe from Fig. 11 that as the cost ratio c(Ŝ)/b and the supermodularity

ratio γg increase, the bound 1− e−γgc(Ŝ)/b tends to 1 (see plot of f4(γg)).
Remark 14 (Novelty of Algorithm 16 and of bound in ineq. (8.19)). Algorithm 16 (used
as a subroutine in Algorithm 15) is the �rst scalable algorithm with provable suboptimality
guarantees for the minimization of a (possibly) approximately supermodular set function
g, that is, a function g with supermodularity ratio γg (possibly) less than 1, subject to a
heterogeneous-cost constraint. This generalizes existing algorithms for optimization with
heterogeneous-cost constraints, which only focus on the special case of (exactly) supermodular
functions (see, e.g., [44]), that is, functions g with supermodularity ratio γg (exactly) equal
to 1.

In addition, Algorithm 16 o�ers a tighter approximation performance bound for the opti-
mization of (exactly) supermodular functions. Speci�cally, although the previous algorithms
for the optimization of supermodular functions (see, e.g., [44]) have the same running time
as Algorithm 16 and achieve the approximation performance bound 1/2

(
1− e−1

)
, which is
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the same as Algorithm 16's performance bound γg/2 (1− e−γg) for γg = 1 (that is, for su-

permodular functions), Algorithm 16 also achieves the cost-dependent bound 1 − e−γgc(Ŝ)/b,
which for γg = 1 is superior to 1/2

(
1− e−1

)
when the cost ratio c(Ŝ)/b is more than 2/5

(Remark 13).

Theorem 18 guarantees that Algorithm 15 achieves an objective value for Problem 2 that is
�nitely close to optimal, whenever the supermodularity ratio γg is non-zero. In more detail,
the extreme values of the bound in ineq. (8.19), as well as their interpretation with respect
to Algorithm 15's approximation performance are as follows: the maximum value of the
bounds in ineq. (8.19) is 1, which is achieved for supermodularity ratio γg = 1 and ratio
c(Ŝ)/b −→ +∞; as discussed in Proposition 10, the latter is possible when Algorithm 15 is
modi�ed to return an active sensor set with cost larger than b. On the other hand, when
Algorithm 15 is not modi�ed to return an active sensor set with cost larger than the budget
b, and it always returns a sensor set with cost at most b, then the maximum value the
bound in ineq. (8.19) can take is 1− 1/e (for γg = 1 and c(Ŝ) = b); notably, this is the best
bound one can achieve in the worst-case in polynomial time even for supermodular objective
functions [214]. The minimum value the bound in ineq. (8.19) is 0, which occurs for γg = 0.

The interpretation of the extreme values 0 and 1 of the bound in ineq. (8.19) is as follows:
when the bound in ineq. (8.19) takes the value 1, then ineq. (8.19) implies that the ap-
proximate value h[Ŝ, u1:T (Ŝ)] to Problem 2 is equal to the (optimal) value g? of Problem 2,
that is, Algorithm 15 is exact. Finally, when the bound in ineq. (8.19) is 0, ineq. (8.19)
implies that h[Ŝ, u1:T (Ŝ)] ≤ h[∅, u1:T (∅)], which is trivially satis�ed3 and, as a result, it
is uninformative on the approximation performance of Algorithm 15. In Section 8.4.4 we
present conditions under which the supermodularity ratio in ineq. (8.19) is guaranteed to
be non-zero, in which case Algorithm 15 achieves near-optimal approximation performance.

Theorem 18 also ensures that Algorithm 15 is the �rst scalable algorithm for Problem 2.
In particular, Algorithm 15's running time O(|V|2Tn2.4) is in the worst-case quadratic in
the number of the available sensors |V| (in the case where all the sensors in V are chosen
as active) and linear in the Kalman �lter's running time across the time horizon {1, 2, . . . ,
T}; speci�cally, the contribution n2.4T in Algorithm 15's running time comes from the
computational complexity of using the Kalman �lter to compute the state estimation error
covariances Σt|t for each t = 1, 2, . . . , T [123, Appendix E].

8.4.3. Performance analysis for Algorithm 17

We quantify Algorithm 17's running time and approximation performance (Theorem 19
below), using the notion of supermodularity ratio introduced in Section 8.4.1.
Theorem 19 (Performance of Algorithm 17). Consider the notation introduced in the state-
ment of Theorem 18 (Section 8.4.2): for any active sensor set S ⊆ V, and any admissible
control policies u1:T (S) , {u1(S), u2(S), . . . , uT (S)}, let h[S, u1:T (S)] be the LQG cost func-

3The inequality h[Ŝ, u1:T (Ŝ)] ≤ h[∅, u1:T (∅)] simply states that a control policy that is informed by the

active sensor set Ŝ has better performance than a policy that does not use any sensor; for a more formal
proof we refer the reader to Appendix B.

128



tion in Problem 3's constraint, i.e.,

h[S, u1:T (S)] ,
∑T

t=1 E(‖xt+1(S)‖2Qt + ‖ut(S)‖2Rt);

Further de�ne the following set-valued function:

g(S) , minu1:T (S) h[S, u1:T (S)]; (8.20)

that is, given a sensor set S ⊆ V, g(S) is the optimal value of h[S, u1:T (S)] across all
admissible control policies u1:T (S).

Finally, let b? be the optimal value of Problem 3, namely:

b? , min
S⊆V,u1:T (S)

c(S), s.t. h[S, u1:T (S)] ≤ κ.

The following results hold true:

1. (Approximation quality) Algorithm 17 returns an active sensor set Ŝ ⊂ V and admis-
sible control policies u1:T (Ŝ). Let sl denote the last sensor added to Ŝ by Algorithm 17:
the active sensors Ŝ and controls u1:T (Ŝ) are such that:

h[Ŝ, u1:T (Ŝ)] ≤ κ; (8.21)

c(Ŝ) ≤ c(sl) +
1

γg
log

(
h[∅, u1:T (∅)]− κ

h[Ŝl−1, u1:T (Ŝl−1)]− κ

)
b?, (8.22)

where Ŝl−1 is the subset of Ŝ that results by removing from Ŝ the last sensor added to
it by Algorithm 17, i.e., Ŝl−1 , Ŝ \ {sl}; γg is the supermodularity ratio of g(S).

2. (Running time) Algorithm 17 runs in O(|V|2Tn2.4) time, where n is the maximum
system size in eq. (8.1).

Remark 15 (Novelty of Algorithm 18 and of bound in ineq. (8.22)). Algorithm 18 (used
as a subroutine in Algorithm 17) is the �rst scalable algorithm with provable suboptimality
guarantees for the minimum heterogeneous-cost set selection subject to a constraint on a
(possibly) approximately supermodular function g, that is, a function g with supermodularity
ratio γg less than 1. In particular, it generalizes previous algorithms that only focus on the
special case of (exactly) supermodular functions (see, e.g., [210]), that is, functions g with
supermodularity ratio γg equal to 1. Notably, for the case where the supermodularity ratio
γg is equal to 1 (that is, the set function g is supermodular), and the sensor cost of the

last sensor added to the returned set Ŝ by Algorithm 17 is equal to 1 (c(sl) = 1), then the
bound in ineq. (8.22) becomes the same as the known bound in the supermodular function
optimization literature for minimum cost set-selection [210, Theorem 1].

Theorem 19, with ineq. (8.21), implies that Algorithm 17 returns a (possibly approximate)
solution to Problem 3 that guarantees that the LQG-cost constraint in Problem 3 is satis�ed.

Ineq. (8.22) also guarantees that for non-zero supermodularity ratio γg Algorithm 17 achieves
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an objective value for Problem 3 that is �nitely close to the optimal, since for non-zero γg the
sensor cost of the set returned by Algorithm 17 is up to a �nite multiplicative factor away
from the optimal sensor set cost b?. In addition, ineq. (8.22) suggests that the approximation
bound increases as the LQG-cost performance bound parameter κ decreases, that is, as
we require from Algorithm 17 to �nd a sensor set that achieves a better (lower) LQG-cost
performance.

Theorem 19 also ensures that Algorithm 17 is the �rst scalable algorithm for Problem 3.
Notably, Algorithm 17's running time is equal in the worst-case to the running time of
Algorithm 15 (which we discussed in Section 8.4.2).

In the following section we present control-theoretic conditions under which the supermod-
ularity ratio γg in both Algorithm 15's and Algorithm 17's approximation bound in in-
eqs. (8.19) and (8.21) is non-zero, in which case Algorithm 15 and Algorithm 17 achieve
near-optimal approximation performance.

8.4.4. Conditions for non-zero supermodularity ratio

In this section we provide conditions such that the supermodularity ratio γg in ineqs. (8.19)
and (8.21) is non-zero, in which case both Algorithm 15 and Algorithm 17 guarantee a close
to optimal approximate performance (per Theorem 18 and Theorem 19, respectively). In
particular, we �rst prove that if the strict inequality

∑T
t=1 Θt � 0 holds, where each Θt is

de�ned as in eq. (8.11), then the supermodularity ratio γg is non-zero (Theorem 20). Then,
we prove that the condition

∑T
t=1 Θt � 0 holds true in all LQG control problem instances

where a zero controller would result in a suboptimal behavior for the system; that is, we
prove that

∑T
t=1 Θt � 0 holds true in all system instances where LQG control design is

necessary to achieve a desired system performance (Theorem 21).

The next theorem provides a non-zero computable bound for the supermodularity ratio γg
in Theorem 18 and in Theorem 19.
Theorem 20 (Non-zero computable bound for the supermodularity ratio γg). Let the ma-
trices Θt for all t = 1, 2, . . . , T be de�ned as in eq. (8.11), the set function g(S) be de�ned

as in eq. (8.18), and for any sensor i ∈ V, the matrix C̄i,t , V
−1/2
i,t Ci,t be the whitened

measurement matrix.

If the strict inequality
∑T

t=1 Θt � 0 holds, then the supermodularity ratio γg is non-zero. In
addition, if we assume (for simplicity in presentation) that the Frobenius norm of each C̄i,t

is 1, i.e., tr
(
C̄i,tC̄

>
i,t

)
= 1, and that tr[Σt|t(∅)] ≤ λ2

max[Σt|t(∅)], then γg's lower bound is

γg ≥
λmin(

∑T
t=1 Θt)

λmax(
∑T

t=1 Θt)

mint∈{1,2,...,T} λ
2
min[Σt|t(V)]

maxt∈{1,2,...,T} λ2
max[Σt|t(∅)]

1 + mini∈V,t∈{1,2...,T} λmin[C̄iΣt|t(V)C̄>i ]

2 + maxi∈V,t∈{1,2...,T} λmax[C̄iΣt|t(∅)C̄>i ]
.

(8.23)

Ineq. (8.23) suggests two cases under which γg can increase, and, correspondingly, the ap-
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proximation performance bounds of Algorithm 15 and of Algorithm 17 in ineqs. (8.19)
and (8.21), respectively, can improve; in more detail:

Case 1 where the bound of γg in ineq. (8.23) increases: When the fraction:

λmin(

T∑
t=1

Θt)/λmax(

T∑
t=1

Θt)

increases to 1, then the right-hand-side in ineq. (8.23) increases. Therefore, since the matrices
Θt weight the states depending on their relevance for control purposes (Remark 12), the
right-hand-side in ineq. (8.23) increases when on average all the directions in the state
space become equally important for control purposes. Indeed, in the extreme case where
λmax(Θt) = λmin(Θt) = λ, the cost function in eq. (8.12) that Algorithm 15 minimizes to
select the active sensor set becomes

T∑
t=1

tr[ΘtΣt|t(S)] = λ

T∑
t=1

tr[Σt|t(S)],

which matches the cost function in the classical sensor selection where all states are equally
important (per eq. (8.17)).

Case 2 where the bound of γg in ineq. (8.23) increases: When either the numerators of the
last two fractions in the right-hand-side of ineq. (8.23) increase or the denominators of the
last two fractions in the right-hand-side of ineq. (8.23) decrease, then the right-hand-side in
ineq. (8.23) increases. In particular, the numerators of the last two fractions in the right-
hand-side of ineq. (8.23) capture the (best) estimation quality when all available sensors in V
are used, via the terms of the form λmin[Σt|t(V)] and λmin[C̄i,tΣt|t(V)C̄>i,t]. Interestingly, this
suggests that the right-hand-side of ineq. (8.23) increases when the available sensors in V are
ine�cient in achieving low estimation error, that is, when the terms of the form λmin[Σt|t(V)]

and λmin[C̄i,tΣt|t(V)C̄>i,t] increase. Similarly, the denominators of the last two fractions in
the right-hand-side of ineq. (8.23) capture the (worst) estimation quality when no sensor is
active, via the terms of the form λmax[Σt|t(∅)] and λmax[C̄i,tΣt|t(∅)C̄>i,t]. This suggests that
the right-hand-side of ineq. (8.23) increases when the measurement noise increases.

Theorem 20 states that the supermodularity ratio γg is non-zero whenever
∑T

t=1 Θt � 0. To
provide insight on the type of control problems for which this result holds, in the follow-
ing theorem we translate the technical condition

∑T
t=1 Θt � 0 into an equivalent control-

theoretic condition.
Theorem 21 (Control-theoretic condition for near-optimal co-design). Consider the (noise-
less, perfect state-information) LQG problem where at any time t = 1, 2, . . . , T , the state xt
is known to each controller ut and the process noise wt is zero, i.e., the optimal control
problem

minu1:T
∑T

t=1 [‖xt+1‖2Qt + ‖ut(xt)‖2Rt ]
∣∣∣
Σt|t=Wt=0

. (8.24)

Let At be invertible for all t = 1, 2, . . . , T ; the strict inequality
∑T

t=1 Θt � 0 holds if and

131



only if for all non-zero initial conditions x1, the all-zeroes control policy u
◦
1:T , (0, 0, . . . , 0)

is not an optimal solution to the optimal control problem in eq. (8.24):

u◦1:T /∈ arg minu1:T
∑T

t=1 [‖xt+1‖2Qt + ‖ut(xt)‖2Rt ]
∣∣∣
Σt|t=Wt=0

.

Theorem 21 suggests that the condition
∑T

t=1 Θt � 0 (which ensures a non-zero supermod-
ularity ratio γg per Theorem 20) holds if and only if for any non-zero initial condition x1

the all-zeroes control policy u◦1:T = (0, 0, . . . , 0) is suboptimal for the noiseless, perfect state-
information LQG problem in eq. (8.24); intuitively, this encompasses most practical control
design problems where a zero controller would result in a suboptimal behavior of the system
(LQG control design itself would be unnecessary in the case where a zero controller, i.e., no
control action, can already attain the desired system performance).

Overall, Algorithm 15 and Algorithm 17 are the �rst scalable algorithms for Problem 2 and
for Problem 3, respectively, and (for the LQG control problem instances where a zero con-
troller would result in a suboptimal behavior for the system and, as a result, for the system
instances where LQG control design is necessary to achieve a desired system performance)
they achieve close to optimal approximate performance.

8.5. Numerical Experiments

We consider two application scenarios for the proposed sensing-constrained LQG control
framework: sensing-constrained formation control and resource-constrained robot navigation.
We present a Monte Carlo analysis for both scenarios, which demonstrates that (i) the
proposed sensor selection strategy is near-optimal, and in particular, the resulting LQG-cost
(tracking performance) matches the optimal selection in all tested instances for which the
optimal selection could be computed via a brute-force approach, (ii) a more naive selection
which attempts to minimize the state estimation covariance [5] (rather than the LQG cost)
has degraded LQG tracking performance, often comparable to a random selection, (iii) in
the considered instances, a clever selection of a small subset of sensors can ensure an LQG
cost that is close to the one obtained by using all available sensors, hence providing an
e�ective alternative for control under sensing constraints [60].

8.5.1. Sensing-constrained formation control

Simulation setup. The �rst application scenario is illustrated in Fig. 7(a). A team of
n agents (blue triangles) moves in a 2D scenario. At time t = 1, the agents are randomly
deployed in a 10m×10m square and their objective is to reach a target formation shape (red
stars); in the example of Fig. 7(a) the desired formation has an hexagonal shape, while in
general for a formation of n, the desired formation is an equilateral polygon with n vertices.
Each robot is modeled as a double-integrator, with state xi = [pi vi]

> ∈ R4 (pi is the 2D
position of agent i, while vi is its velocity), and can control its own acceleration ui ∈ R2;
the process noise is chosen as a diagonal matrixW = diag

(
[1e−2, 1e−2, 1e−4, 1e−4]

)
. Each

robot i is equipped with a GPS receiver, which can measure the agent position pi with a
covariance Vgps,i = 2 ·I2. Moreover, the agents are equipped with lidar sensors allowing each
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(a) formation control (b) unmanned aerial robot

Figure 7: Examples of applications of the proposed sensing-constrained LQGcontrol frame-
work: (a) sensing-constrained formation control and (b) resource-constrained robot naviga-
tion.

agent i to measure the relative position of another agent j with covariance Vlidar,ij = 0.1 ·I2.
The agents have very limited on-board resources, hence they can only activate a subset of
k sensors. Hence, the goal is to select the subset of k sensors, as well as to compute the
control policy that ensure best tracking performance, as measured by the LQG objective.

For our tests, we consider two problem setups. In the �rst setup, named homogeneous
formation control, the LQG weigh matrix Q is a block diagonal matrix with 4 × 4 blocks,
with each block i chosen as Qi = 0.1·I4; since each 4×4 block of Q weights the tracking error
of a robot, in the homogeneous case the tracking error of all agents is equally important.
In the second setup, named heterogeneous formation control, the matrix Q is chose as above,
except for one of the agents, say robot 1, for which we choose Q1 = 10 ·I4; this setup models
the case in which each agent has a di�erent role or importance, hence one weights di�erently
the tracking error of the agents. In both cases the matrix R is chosen to be the identity
matrix. The simulation is carried on over T time steps, and T is also chosen as LQG
horizon. Results are averaged over 100 Monte Carlo runs: at each run we randomize the
initial estimation covariance Σ1|0.

Compared techniques. We compare �ve techniques. All techniques use an LQG-based
estimator and controller, and they only di�er by the selections of the sensors used. The �rst
approach is the optimal sensor selection, denoted as optimal, which attains the minimum
of the cost function in eq. (8.12), and that we compute by enumerating all possible subsets;
this brute-force approach is only viable when the number of available sensors is small. The
second approach is a pseudo-random sensor selection, denoted as random∗, which selects all
the GPS measurements and a random subset of the lidar measurements; note that we do not
consider a fully random selection since in practice this often leads to an unobservable system,
hence causing divergence of the LQG cost. The third approach, denoted as logdet, selects
sensors so to minimize the average log det of the estimation covariance over the horizon;
this approach resembles [5] and is agnostic to the control task. The fourth approach is
the proposed sensor selection strategy, described in Algorithm 16, and is denoted as s-LQG.
Finally, we also report the LQG performance when all sensors are selected; this is clearly
infeasible in practice, due to the sensing constraints, and it is only reported for comparison
purposes. This approach is denoted as allSensors.
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Results. The results of our numerical analysis are reported in Fig. 12. When not speci�ed
otherwise, we consider a formation of n = 4 agents, which can only use a total of k = 6
sensors, and a control horizon T = 20. Fig. 12(a) shows the LQG cost attained by the
compared techniques for increasing control horizon and for the homogeneous case. We
note that, in all tested instance, the proposed approach s-LQGmatches the optimal selection
optimal, and both approaches are relatively close to allSensors, which selects all the
available sensors (n+n2

2 ). On the other hand logdetleads to worse tracking performance,
and it is often close to the pseudo-random selection random∗. These considerations are
con�rmed by the heterogeneous setup, shown in Fig. 12(b). In this case the separation
between the proposed approach and logdetbecomes even larger; the intuition here is that
the heterogeneous case rewards di�erently the tracking errors at di�erent agents, hence while
logdetattempts to equally reduce the estimation error across the formation, the proposed
approach s-LQGselects sensors in a task-oriented fashion, since the matrices Θt for all t =
1, 2, . . . , T in the cost function in eq. (8.12) incorporate the LQG weight matrices.

Fig. 12(c) shows the LQG cost attained by the compared techniques for increasing number
of selected sensors k and for the homogeneous case. We note that for increasing number of
sensors all techniques converge to allSensors(the entire ground set is selected). As in the
previous case, the proposed approach s-LQGmatches the optimal selection optimal. Inter-
estingly, while the performance of logdetis in general inferior with respect to s-LQG, when
the number of selected sensors k decreases (for k < n the problem becomes unobservable)
the approach logdetperforms similarly to s-LQG. Fig. 12(d) shows the same statistics for the
heterogeneous case. We note that in this case logdetis inferior to s-LQGeven in the case with
small k. Moreover, an interesting fact is that s-LQGmatches allSensorsalready for k = 7,
meaning that the LQG performance of the sensing-constraint setup is indistinguishable from
the one using all sensors; intuitively, in the heterogeneous case, adding more sensors may
have marginal impact on the LQG cost (e.g., if the cost rewards a small tracking error for
robot 1, it may be of little value to take a lidar measurement between robot 3 and 4). This
further stresses the importance of the proposed framework as a parsimonious way to control
a system with minimal resources.

Fig. 12(e) and Fig. 12(f) show the LQG cost attained by the compared techniques for
increasing number of agents, in the homogeneous and heterogeneous case, respectively. To
ensure observability, we consider k = round (1.5n), i.e., we select a number of sensors 50%
larger than the smallest set of sensors that can make the system observable. We note that
optimalquickly becomes intractable to compute, hence we omit values beyond n = 4. In
both �gures, the main observation is that the separation among the techniques increases with
the number of agents, since the set of available sensors quickly increases with n. Interestingly,
in the heterogeneous case s-LQGremains relatively close to allSensors, implying that for
the purpose of LQG control, using a cleverly selected small subset of sensors still ensures
excellent tracking performance.

8.5.2. Resource-constrained robot navigation

Simulation setup. The second application scenario is illustrated in Fig. 7(b). An un-
manned aerial robot (UAV) moves in a 3D scenario, starting from a randomly selected initial
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Figure 8: LQGcost for increasing (a)-(b) control horizon T , (c)-(d) number of selected
sensors k, and (e)-(f) number of agents n. Statistics are reported for the homogeneous
formation control setup (left column), and the heterogeneous setup (right column). Results
are averaged over 100 Monte Carlo runs.

location. The objective of the UAV is to land, and more speci�cally, it has to reach the
position [0, 0, 0] with zero velocity. The UAV is modeled as a double-integrator, with state
xi = [pi vi]

> ∈ R6 (pi is the 3D position of agent i, while vi is its velocity), and can control
its own acceleration ui ∈ R3; the process noise is chosen as W = I6. The UAV is equipped
with multiple sensors. It has an on-board GPS receiver, measuring the UAV position pi
with a covariance 2 ·I3, and an altimeter, measuring only the last component of pi (altitude)
with standard deviation 0.5m. Moreover, the UAV can use a stereo camera to measure the
relative position of ` landmarks on the ground; for the sake of the numerical example, we
assume the location of each landmark to be known only approximately, and we associate
to each landmark an uncertainty covariance (red ellipsoids in Fig. 7(b)), which is randomly
generated at the beginning of each run. The UAV has limited on-board resources, hence it
can only activate a subset of k sensors. For instance, the resource-constraints may be due
to the power consumption of the GPS and the altimeter, or may be due to computational
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Figure 9: LQGcost for increasing (a) control horizon T , and (b) number of selected sensors
k. Statistics are reported for the heterogeneous setup. Results are averaged over 100 Monte
Carlo runs.

constraints that prevent to run multiple object-detection algorithms to detect all landmarks
on the ground. Similarly to the previous case, we phrase the problem as a sensing-constraint
LQG problem, and we use Q = diag

(
[1e−3, 1e−3, 10, 1e−3, 1e−3, 10]

)
and R = I3. Note

that the structure of Q re�ects the fact that during landing we are particularly interested
in controlling the vertical direction and the vertical velocity (entries with larger weight in
Q), while we are less interested in controlling accurately the horizontal position and velocity
(assuming a su�ciently large landing site). In the following, we present results averaged over
100 Monte Carlo runs: in each run, we randomize the covariances describing the landmark
position uncertainty.

Compared techniques. We consider the �ve techniques discussed in the previous section.
As in the formation control case, the pseudo-random selection random∗always includes the
GPS measurement (which alone ensures observability) and a random selection of the other
available sensors.

Results. The results of our numerical analysis are reported in Fig. 9. When not speci�ed
otherwise, we consider a total of k = 3 sensors to be selected, and a control horizon T = 20.
Fig. 9(a) shows the LQG cost attained by the compared techniques for increasing control
horizon. For visualization purposes we plot the cost normalized by the horizon, which makes
more visible the di�erences among the techniques. Similarly to the formation control exam-
ple, s-LQGmatches the optimal selection optimal, while logdetand random∗have suboptimal
performance.

Fig. 9(b) shows the LQG cost attained by the compared techniques for increasing number
of selected sensors k. Clearly, all techniques converge to allSensorsfor increasing k, but in
the regime in which few sensors are used s-LQGstill outperforms alternative sensor selection
schemes, and matches in all cases the optimal selection optimal.

8.6. Concluding Remarks & Future Work

In this chapter, we introduced the LQG control and sensing co-design problem, where one
has to jointly design a suitable sensing, estimation, and control policy to steer the behavior
of a linear Gaussian systems under resource constraints. We discussed two variants of
the problem, named sensing-constrained LQG control and minimum-sensing LQG control,
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which are central in modern control applications ranging from large-scale networked systems
to miniaturized robotics networks. While the resulting co-design problems are intractable in
general, we provide the �rst scalable algorithms that can compute a design that is provably
close to the optimal one. While developing these algorithms, we also extend the literature on
supermodular optimization, by providing the �rst e�cient algorithms for the optimization
of (approximately) supermodular functions subject to heterogeneous-cost constraints, and
by improving existing performance bounds. Notably, our performance bounds have a clear
connection to control-theoretic quantities and are proven to be non-vanishing under very
general conditions (we prove that the suboptimality gap is non-vanishing whenever the
open loop behavior of the system deviates from the desired closed-loop behavior, hence
encompassing most real-world control problems). Finally, we provided illustrative examples
and a numerical analysis considering problems in robotics and networked control.

This chapter opens a number of avenues for future research. First, while this chapter pro-
vides an introduction to LQG sensing and control co-design, other interesting co-design
problems exist; for instance, one may consider actuation-and-control co-design problems,
or even sensing-actuation-control co-design. Second, one may extend the LQG co-design
problem to account for potential sensor failures, where some of the selected sensors do not
work as expected; to this end, one could leverage recent results on resilient submodular op-
timization [56]. Finally, while we currently provide bounds between our sensor design and
the optimal sensor design, we �nd interesting to provide bounds that compare the LQG
performance attained when an optimal subset of sensors is used with the LQG performance
attained when all available sensors is used.

8.7. Appendix: Proof of Results

8.7.1. Preliminary facts

This appendix contains a set of lemmata that will be used to support the proofs in this
chapter (Appendices B�F).
Lemma 10 ([215, Proposition 8.5.5]). Consider two positive de�nite matrices A1 and A2.
If A1 � A2 then A−1

2 � A−1
1 .

Lemma 11 (Trace inequality [215, Proposition 8.4.13]). Consider a symmetric matrix A,
and a positive semi-de�nite matrix B of appropriate dimension. Then,

λmin(A)tr (B) ≤ tr (AB) ≤ λmax(A)tr (B) .

Lemma 12 (Woodbury identity [215, Corollary 2.8.8]). Consider matrices A, C, U and V
of appropriate dimensions, such that A, C, and A+ UCV are invertible. Then,

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1.

Lemma 13 ([215, Proposition 8.5.12]). Consider two symmetric matrices A1 and A2, and
a positive semi-de�nite matrix B. If A1 � A2, then tr (A1B) ≤ tr (A2B).
Lemma 14 ([123, Appendix E]). For any sensor set S ⊆ V, and for all t = 1, 2, . . . , T , let
x̂t(S) be the Kalman estimator of the state xt, i.e., x̂t(S) , E[xt|y1(S), y2(S), . . . , yt(S)],
and Σt|t(S) be x̂t(S)'s error covariance, i.e., Σt|t(S) , E[(x̂t(S)− xt)(x̂t(S)− xt)>]. Then,
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Σt|t(S) is the solution of the Kalman �ltering recursion

Σt|t(S) = [Σt|t−1(S)−1 + Ct(S)>Vt(S)−1Ct(S)]−1,

Σt+1|t(S) = AtΣt|t(S)A>t +Wt,

with boundary condition Σ1|0(S) = Σ1|0.
Lemma 15. For any sensor set S ⊆ V, let Σ1|1(S) be de�ned as in eq. (14), and consider
two sensor sets S1,S2 ⊆ V. If S1 ⊆ S2, then Σ1|1(S1) � Σ1|1(S2).

Proof of Lemma 15 Let D = S2\S1, and observe that for all t = 1, 2, . . . , T , the notation
in De�nition 25 implies

Ct(S2)>Vt(S2)−1Ct(S2) =
∑
i∈S2

C>i,tVi,tCi,t

=
∑
i∈S1

C>i,tVi,tCi,t +
∑
i∈D

C>i,tVi,tCi,t

�
∑
i∈S1

C>i,tVi,tCi,t

= Ct(S1)>Vt(S1)−1Ct(S1). (8.25)

Therefore, Lemma 10 and ineq. (8.25) imply

Σ1|1(S2) = [Σ−1
1|0 + C1(S2)>Vt(S2)−1Ct(S2)]−1 �

[Σ−1
1|0 + C1(S1)>Vt(S1)−1Ct(S1)]−1 = Σ1|1(S1). �

Lemma 16. Let Σt|t be de�ned as in eq. (14) with boundary condition Σ1|0; similarly, let Σ̄t|t
be de�ned as in eq. (14) with boundary condition Σ̄1|0. If Σt|t � Σ̄t|t, then Σt+1|t � Σ̄t+1|t.

Proof of Lemma 16 We complete the proof in two steps: �rst, from Σt|t � Σ̄t|t, it follows
AtΣt|tA

>
t � AtΣ̄t|tA

>
t . Then, from eq. (14), it its Σt+1|t = AtΣt|tA

>
t +Wt � AtΣ̄t|tA

>
t +Wt =

Σ̄t+1|t. �
Lemma 17. Let Σt|t−1 be de�ned as in eq. (14) with boundary condition Σ1|0; and, let Σ̄t|t−1

be de�ned as in eq. (14) with boundary condition Σ̄1|0. If Σt|t−1 � Σ̄t|t−1, then Σt|t � Σ̄t|t.

Proof of Lemma 17 From eq. (14), it is Σt|t = (Σ−1
t|t−1 + C>t V

−1
t Ct)

−1 � (Σ̄−1
t|t−1 +

C>t V
−1
t Ct)

−1 = Σ̄t|t, since Lemma 10 and the condition Σt|t−1 � Σ̄t|t−1 imply Σ−1
t|t−1 +

C>t V
−1
t Ct � Σ̄−1

t|t−1 + C>t V
−1
t Ct, which in turn implies (Σ−1

t|t−1 + C>t V
−1
t Ct)

−1 � (Σ̄−1
t|t−1 +

C>t V
−1
t Ct)

−1. �
Corollary 8. Let Σt|t be de�ned as in eq. (14) with boundary condition Σ1|0; similarly, let
Σ̄t|t be de�ned as in eq. (14) with boundary condition Σ̄1|0. If Σt|t � Σ̄t|t, then Σt+i|t+i �
Σ̄t+i|t+i for any positive integer i.

Proof of Corollary 8 If Σt|t � Σ̄t|t, from Lemma 16 we get Σt+1|t � Σ̄t+1|t, which, from
Lemma 17, implies Σt+1|t+1 � Σ̄t+1|t+1. By repeating the previous argument another (i−1)
times, the proof is complete. �
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Corollary 9. Let Σt|t be de�ned as in eq. (14) with boundary condition Σ1|0; similarly, let
Σ̄t|t be de�ned as in eq. (14) with boundary condition Σ̄1|0. If Σt|t � Σ̄t|t, then Σt+i|t+i−1 �
Σ̄t+i|t+i−1 for any positive integer i.

Proof of Corollary 9 If Σt|t � Σ̄t|t, from Corollary 8, we get Σt+i−1|t+i−1 � Σ̄t+i−1|t+i−1,
which, from Lemma 16, implies Σt+i|t+i−1 � Σ̄t+i|t+i−1. �
Lemma 18. Consider positive real numbers a, b, γ, a1, a2, . . . , an such that

∑n
i=1 ai = a.

The function

f(a1, a2, . . . , an) = 1−
n∏
i=1

(
1− γ ai

b

)
achieves its minimum at a1 = a2 = . . . = an = a/n. In particular,

f(a/n, a/n, . . . , a/n) = 1−
(

1− aγ

bn

)n
≥ 1− e−aγ/b.

Proof of Lemma 18 To �nd f 's minimum we use the method of Lagrange multipliers. In
particular, the partial derivative of φ(a1, a2, . . . , an) , f(a1, a2, . . . , an) + λ (

∑n
i=1 ai − a),

where λ is the Lagrangian multiplier, with respect to aj is as follows:

∂φ

∂aj
=
γ

b

∏
i 6=j

(
1− γ ai

b

)
+ λ. (8.26)

At an f 's minimum, the partial derivative in eq. (8.26) is zero for all j, which implies that
for all j:

λ = −γ
b

∏
i 6=j

(
1− γ ai

b

)
; (8.27)

Since λ is constant, eq. (8.27) implies for any j1 and j2 that

γ

b

∏
i 6=j1

(
1− γ ai

b

)
=
γ

b

∏
i 6=j2

(
1− γ ai

b

)
,

which in turn implies that
1− γ aj1

b
= 1− γ aj2

b
,

from where we conclude aj1 = aj2 (for any j1 and j2).

The lower bound for the minimum value of f follows from the fact that 1− x ≤ e−x for all
real x. �
Proposition 11 (Monotonicity of cost function in eq. (8.12)). Consider the cost function in
eq. (8.12), namely, for any sensor set S ⊆ V the set function

∑T
t=1 tr

(
ΘtΣt|t(S)

)
. Then, for

any sensor sets such that S1 ⊆ S2 ⊆ V, it holds
∑T

t=1 tr
(
ΘtΣt|t(S1)

)
≥
∑T

t=1 tr
(
ΘtΣt|t(S2)

)
.

Proof Lemma 15 implies Σ1|1(S1) � Σ1|1(S2), and then, Corollary 8 implies Σt|t(S1) �
Σt|t(S2). Finally, for any t = 1, 2, . . . , T , Lemma 13 implies tr

(
ΘtΣt|t(S1)

)
≥ tr

(
ΘtΣt|t(S2)

)
,

since each Θt is symmetric. �
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8.7.2. Proof of Theorem 17

We �rst prove part (1) of Theorem 17 (Appendix B.1), and then we prove part (2) of
Theorem 17 (Appendix B.2).

B.1. Proof of part (1) of Theorem 17

We use the following lemma to prove Theorem 17's part (1).
Lemma 19. For any active sensor set S ⊆ V, and any admissible control policy u1:T (S) ,
{u1(S), u2(S), . . . , uT (S)}, let h[S, u1:T (S)] be Problem 2's cost function, i.e.,

h[S, u1:T (S)] ,
∑T

t=1 E(‖xt+1(S)‖2Qt + ‖ut(S)‖2Rt).
Further de�ne the following set-valued function:

g(S) , minu1:T (S)h[S, u1:T (S)].
Consider any sensor set S ⊆ V, and let u?1:T (S) be the vector of control policies (K1x̂1(S),
K2x̂2(S), . . . ,KT x̂T (S)). Then u?1:T (S) is an optimal control policy:

u?1:T (S) ∈ argmin
u1:T (S)

h[S, u1:T (S)], (8.28)

i.e., g(S) = h[S, u?1:T (S)], and in particular, u?1:T (S) attains a (sensor-dependent) LQG cost
equal to:

g(S) = E(‖x1‖N1) +
T∑
t=1

{
tr[ΘtΣt|t(S)] + tr (WtSt)

}
. (8.29)

Proof of Lemma 19 Let ht[S, ut:T (S)] be the LQG cost in Problem 2 from time t up to
time T , i.e.,

ht[S, ut:T (S)] ,
T∑
k=t

E(‖xk+1(S)‖2Qt + ‖uk(S)‖2Rt).

and de�ne gt(S) , minut:T (S)ht[S, ut:T (S)]. Clearly, g1(S) matches the LQG cost in eq. (8.29).

We complete the proof inductively. In particular, we �rst prove Lemma 19 for t = T , and
then for any other t ∈ {1, 2, . . . , T −1}. To this end, we use the following observation: given
any sensor set S, and any time t ∈ {1, 2, . . . , T},

gt(S) = minut(S)

[
E(‖xt+1(S)‖2Qt + ‖ut(S)‖2Rt) + gt+1(S)

]
, (8.30)

with boundary condition gT+1(S) = 0. In particular, eq. (8.30) holds since

gt(S) = minut(S)E
{
‖xt+1(S)‖2Qt + ‖ut(S)‖2Rt)+

minut+1:T (S) ht+1[S, ut+1:T (S)]} ,
where one can easily recognize the second summand to match the de�nition of gt+1(S).

140



We prove Lemma 19 for t = T . From eq. (8.30), for t = T ,

gT (S)= minuT (S)

[
E(‖xT+1(S)‖2QT + ‖uT (S)‖2RT )

]
= minuT (S)

[
E(‖ATxT +BTuT (S) + wT ‖2QT+

‖uT (S)‖2RT )
]
,

(8.31)

since xT+1(S) = ATxT + BTuT (S) + wT , as per eq. (8.1); we note that for notational
simplicity we drop henceforth the dependency of xT on S since xT is independent of uT (S),
which is the variable under optimization in the optimization problem (8.31). Developing
eq. (8.31) we get:

gT (S)

= minuT (S)

[
E(uT (S)>B>T QTBTuT (S) + w>TQTwT+

x>TA
>
TQTATxT + 2x>TA

>
TQTBTuT (S)+

2x>TA
>
TQTwT + 2uT (S)>B>T QTwT + ‖uT (S)‖2RT )

]
= minuT (S)

[
E(uT (S)>B>T QTBTuT (S) + ‖wT ‖2QT+

x>TA
>
TQTATxT + 2x>TA

>
TQTBTuT (S) + ‖uT ‖2RT )

]
,

(8.32)

where the latter equality holds since wT has zero mean and wT , xT , and uT (S) are inde-
pendent. From eq. (8.32), rearranging the terms, and using the notation in eq. (8.11),

gT (S) (8.33)

=minuT (S)

[
E(uT (S)>(B>T QTBT +RT )uT (S)+ (8.34)

‖wT ‖2QT + x>TA
>
TQTATxT + 2x>TA

>
TQTBTuT (S)

]
(8.35)

=minuT (S)

[
E(‖uT (S)‖2MT

+ ‖wT ‖2QT + x>TA
>
TQTATxT+ (8.36)

2x>TA
>
TQTBTuT (S)

]
(8.37)

=minuT (S)

[
E(‖uT (S)‖2MT

+ ‖wT ‖2QT + x>TA
>
TQTATxT− (8.38)

2x>T (−A>TQTBTM−1
T )MTuT (S)

]
(8.39)

=minuT (S)

[
E(‖uT (S)‖2MT

+ ‖wT ‖2QT + x>TA
>
TQTATxT− (8.40)

2x>TK
>
TMTuT (S)

]
(8.41)

(8.42)

141



(i)
=minuT (S)

[
E(‖uT (S)−KTxT ‖2MT

+ ‖wT ‖2QT+ (8.43)

x>T (A>TQTAT −K>TMTKT )xT

]
(8.44)

=minuT (S)

(
E(‖uT (S)−KTxT ‖2MT

+ ‖wT ‖2QT+ (8.45)

x>T (A>TQTAT −ΘT )xT

)
(8.46)

=minuT (S)

[
E(‖uT (S)−KTxT ‖2MT

+ ‖wT ‖2QT + ‖xT ‖2NT
]

(8.47)
(ii)
=minuT (S)E(‖uT (S)−KTxT ‖2MT

) + tr (WTQT ) + (8.48)

E(‖xT ‖2NT ), (8.49)
where equality (i) follows from completion of squares, and equality (ii) holds since E(‖wT ‖2QT ) =

E
[
tr
(
w>TQTwT

)]
= tr

(
E(w>T wT )QT

)
= tr (WTQT ). Now we note that

minuT (S)E(‖uT (S)−KTxT ‖2MT
)

= E(‖KT x̂T (S)−KTxT ‖2MT
)

= tr
(
ΘTΣT |T (S)

)
, (8.50)

since x̂T (S) is the Kalman estimator of the state xT , i.e., the minimum mean square es-
timator of xT , which implies that KT x̂T (S) is the minimum mean square estimator of
KTxT (S) [123, Appendix E]. Substituting (8.50) back into eq. (8.49), we get:

gT (S) = E(‖xT ‖2NT ) + tr
(
ΘTΣT |T (S)

)
+ tr (WTQT ) ,

which proves that Lemma 19 holds for t = T .

We now prove that if Lemma 19 holds for t = l + 1, it also holds for t = l. To this end,
assume eq. (8.30) holds for t = l + 1. Using the notation in eq. (8.11),

gl(S)=minul(S)

[
E(‖xl+1(S)‖2Ql + ‖ul(S)‖2Rl) + gl+1(S)

]
= minul(S)

{
E(‖xl+1(S)‖2Ql + ‖ul(S)‖2Rl)+

E(‖xl+1(S)‖2Nl+1
) +

T∑
k=l+1

[
tr
(
ΘkΣk|k(S)

)
+

tr (WkSk)]}
= minul(S)

{
E(‖xl+1(S)‖2Sl + ‖ul(S)‖2Rl)+

T∑
k=l+1

[tr
(
ΘkΣk|k(S)

)
+ tr (WkSk)]

}

=
T∑

k=l+1

[tr
(
ΘkΣk|k(S)

)
+ tr (WkSk)]+

minul(S)E(‖xl+1(S)‖2Sl + ‖ul(S)‖2Rl).

(8.51)

In eq. (8.51), the minimization in the last summand can be solved by following the same
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steps as for the proof of Lemma 19 for t = T , leading to:

minul(S)E(‖xl+1(S)‖2Sl + ‖ul(S)‖2Rl) =

E(‖xl‖2Nl) + tr
(
ΘlΣl|l(S)

)
+ tr (WlQl) ,

(8.52)

and ul(S) = Klx̂l(S). Therefore, by substituting eq. (8.52) back into eq. (8.51), we get:

gl(S)=E(‖xl‖2Nl) +
T∑
k=l

[tr
(
ΘkΣk|k(S)

)
+ tr (WkSk)]. (8.53)

which proves that if Lemma 19 holds for t = l+ 1, it also holds for t = l. By induction, this
also proves that Lemma 19 holds for l = 1, and we already observed that g1(S) matches the
original LQG cost in eq. (8.29), hence concluding the proof. �

Proof of Theorem 17's part (1) The proof follows from Lemma 19. In particular,
eq. (8.12) is a direct consequence of eq. (8.29), since the value of Problem 2 is equal to
minS⊆V,c(S)≤bg(S), and both E(‖x1‖N1) = tr

(
Σ1|0N1

)
and

∑T
t=1 tr (WtSt) in eq. (8.29)

are independent of the choice of the sensor set S. Finally, eq. (8.13) directly follows from
eq. (8.28). �

B.1. Proof of part (2) of Theorem 17

We use the following lemma to prove Theorem 17's part (2).
Lemma 20. The sensor set S? and the controllers u?1:T are a solution to Problem 3 if and
only if they are a solution to the optimization problem

minS⊆V,u1:T (S)c(S), s.t. g(S) ≤ κ, (8.54)
where

g(S) , minu1:T (S)h [S, u1:T (S)] .

Proof of Lemma 20 We prove the lemma by contradiction. In particular, �rst we prove
that if the sensor set S? and the controllers u?1:T are a solution to Problem 3, then they are
also a solution to the problem in eq. (8.54); and second, we prove that if S? and u?1:T are a
solution to the problem in eq. (8.54), then they are also a solution to Problem 3.

We prove that if the sensor set S? and the controllers u?1:T are a solution to Problem 3,
then they are also a solution to the problem in eq. (8.54). To this end, let the sensor set
S? and the controllers u?1:T be a solution to Problem 3, and assume by contradiction that
they are not a solution to the problem in eq. (8.54), which instead has solution Ŝ and û1:T .
By optimality of Ŝ and û1:T (and suboptimality of S? and u?1:T ) in eq. (8.54), it follows
c(Ŝ) < c(S?). In addition, it also holds g(Ŝ) ≤ κ, since (Ŝ, û1:T ) must be feasible for the

problem in eq. (8.54). However, the latter implies that h
(
Ŝ, û1:T

)
≤ κ. Therefore, (Ŝ, û1:T )

is feasible for Problem 3 and has a better objective value with respect to the optimal solution
(S?, u?1:T ) (we already observed c(Ŝ) < c(S?)), leading to contradiction. Hence, if the sensor
set S? and the controllers u?1:T are a solution to Problem 3, then they are also a solution
to (8.54).
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We now prove that if the sensor set S? and the controllers u?1:T are a solution to the problem
in eq. (8.54), then they are also a solution to Problem 3. To this end, let the sensor set S?
and the controllers u?1:T be a solution to the problem in eq. (8.54), and assume that they are
not a solution to Problem 3, which instead has solution (Ŝ, û1:T ). By optimality of (Ŝ, û1:T )
(and suboptimality of S? and u?1:T ) in Problem 3 , it follows c(Ŝ) < c(S?). In addition,

it is h
(
Ŝ, û1:T

)
≤ κ, since (Ŝ, û1:T ) must be feasible for Problem 3, and, as a result, it

also holds g(Ŝ) ≤ κ. Therefore, (Ŝ, û1:T ) is feasible for the problem in eq. (8.54) and has a
better objective value with respect to the optimal solution (S?, u?1:T ) (we already observed
c(Ŝ) < c(S?)), leading to contradiction. Hence, if the sensor set S? and the controllers u?1:T

are a solution to the problem in eq. (8.54), then they are also a solution to Problem 3. �

Proof of Theorem 17's part (2) The proof follows from Lemma 19 and Lemma 20. In
particular, similarly to the proof of Theorem 17's part (1), Lemma 19, along with eq. (8.29)
and the fact that E(‖x1‖N1) = tr

(
Σ1|0N1

)
, implies that if the sensor set S? and the con-

trollers u?1:T are a solution to the optimization problem in eq. (8.54), then S? and the
controllers u?1:T can be computed in cascade as follows:

S? ∈ argmin
S⊆V

c(S), s.t. tr[ΘtΣt|t(S)] ≤

κ− tr
(
Σ1|0N1

)
−

T∑
t=1

tr (WtSt) , (8.55)

u?t = Ktx̂t(S?), t = 1, . . . , T. (8.56)
In addition, Lemma 20 implies that (S?, u?1:T ) is a solution to Problem 3. As a result,
eqs. (8.14)-(8.15) hold true. �

8.7.3. Proof of Theorem 18 and Proposition 10

We �rst prove Theorem 18 (Appendix C.1), and then prove Proposition 10 (Appendix C.2).

C.1. Proof of Theorem 18

We consider the following notation: for any sensor set S ⊆ V, we let f(S) ,
∑T

t=1 tr[ΘtΣt|t(S)]

be the cost function in eq. (8.12), S? be a solution in eq. (8.12), and b? , c(S?), that is,
b? is the cost of the sensor set S?. In addition, consider the computation of the set Ŝ2 in
Algorithm 16 (lines 3-19), where Ŝ2 refers to the set that Algorithm 16 has constructed
by the end of the line 19; we let G , Ŝ2. We also let si be the i-th element added in
G during the i-th iteration of Algorithm 16's �while loop� (lines 3-16). Moreover, we let
Gi , {s1, s2, . . . , si}, that is, Gi is the subset of G constructed during the �rst i iterations
of Algorithm 16's �while loop� (lines 3-16). Finally, we consider that Algorithm 16's �while
loop� (lines 3-16) terminates after l + 1 iterations.

There are two scenarios under which Algorithm 16's �while loop� (lines 3-16) terminates:
(i) the trivial scenario where V ′ = ∅, that is, where all available sensors in V can been
chosen by Algorithm 16 as active while satisfying the budget constraint b; and (ii) the
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non-trivial scenario where Algorithm 16's �while� loop (lines 3�16) terminates because
c(Gl+1) > b, that is, where the addition of the sensor sl+1 in Gl makes the sensor cost
of Gl+1 violate the budget constraint b. Henceforth, we focus on the second, non-trivial sce-
nario, which implies that sl+1 will be removed by the �if� statement in Algorithm 16's
lines 17�19 and, as a result, Gl = Ŝ2.

We prove Theorem 18 using the following two lemmas.
Lemma 21 (Generalization of [44, Lemma 2]). For i = 1, 2, . . . , l + 1, it holds

f(Gi−1)− f(Gi) ≥
γfc(si)

b?
(f(Gi−1)− f(S?)).

Proof of Lemma 21 Due to the monotonicity of the cost function f in eq. (8.12) (Propo-
sition 11), it holds

f(Gi−1)− f(S?) ≤ f(Gi−1)− f(S? ∪ Gi−1)

= f(Gi−1)− f [(S? \ Gi−1) ∪ Gi−1].
Let {z1, z2, . . . , zm} , S? \ Gi−1, and also let

dj , f(Gi−1 ∪ {z1, z2, . . . , zj−1})− f(Gi−1 ∪ {z1, z2, . . . , zj}),
for j = 1, 2, . . . ,m. Then, f(Gi−1)− f(S?) ≤

∑m
j=1 dj .

Notice that

dj
c(zj)

≤ f(Gi−1)− f(Gi−1 ∪ {zj})
γfc(zj)

≤ f(Gi−1)− f(Gi)
γfc(si)

,

where the �rst inequality holds due to the De�nition 29 of the supermodularity ratio γf ,
and the second inequality holds due to the greedy rule (Algorithm 16's line 13) and the
de�nitions of Gi, and si. Since

∑m
j=1 c(zj) ≤ b?, it holds that

f(Gi−1)− f(S?) ≤
m∑
j=1

dj ≤ b?
f(Gi−1)− f(Gi)

γfc(si)
.

�
Lemma 22 (Adapation of [44, Lemma 3]). For i = 1, 2, . . . , l + 1, it holds

f(∅)− f(Gi) ≥

1−
i∏

j=1

(
1−

γfc(sj)

b?

) [f(∅)− f(S?)].

Proof of Lemma 22 We complete the proof inductively. In particular, for i = 1, we need
to prove f(∅)− f(G1) ≥ γfc(s1)/b?[f(∅)− f(S?)], which follows from Lemma 21 for i = 1.
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Then, we have for i > 1:

f(∅)− f(Gi) = f(∅)− f(Gi−1) + [f(Gi−1)− f(Gi)]
≥ f(∅)− f(Gi−1)+

γfc(si)

b?
(f(Gi−1)− f(S?))

=

(
1−

γfc(si)

b?

)
[f(∅)− f(Gi−1])+

γfc(si)

b?
[f(∅)− f(S?)]

≥
(

1−
γfc(si)

b?

)1−
i−1∏
j=1

(
1−

γfc(sj)

b?

)
[f(∅)− f(S?)] +

γfc(si)

b?
[f(∅)− f(S?)]

=

1−
i∏

j=1

(
1−

γfc(sj)

b?

) [f(∅)− f(S?)],

where we used Lemma 21 for the �rst inequality and the induction hypothesis for the second
inequality. �

Proof of Theorem 18's part (1) (Algorithm 15's approximation quality) We
�rst prove the approximation bound γg

2 (1− e−γg) in ineq. (8.19) and, then, the bound

1− e−γgc(Ŝ)/b.

To prove Algorithm 15's approximation bound γg
2 (1− e−γg) in ineq. (8.19), we let b′ ,∑l+1

j=1 c(sj). It holds

f(∅)− f(Gl+1) ≥

1−
l+1∏
j=1

(
1−

γfc(sj)

b?

) [f(∅)− f(S?)]

≥
(

1− e−γf b′/b?
)

[f(∅)− f(S?)],

≥
(
1− e−γf

)
[f(∅)− f(S?)], (8.57)

where the �rst inequality follows from Lemma 22, the second inequality from Lemma 18,
and ineq. (8.57) from the fact that b′/b? ≥ 1 and, as a result, e−γf b

′/b? ≤ e−γf, that is,
1− e−γf b′/b? ≥ 1− e−γf.

In addition, it is f(∅) − f(Ŝ1) ≥ γf [f(Gl) − f(Gl+1)] due to the De�nition 29 of the super-
modularity ratio and, as a result, f(∅) − f(Ŝ1) ≥ γf [f(Gl) − f(∅) + f(∅) − f(Gl+1)], which
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after rearranging its terms gives

γf [f(∅)− f(Gl+1)]

≤ f(∅)− f(Ŝ1) + γf [f(∅)− f(Gl)]

≤ 2max
{
f(∅)− f(Ŝ1), γf [f(∅)− f(Gl)]

}
. (8.58)

By substituting ineq. (8.57) in ineq. (8.58) and rearranging the terms we have

max
{
f(∅)− f(Ŝ1), γf [f(∅)− f(Gl)]

}
≥
γf
2

(
1− e−γf

)
[f(∅)− f(S?)],which implies the inequality

max
[
f(∅)− f(Ŝ1), f(∅)− f(Gl)

]
≥
γf
2

(
1− e−γf

)
[f(∅)− f(S?)], (8.59)

since γf takes values in [0, 1] by the De�nition 29 of the supermodularity ratio.

Algorithm 15's approximation bound γg
2 (1− e−γg) in ineq. (8.19) follows from ineq. (8.59)

as the combination of the following three observations:

• it is Gl = Ŝ2, due to the de�nition of Gl, and, as a result, f(∅)− f(Gl) = f(∅)− f(Ŝ2).

• Algorithm 16 returns the set Ŝ such at Ŝ ∈ arg maxS∈{Ŝ1,Ŝ2} [f(∅)− f(S)] (per Algo-
rithm 16's line 20) and, as a result, the previous observation, along with ineq. (8.59),
gives:

f(∅)− f(Ŝ) ≥
γf
2

(
1− e−γf

)
[f(∅)− f(S?)]. (8.60)

• Finally, Lemma 19 implies that for any sets S,S ′ ⊆ V it is g(S) = f(S)+E(‖x1‖N1)+∑T
t=1 tr (WtSt), where E(‖x1‖N1) +

∑T
t=1 tr (WtSt) is independent of S. As a result,

for any sets S,S ′ ⊆ V it is f(S) − f(S ′) = g(S) − g(S ′), which implies γf = γg due
to the De�nition 29 of the supermodularity ratio. In addition, Lemma 19 implies that
for any S ⊆ V it is g(S) = h[S, u1:T (S)] and g? = g(S?). Thereby, for any S ⊆ V
it is f(∅) − f(S) = g(∅) − g(S) = h[∅, u1:T (∅)] − h[S, u1:T (S)] and f(∅) − f(S?) =
g(∅)− g(S?) = h[∅, u1:T (∅)]− g?. Overall, ineq. (8.60) is written as

h[∅, u1:T (∅)]− h[Ŝ, u1:T (Ŝ)] ≥
γf
2

(
1− e−γf

)
{h[∅, u1:T (∅)]− g?} ,

which implies the bound γg
2 (1− e−γg) in ineq. (8.19).
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It remains to prove the bound 1− e−γgc(Ŝ)/b in ineq. (8.19). To this end, we �rst have:

f(∅)− f(Gl) ≥

1−
l∏

j=1

(
1−

γfc(sj)

b?

) [f(∅)− f(Gl)]

≥
(

1− e−γf c(Gl)/b?
)

[f(∅)− f(S?)],

≥
(

1− e−γf c(Gl)/b
)

[f(∅)− f(S?)], (8.61)
where the �rst inequality follows from Lemma 22, the second inequality from Lemma 18, and
ineq. (8.61) from the fact that c(Gl)/b? ≥ c(Gl)/b, since b? ≤ b, which implies e−γf c(Gl)/b

? ≤
e−γf c(Gl)/b, i.e., 1 − e−γf b

′/b? ≥ 1 − e−γf c(Gl)/b. The rest of the proof is completed using
the combination of the three observations in the previous paragraph, that we used to prove
Algorithm 15's approximation bound γg

2 (1− e−γg) in ineq. (8.19). �

Proof of Theorem 18's part (2) (Algorithm 15's running time) We compute Al-
gorithm 15's running time by adding the running times of Algorithm 15's lines 1-5:

Running time of Algorithm 15's line 1 Algorithm 15's line 1 needs O(Tn2.4) time,
using the Coppersmith algorithm for both matrix inversion and multiplication [216].

Running time of Algorithm 15's line 2 Algorithm 15's line 2 running time is the
running time of Algorithm 16, whose running time we show next to be O(|V|2Tn2.4). To
this end, we �rst compute the running time of Algorithm 16's line 1, and �nally the running
time of Algorithm 16's lines 3�16. Algorithm 16's lines 3�16 are repeated at most |V|2
times, since before the end of each iteration of the �while loop� in line 3 the added element
in Ŝ2 (line 14) is removed from V ′ (line 15). We now need to �nd the running time of
Algorithm 16's lines 4�16; to this end, we �rst �nd the running time of Algorithm 16's
lines 4�12, and then the running time of Algorithm 16's line 13. In more detail, the running
time of Algorithm 16's lines 4�12 is O(|V|Tn2.4), since Algorithm 16's lines 4�12 are repeated
at most |V| times and Algorithm 16's lines 5�10, as well as, line 11 need O(Tn2.4) time, using
the Coppersmith-Winograd algorithm for both matrix inversion and multiplication [216].
Moreover, Algorithm 16's line 13 needs O[|V| log(|V|)] time, since it asks for the maximum
among at most |V| values of the gain(·), which takes O[|V| log(|V|)] time to be found, using,
e.g., the merge sort algorithm. In sum, Algorithm 16's running time is upper bounded by
O[|V|2Tn2.4 + |V|2 log(|V|)], which is equal to O(|V|2Tn2.4).

Running time of Algorithm 15's lines 3-5 Algorithm 15's lines 3-5 need O(Tn2.4)
time, using the Coppersmith algorithm for both matrix inversion and multiplication [216].

In sum, Algorithm 15's running time is upper bounded by O(|V|2Tn2.4 + 2Tn2.4) which is
equal to O(|V|2Tn2.4). �

C.2. Proof of Proposition 10

The proof of Proposition 10 follows the same steps as the proof of Theorem 18 and for this
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reason we omit it.

8.7.4. Proof of Theorem 19

We consider the following notation: for any sensor set S ⊆ V, we let f(S) ,
∑T

t=1 tr[ΘtΣt|t(S)]
be the cost function in eq. (8.14), the sensor set S? be a solution to Problem 3, and b? be
equal to c(S?), that is, b? is the optimal value of Problem 3. In addition, consider the
computation of the set Ŝ in Algorithm 18 (lines 3-16): we let G , Ŝ. We also let si be the
i-th element added in G during the i-th iteration of Algorithm 18's �while loop� (lines 3-16).
Finally, we let Gi , {s1, s2, . . . , si}, that is, Gi is the subset of Ŝ constructed during the �rst
i iterations of Algorithm 18's �while loop� (lines 3-16).

We prove Theorem 19 using the following two lemmas.
Lemma 23 (Adaptation of Lemma 21). For i = 1, 2, . . . , |G|, it holds

f(Gi−1)− f(Gi) ≥
γfc(si)

b?
(f(Gi−1)− f(S?)).

Proof of Lemma 23 Due to the monotonicity of the cost function f in eq. (8.12) (Propo-
sition 11), it holds

f(Gi−1)− f(S?) ≤ f(Gi−1)− f(S? ∪ Gi−1)

= f(Gi−1)− f [(S? \ Gi−1) ∪ Gi−1].
Let {z1, z2, . . . , zm} , S? \ Gi−1, and also let

dj , f(Gi−1 ∪ {z1, z2, . . . , zj−1})− f(Gi−1 ∪ {z1, z2, . . . , zj}),
for j = 1, 2, . . . ,m. Then, f(Gi−1)− f(S?) ≤

∑m
j=1 dj .

Notice that

dj
c(zj)

≤ f(Gi−1)− f(Gi−1 ∪ {zj})
γfc(zj)

≤ f(Gi−1)− f(Gi)
γfc(si)

,

where the �rst inequality holds due to the De�nition 29 of the supermodularity ratio γf ,
and the second inequality holds due to the greedy rule (Algorithm 18's line 13) and the
de�nitions of Gi and si. Since

∑m
j=1 c(zj) ≤ b?, it holds that

f(Gi−1)− f(S?) ≤
m∑
j=1

dj ≤ b?
f(Gi−1)− f(Gi)

γfc(si)
.

�
Lemma 24 (Adaptation of Lemma 22). For i = 1, 2, . . . , |G|, it holds

f(∅)− f(Gi) ≥

1−
i∏

j=1

(
1−

γfc(sj)

b?

) [f(∅)− f(S?)].

Proof of Lemma 24 We complete the proof inductively. In particular, for i = 1, we need
to prove f(∅)− f(G1) ≥ γfc(s1)/b?[f(∅)− f(S?)], which follows from Lemma 23 for i = 1.
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Then, we have for i > 1:

f(∅)− f(Gi) = f(∅)− f(Gi−1) + [f(Gi−1)− f(Gi)]
≥ f(∅)− f(Gi−1)+

γfc(si)

b?
(f(Gi−1)− f(S?))

=

(
1−

γfc(si)

b?

)
[f(∅)− f(Gi−1])+

γfc(si)

b?
[f(∅)− f(S?)]

≥
(

1−
γfc(si)

b?

)1−
i−1∏
j=1

(
1−

γfc(sj)

b?

)
[f(∅)− f(S?)] +

γfc(si)

b?
[f(∅)− f(S?)]

=

1−
i∏

j=1

(
1−

γfc(sj)

b?

) [f(∅)− f(S?)],

using Lemma 23 for the �rst inequality and the induction hypothesis for the second inequal-
ity. �

Proof of Theorem 19's part (1) (Algorithm 17's approximation quality) We �rst
observe that ineq. (8.21) holds since Algorithm 17 returns the set Ŝ once the condition
h[Ŝ, u1:T (Ŝ)] ≤ κ is satis�ed (Algorithm 18's line 3).

It remains to prove ineq. (8.22). Let l , |G|; then, Gl = G, by the de�nition of Gi, and from
Lemma 22 for i = l − 1 it holds

f(∅)− f(Gl−1) ≥

1−
l−1∏
j=1

(
1−

γfc(sj)

b?

) [f(∅)− f(S?)]

≥
(

1− e−γf c(Gl−1)/b?
)

[f(∅)− f(S?)], (8.62)
where ineq. (8.62) follows from Lemma 18. Moreover, Lemma 19 implies that for any
sensor sets S,S ′ ⊆ V it is g(S) = f(S) + E(‖x1‖N1) +

∑T
t=1 tr (WtSt), where the term

E(‖x1‖N1) +
∑T

t=1 tr (WtSt) is independent of S, and, as a result, it is f(S) − f(S ′) =
g(S) − g(S ′), which implies γf = γg. Moreover, Lemma 19 implies for any S ⊆ V that
g(S) = h[S, u1:T (S)] and, as a result, it is f(∅)−f(Gl−1) = h[∅, u1:T (∅)]−h[Gl−1, u1:T (Gl−1)]
and f(∅) − f(S?) = h[∅, u1:T (∅)] − h[S?, u1:T (S?)]. In sum, ineq. (8.62) is the same as the
inequality

h[∅, u1:T (∅)]− h[Gl−1, u1:T (Gl−1)] ≥(
1− e−γgc(Gl−1)/b?

)
{h[∅, u1:T (∅)]− h[S?, u1:T (S?)]} ,

which, by letting β , 1 − e−γgc(Gl−1)/b? and rearranging its terms, is simpli�ed to the
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inequality

h[Gl−1, u1:T (Gl−1)] ≤ (1− β)h[∅, u1:T (∅)] + βh[S?, u1:T (S?)]
≤ (1− β)h[∅, u1:T (∅)] + βκ, (8.63)

where the second inequality holds because S? is a solution to Problem 3 and, as result,
h[S?, u1:T (S?)] ≤ κ. To complete the proof, we recall that Algorithm 18 returns the set G = Gl
when for i = l it is the �rst time that h[Gi, u1:T (Gi)] ≤ κ. Therefore, h[Gl−1, u1:T (Gl−1)] > κ
and, as a result, there exists a real number ε > 0 such that h[Gl−1, u1:T (Gl−1)] = (1 + ε)κ,
and ineq. (8.63) gives

(1 + ε)κ ≤ (1− β)h[∅, u1:T (∅)] + βκ⇒
εκ ≤ (1− β)h[∅, u1:T (∅)]− (1− β)κ⇒
εκ ≤ (1− β){h[∅, u1:T (∅)]− κ} ⇒
εκ ≤ e−γgc(Gl−1)/b?{h[∅, u1:T (∅)]− κ} ⇒

log

(
εκ

h[∅, u1:T (∅)]− κ

)
≤ −γgc(Gl−1)/b? ⇒

c(Gl−1) ≤ 1

γg
log

(
h[∅, u1:T (∅)]− κ

εκ

)
b? ⇒

c(G) ≤ c(sl) +
1

γg
log

(
h[∅, u1:T (∅)]− κ

εκ

)
b?,

where the latter holds since G = Gl−1∪{sl}, due to the de�nitions of G, Gl−1, and sl, and since
c(G) = c(Gl−1) + c(sl). Finally, since the de�nition of ε implies εκ = h[Gl−1, u1:T (Gl−1)]− κ,
and the de�nition of G is G = Ŝ, the proof of ineq. (8.21) is complete. �

Proof of Theorem 19's part (2) (Algorithm 17's running time) The proof is similar
to the proof of Theorem 18's part (2) (Algorithm 15's running time) and for this reason we
omit it. �

8.7.5. Proof of Theorem 20

Proof of Theorem 20 We complete the proof by �rst deriving a lower bound for the
numerator of the supermodularity ratio γg, and then, by deriving an upper bound for the
denominator of the supermodularity ratio γg.

We use the following notation: c , E(x>1 N1x1) +
∑T

t=1 tr (WtSt), and for any sensor set
S ⊆ V, and time t = 1, 2, . . . , T , ft(S) , tr

(
ΘtΣt|t(S)

)
. Then, the cost function g(S) in

eq. (8.18) is written as g(S) = c+
∑T

t=1 ft(S), due to eq. (8.29) in Lemma 19.

Lower bound for the numerator of the supermodularity ratio γg Per the super-
modularity ratio De�nition 29, the numerator of the submodularity ratio γg is of the form

T∑
t=1

[ft(S)− ft(S ∪ {v})], (8.64)
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for some sensor set S ⊆ V, and sensor v ∈ V; to lower bound the sum in (8.64), we lower
bound each ft(S)− ft(S ∪ {v}). To this end, from eq. (14) in Lemma 14, observe

Σt|t(S ∪ {v}) = [Σ−1
t|t−1(S ∪ {v}) +

∑
i∈S∪{v}

C̄>i,tC̄i,t]
−1.

De�ne Ωt = Σ−1
t|t−1(S) +

∑T
i∈S C̄

>
i,tC̄i,t, and Ω̄t = Σ−1

t|t−1(S ∪ {v}) +
∑T

i∈S C̄
>
i,tC̄i,t; using the

Woodbury identity in Lemma 12,

ft(S ∪ {v}) = tr
(
ΘtΩ̄

−1
t

)
−

tr
(

ΘtΩ̄
−1
t C̄>v,t(I + C̄v,tΩ̄

−1
t C̄>v,t)

−1C̄v,tΩ̄
−1
t

)
.

Therefore, for any time t ∈ {1, 2 . . . , T},

ft(S)− ft(S ∪ {v}) =

tr
(
ΘtΩ

−1
t

)
− tr

(
ΘtΩ̄

−1
t

)
+

tr
(

ΘtΩ̄
−1
t C̄>v,t(I + C̄v,tΩ̄

−1
t C̄>v,t)

−1C̄v,tΩ̄
−1
t

)
≥

tr
(

ΘtΩ̄
−1
t C̄>v,t(I + C̄v,tΩ̄

−1
t C̄>v,t)

−1C̄v,tΩ̄
−1
t

)
, (8.65)

where ineq. (8.65) holds because tr
(
ΘtΩ

−1
t

)
≥ tr

(
ΘtΩ̄

−1
t

)
. In particular, the inequality

tr
(
ΘtΩ

−1
t

)
≥ tr

(
ΘtΩ̄

−1
t

)
is implied as follows: Lemma 15 implies Σ1|1(S) � Σ1|1(S ∪ {v}).

Then, Corollary 9 implies Σt|t−1(S) � Σt|t−1(S ∪ {v}), and as a result, Lemma 10 implies
Σt|t−1(S)−1 � Σt|t−1(S ∪{v})−1. Now, Σt|t−1(S)−1 � Σt|t−1(S ∪{v})−1 and the de�nition of
Ωt and of Ω̄t imply Ωt � Ω̄t. Next, Lemma 10 implies Ω−1

t � Ω̄−1
t . As a result, since also Θt

is a symmetric matrix, Lem- ma 13 gives the desired inequality tr
(
ΘtΩ

−1
t

)
≥ tr

(
ΘtΩ̄

−1
t

)
.

Continuing from the ineq. (8.65),

ft(S)− ft(S ∪ {v}) ≥

tr
(
C̄v,tΩ̄

−1
t ΘtΩ̄

−1
t C̄>v,t(I + C̄v,tΩ̄

−1
t C̄>v,t)

−1
)
≥

λmin((I + C̄v,tΩ̄
−1
t C̄>v,t)

−1)tr
(
C̄v,tΩ̄

−1
t ΘtΩ̄

−1
t C̄>v,t

)
, (8.66)

where ineq. (8.66) holds due to Lemma 11. From ineq. (8.66),

ft(S)− ft(S ∪ {v}) ≥

= λ−1
max(I + C̄v,tΩ̄

−1
t C̄>v,t)tr

(
C̄v,tΩ̄

−1
t ΘtΩ̄

−1
t C̄>v,t

)
≥ λ−1

max(I + C̄v,tΣt|t(∅)C̄>v,t)tr
(
C̄v,tΩ̄

−1
t ΘtΩ̄

−1
t C̄>v,t

)
= λ−1

max(I + C̄v,tΣt|t(∅)C̄>v,t)tr
(

ΘtΩ̄
−1
t C̄>v,tC̄v,tΩ̄

−1
t

)
, (8.67)

where we used Ω̄−1
t � Σt|t(∅), which holds because of the following: the de�nition of Ω̄t

implies Ω̄t � Σ−1
t|t−1(S ∪{v}), and as a result, from Lemma 10 we get Ω̄−1

t � Σt|t−1(S ∪{v}).
In addition, Corollary 9 and the fact that Σ1|1(S ∪ {v}) � Σ1|1(∅), which holds due to
Lemma 15, imply Σt|t−1(S ∪ {v}) � Σt|t−1(∅). Finally, from eq. (14) in Lemma 14 it is
Σt|t−1(∅) = Σt|t(∅). Overall, the desired inequality Ω̄−1

t � Σt|t(∅) holds.
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Consider a time t′ ∈ {1, 2 . . . , T} such that for any time t ∈ {1, 2, . . . , T} it is Ω̄−1
t′ C̄

>
v,t′C̄v,t′Ω̄

−1
t′ �

Ω̄−1
t C̄>v,tC̄v,tΩ̄

−1
t , and let Φ be the matrix Ω̄−1

t′ C̄
>
v,t′C̄v,t′Ω̄

−1
t′ ; similarly, let l be the

mint∈{1,2...,T},v∈Vλ
−1
max(I + C̄v,tΣt|t(∅)C̄>v,t).

Summing ineq. (8.67) across all times t ∈ {1, 2 . . . , T}, and using Lemmata 13 and 11,

g(S)− g(S ∪ {v}) ≥ l
T∑
t=1

tr
(

ΘtΩ̄
−1
t C̄>v,tC̄v,tΩ̄

−1
t

)
≥ l

T∑
t=1

tr (ΘtΦ)

= ltr

(
Φ

T∑
t=1

Θt

)

≥ lλmin

(
T∑
t=1

Θt

)
tr (Φ)

> 0,which is non-zero because
∑T

t=1 Θt � 0 and Φ is a non-zero positive semi-de�nite matrix.

Finally, we lower bound tr (Φ), using Lemma 11:

tr (Φ) = tr
(

Ω̄−1
t′ C̄

>
v,t′C̄v,t′Ω̄

−1
t′

)
= tr

(
Ω̄−2
t′ C̄

>
v,t′C̄v,t′

)
≥ λmin(Ω̄−2

t′ )tr
(
C̄>v,t′C̄v,t′

)
= λ2

min(Ω̄−1
t′ )tr

(
C̄>v,t′C̄v,t′

)
≥ λ2

min(Σt′|t′(V))tr
(
C̄>v,t′C̄v,t′

)
, (8.68)

where ineq. (8.68) holds because Ω̄−1
t′ � Σt′|t′(V). In particular, the inequality Ω̄−1

t′ �
Σt′|t′(S ∪ {v}) is derived by applying Lemma 10 to the inequality Ω̄t′ � Ω̄t′ + C̄>v,tC̄

>
v,t =

Σ−1
t′|t′(S∪{v}), where the equality holds by the de�nition of Ω̄t′ . In addition, due to Lemma 15

it is Σ1|1(S ∪ {v}) � Σ1|1(V), and as a result, from Corollary 8 it also is Σt′|t′(S ∪ {v}) �
Σt′|t′(V). Overall, the desired inequality Ω̄−1

t′ � Σt′|t′(V) holds.

Upper bound for the denominator of the supermodularity ratio γg The denomi-
nator of the submodularity ratio γg is of the form

T∑
t=1

[ft(S ′)− ft(S ′ ∪ {v})],
for some sensor set S ′ ⊆ V, and sensor v ∈ V; to upper bound it, from eq. (14) in Lemma 14
of Appendix A, observe

Σt|t(S ′ ∪ {v}) = [Σ−1
t|t−1(S ′ ∪ {v}) +

∑
i∈S′∪{v}

C̄>i,tC̄i,t]
−1,
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and let Ht = Σ−1
t|t−1(S ′) +

∑T
i∈S′ C̄

>
i,tC̄i,t, and H̄t = Σ−1

t|t−1(S ′ ∪ {v}) +
∑T

i∈S′ C̄
>
i,tC̄i,t; using

the Woodbury identity in Lemma 12,

ft(S ′ ∪ {v}) = tr
(
ΘtH̄

−1
t

)
−

tr
(

ΘtH̄
−1
t C̄>v,t(I + C̄v,tH̄

−1
t C̄>v,t)

−1C̄v,tH̄
−1
t

)
.Therefore,

T∑
t=1

[ft(S ′)− ft(S ′ ∪ {v})] =

T∑
t=1

[tr
(
ΘtH

−1
t

)
− tr

(
ΘtH̄

−1
t

)
+

tr
(

ΘtH̄
−1
t C̄>v,t(I + C̄v,tH̄

−1
t C̄>v,t)

−1C̄v,tH̄
−1
t

)
] ≤

T∑
t=1

[tr
(
ΘtH

−1
t

)
+

tr
(

ΘtH̄
−1
t C̄>v,t(I + C̄v,tH̄

−1
t C̄>v,t)

−1C̄v,tH̄
−1
t

)
], (8.69)

where ineq. (8.69) holds since tr
(
ΘtH̄

−1
t

)
is non-negative. In eq. (8.69), the second term in

the sum is upper bounded as follows, using Lemma 11:

tr
(

ΘtH̄
−1
t C̄>v,t(I + C̄v,tH̄

−1
t C̄>v,t)

−1C̄v,tH̄
−1
t

)
=

tr
(
C̄v,tH̄

−1
t ΘtH̄

−1
t C̄>v,t(I + C̄v,tH̄

−1
t C̄>v,t)

−1
)
≤

tr
(
C̄v,tH̄

−1
t ΘtH̄

−1
t C̄>v,t

)
λmax[(I + C̄v,tH̄

−1
t C̄>v,t)

−1] =

tr
(
C̄v,tH̄

−1
t ΘtH̄

−1
t C̄>v,t

)
λ−1

min(I + C̄v,tH̄
−1
t C̄>v,t) ≤

tr
(
C̄v,tH̄

−1
t ΘtH̄

−1
t C̄>v,t

)
λ−1

min(I + C̄v,tΣt|t(V)C̄>v,t), (8.70)
since λmin(I + C̄v,tH̄

−1
t C̄>v,t) ≥ λmin(I + C̄v,tΣt|t(V)C̄>v,t), because H̄

−1
t � Σt|t(V). In partic-

ular, the inequality H̄−1
t � Σt|t(V) is derived as follows: �rst, it is H̄t � H̄t + C̄>v,tC̄v,t =

Σt|t(S ′∪{v})−1, where the equality holds by the de�nition of H̄t, and now Lemma 10 implies
H̄−1
t � Σt|t(S ′∪{v}). In addition, Σt|t(S ′∪{v}) � Σt|t(V) is implied from Corollary 8, since

Lemma 15 implies Σ1|1(S ′ ∪ {v}) � Σ1|1(V). Overall, the desired inequality H̄−1
t � Σt|t(V)

holds.

Let l′ = maxt∈{1,2...,T},v∈Vλ
−1
min(I + C̄v,tΣt|t(V)C̄>v,t). From ineqs. (8.69) and (8.70),

T∑
t=1

[ft(S ′)− ft(S ′ ∪ {v})] ≤

T∑
t=1

[tr
(
ΘtH

−1
t

)
+ l′tr

(
ΘtH̄

−1
t C̄>v,tC̄v,tH̄

−1
t

)
].

(8.71)

Consider times t′ ∈ {1, 2 . . . , T} and t′′ ∈ {1, 2 . . . , T} such that for any time t ∈ {1, 2, . . . , T},
it is H−1

t′ � H−1
t and H̄−1

t′′ C̄
>
v,t′′C̄v,t′′H̄

−1
t′′ � H̄−1

t C̄>v,tC̄v,tH̄
−1
t , and let Ξ = H−1

t′ and
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Φ′ = H̄−1
t′ C̄

>
v,t′C̄v,t′H̄

−1
t′ . From ineq. (8.71), and Lemma 13,

T∑
t=1

[ft(S ′)− ft(S ′ ∪ {v})] ≤

T∑
t=1

[tr (ΘtΞ) + l′tr
(
ΘtΦ

′)] ≤
tr

(
Ξ

T∑
t=1

Θt

)
+ l′tr

(
Φ′

T∑
t=1

Θt

)
≤

(tr (Ξ) + l′tr
(
Φ′
)
)λmax(

T∑
t=1

Θt). (8.72)

Finally, we upper bound tr (Ξ) + l′tr (Φ′) in ineq. (8.72), using Lemma 11:

tr (Ξ) + l′tr
(
Φ′
)
≤

tr
(
H−1
t′
)

+ (8.73)

l′λ2
max(H̄−1

t′′ )tr
(
C̄>v,t′′C̄v,t′′

)
≤

tr
(
Σt′|t′(∅)

)
+ l′λ2

max(Σt′′|t′′(∅))tr
(
C̄>v,t′′C̄v,t′′

)
, (8.74)

where ineq. (8.74) holds because H−1
t′ � Σt′|t′(∅), and similarly, H̄−1

t′′ � Σt′′|t′′(∅). In partic-
ular, the inequality H−1

t′ � Σt′|t′(∅) is implied as follows: �rst, by the de�nition of Ht′ , it is
H−1
t′ = Σt′|t′(S ′); and �nally, Corollary 8 and the fact that Σ1|1(S ′) � Σ1|1(∅), which holds

due to Lemma 15, imply Σt′|t′(S ′) � Σt′|t′(∅). In addition, the inequality H̄−1
t′′ � Σt′′|t′′(∅)

is implied as follows: �rst, by the de�nition of H̄t′′ , it is H̄t′′ � Σ−1
t′′|t′′−1(S ′ ∪ {v}), and as

a result, Lemma 10 implies H̄−1
t′′ � Σt′′|t′′−1(S ′ ∪ {v}). Moreover, Corollary 9 and the fact

that Σ1|1(S ∪ {v}) � Σ1|1(∅), which holds due to Lemma 15, imply Σt′′|t′′−1(S ′ ∪ {v}) �
Σt′′|t′′−1(∅). Finally, from eq. (14) in Lemma 14 it is Σt′′|t′′−1(∅) = Σt′′|t′′(∅). Overall, the
desired inequality H̄−1

t′′ � Σt′′|t′′(∅) holds. �

8.7.6. Proof of Theorem 21

For the proof of Theorem 21, we use Lemmata 25-28 below.
Lemma 25 (System-level condition for near-optimal co-design). Let N1 be de�ned as in
eq. (8.11). The control policy u◦1:T , (0, 0, . . . , 0) is suboptimal for the LQG problem in
eq. (8.24) for all non-zero initial conditions x1 if and only if∑T

t=1A
>
1 · · ·A>t QtAt · · ·A1 � N1. (8.75)

Proof of Lemma 25 For any initial condition x1, eq. (8.29) in Lemma 19 implies for the
noiseless perfect state information LQG problem in eq. (8.24):

minu1:T

T∑
t=1

[‖xt+1‖2Qt + ‖ut(xt)‖2Rt ]
∣∣
Σt|t=Wt=0

= x>1 N1x1, (8.76)

since E(‖x1‖2N1
) = x>1 N1x1, because x1 is known (Σ1|1 = 0), and Σt|t and Wt are zero.
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In addition, for u1:T = (0, 0, . . . , 0), the objective function in the noiseless perfect state
information LQG problem in eq. (8.24) is

T∑
t=1

[‖xt+1‖2Qt + ‖ut(xt)‖2Rt ]
∣∣
Σt|t=Wt=0

=
T∑
t=1

x>t+1Qtxt+1

= x>1

T∑
t=1

A>1 A
>
2 · · ·A>t QtAtAt−1 · · ·A1x1,

(8.77)

since xt+1 = Atxt = AtAt−1xt−1 = . . . = AtAt−1 · · ·A1x1 when all u1, u2, . . . , uT are zero.

From eqs. (8.76) and (8.77), the inequality

x>1 N1x1 < x>1

T∑
t=1

A>1 A
>
2 · · ·A>t QtAtAt−1 · · ·A1x1

holds for any non-zero x1 if and only if

N1 ≺
T∑
t=1

A>1 · · ·A>t QtAtAt−1 · · ·A1.
�

Lemma 26. For any t = 1, 2, . . . , T ,

Θt = A>t StAt +Qt−1 − St−1.

Proof of Lemma 26 Using the Woobury identity in Lemma 12, and the notation in
eq. (8.11),

Nt = A>t (S−1
t +BtR

−1
t B>t )−1At

= A>t (St − StBtM−1
t B>t St)At

= A>t StAt −Θt.
The latter, gives Θt = A>t StAt−Nt. In addition, from eq. (8.11), −Nt = Qt−1−St−1, since
St = Qt +Nt+1. �
Lemma 27.

∑T
t=1A

>
1 A
>
2 · · ·A>t QtAtAt−1 · · ·A1 � N1 if and only if

T∑
t=1

A>1 A
>
2 · · ·A>t−1ΘtAt−1At−2 · · ·A1 � 0.
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Proof of Lemma 27 For i = t− 1, t− 2, . . . , 1, we pre- and post-multiply the identity in
Lemma 26 with A>i and Ai, respectively:

Θt = A>t StAt +Qt−1 − St−1 ⇒ (8.78)

A>t−1ΘtAt−1 = A>t−1A
>
t StAtAt−1 +A>t−1Qt−1At−1− (8.79)

A>t−1St−1At−1 ⇒ (8.80)

A>t−1ΘtAt−1 = A>t−1A
>
t StAtAt−1 +A>t−1Qt−1At−1− (8.81)

Θt−1 +Qt−2 − St−2 ⇒ (8.82)

Θt−1 +A>t−1ΘtAt−1 = A>t−1A
>
t StAtAt−1+ (8.83)

A>t−1Qt−1At−1 +Qt−2 − St−2 ⇒ (8.84)

. . .⇒ (8.85)

Θ2 +A>2 Θ3A2 + . . .+A>2 · · ·A>t−1ΘtAt−1 · · ·A2 = (8.86)

A>2 · · ·A>t StAt · · ·A2 +A>2 · · ·A>t−1Qt−1At−1 · · ·A2+ (8.87)

. . .+A>2 Q2A2 +Q1 − S1 ⇒ (8.88)

Θ1 +A>1 Θ2A1 + . . .+A>1 · · ·A>t−1ΘtAt−1 · · ·A1 = (8.89)

A>1 · · ·A>t StAt · · ·A1 +A>1 · · ·A>t−1Qt−1At−1 · · ·A1+ (8.90)

. . .+A>1 Q1A1 −N1 ⇒ (8.91)
T∑
t=1

A>1 · · ·A>t−1ΘtAt−1 · · ·A1 = (8.92)

T∑
t=1

A>1 · · ·A>t QtAt · · ·A1 −N1. (8.93)

The last equality in eq. (8.93) implies Lemma 27. �
Lemma 28. Consider for any t = 1, 2, . . . , T that At is invertible. It holds:

T∑
t=1

A>1 A
>
2 · · ·A>t−1ΘtAt−1At−2 · · ·A1 � 0

if and only if
T∑
t=1

Θt � 0.

Proof of Lemma 28 Let Ut = At−1At−2 · · ·A1.

We �rst prove that for any non-zero vector z, if it is
∑T

t=1A
>
1 A
>
2 · · ·A>t−1ΘtAt−1At−2 · · ·A1 �

0, then
∑T

t=1 z
>Θtz > 0. In particular, since Ut is invertible, �because for any t ∈
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{1, 2, . . . , T}, At is,�

T∑
t=1

z>Θtz =

T∑
t=1

z>U−>t U>t ΘtUtU
−1
t z

=
T∑
t=1

tr
(
φtφ
>
t U
>
t ΘtUt

)
,

(8.94)

where we let φt = U−1
t z. Consider a time t′ such that for any time t ∈ {1, 2 . . . , T},

φt′φ
>
t′ � φtφ>t . From eq. (8.94), using Lemmata 13 and 11,

T∑
t=1

z>Θtz ≥
T∑
t=1

tr
(
φt′φ

>
t′U
>
t ΘtUt

)
≥ tr

(
φt′φ

>
t′

T∑
t=1

U>t ΘtUt

)

≥ tr
(
φt′φ

>
t′

)
λmin(

T∑
t=1

U>t ΘtUt)

= ‖φt′‖22λmin(
T∑
t=1

U>t ΘtUt)

> 0.
We �nally prove that for any non-zero vector z, if

∑T
t=1 Θt � 0, then"

T∑
t=1

zA>1 · · ·A>t−1ΘtAt−1 · · ·A1z � 0.

In particular,

T∑
t=1

z>U>t ΘtUtz =
T∑
t=1

tr
(
ξ>t Θtξt

)
, (8.95)

where we let ξt = Utz. Consider time t′ such that for any time t ∈ {1, 2 . . . , T}, ξt′ξ>t′ � ξtξ>t .
From eq. (8.94), using Lemmata 13 and 11,

T∑
t=1

tr
(
ξ>t Θtξt

)
≥ tr

(
ξt′ξ
>
t′

T∑
t=1

Θt

)

≥ tr
(
ξt′ξ
>
t′

)
λmin(

T∑
t=1

Θt)

= ‖ξt′‖22λmin(

T∑
t=1

Θt)

> 0. �
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Proof of Theorem 21 Theorem 21 follows from the sequential application of Lem-
mata 25, 27, and 28. �
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Part III

RESILIENT SUBMODULAR

MAXIMIZATION
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CHAPTER 9 : Resilient Non-Submodular Maximization over Matroid Constraints

Applications in control, robotics, and optimization motivate the design of systems by se-
lecting system elements, such as actuators, sensors, or data, subject to complex design con-
straints that require the system elements not only to be a few in number, but also, to satisfy
heterogeneity or global-interdependency constraints; in particular, matroid constraints. How-
ever, in failure-prone and adversarial environments, sensors get attacked; actuators fail; data
get deleted. Thence, traditional matroid-constrained design paradigms become insu�cient
and, in contrast, resilient matroid-constrained designs against attacks, failures, or deletions
become important. In general, resilient matroid-constrained design problems are computa-
tionally hard. Also, even though they often involve objective functions that are monotone
and (possibly) submodular, no scalable approximation algorithms are known for their solu-
tion. In this chapter, we provide the �rst algorithm, that achieves the following character-
istics: system-wide resiliency, i.e., the algorithm is valid for any number of denial-of-service
attacks, deletions, or failures; minimal running time, i.e., the algorithm terminates with
the same running time as state-of-the-art algorithms for (non-resilient) matroid-constrained
optimization; and provable approximation performance, i.e., the algorithm guarantees for
monotone objective functions a solution close to the optimal. We quantify the algorithm's
approximation performance using a notion of curvature for monotone (not necessarily sub-
modular) set functions. Finally, we support our theoretical analyses with numerical experi-
ments, by considering a control-aware sensor selection scenario, namely, sensing-constrained
robot navigation.1

9.1. Introduction

Applications in control, robotics, and optimization require the design of systems in problems
such as:

• (Control) Leader selection: In multi-robot systems, how should we choose a few lead-
ers both to maximize the systems' capability to monitor phenomena despite commu-
nication noise, and to satisfy interdependency constraints where each robot must be
controllable by the leaders? [218]

• (Robotics) Target tracking : At a team of �ying robots, how should we select the
robots' motions to maximize the team's capability for tracking adversarial targets
in urban environments, subject to heterogeneity constraints where each robot has
di�erent motion capabilities? [6]

• (Optimization) Data selection: Given a �ood of heterogeneous driving data, collected
from the smart-phones of several types of drivers (e.g., truck or commercial vehicle
drivers), which few data should we process from each driver-type to enable the pre-
diction of car tra�c? [219]

In particular, all the above applications motivate the design of systems by selecting system
elements, such as actuators, sensors, or data, subject to complex design constraints that
require the system elements not only to be a few in number, but also, to satisfy heterogene-

1This chapter is based on the paper by Tzoumas et al. [217].

161



ity or global-interdependency constraints. Additional applications in control, robotics, and
optimization that involve such complex design constraints are:

• (Control) Sparse actuation and sensing design [4, 5, 10, 53, 58]; stabilization and
voltage control in power grids [1, 25]; and synchronization in complex networks [9];

• (Robotics) Task allocation in collaborative multi-robot systems [11]; and agile au-
tonomous robot navigation and sparse visual-cue selection [220];

• (Optimization) Sparse signal recovery and subset column selection [221, 222, 223]; and
sparse approximation, dictionary and feature selection [224, 225, 226].

In more detail, all the aforementioned applications [1, 4, 5, 6, 9, 10, 11, 25, 53, 58, 218, 219,
220, 221, 222, 223, 224, 225, 226] require the solution to an optimization problem of the
form:

max
A⊆V, A∈I

f(A). (9.1)

where the set I represents a collection of complex design constraints �called matroids [12]�
that enforce heterogeneity or global-interdependency across the elements in A; and the objec-
tive function f is monotone and (possibly) non-submodular; submodularity is a diminishing
returns property. The problem in eq. (9.1) is combinatorial, and, speci�cally, it is NP-
hard [13]; notwithstanding, approximation algorithms have been proposed for its solution,
such as the greedy [12, 13, 31, 32, 33].

But in all the above critical applications, actuators can fail [23]; sensors can get cyber-
attacked [24]; and data can get deleted [36]. Hence, in such failure-prone and adversarial
scenarios, resilient matroid-constrained designs against denial-of-service attacks, deletions,
or failures become important.

In this chapter, we formalize for the �rst time a problem of resilient non-submodular maxi-
mization, that goes beyond the traditional problem in eq. (9.1), and guards against attacks,
failures, and deletions. In particular, we introduce the following resilient re-formulation of
the problem in eq. (9.1):

max
A⊆V, A∈I

min
B⊆A, B∈I′

f(A \ B). (9.2)

where the set I ′ represents the collection of possible set-removals B �attacks, failures, or
deletions� from A, each of some speci�ed cardinality. Overall, the problem in eq. (9.2)
maximizes f despite worst-case failures that compromise the maximization in eq. (9.1).
Therefore, the problem formulation in eq. (9.2) is suitable in scenarios where there is no
prior on the removal mechanism, as well as, in scenarios where protection against worst-case
removals is essential, such as in expensive experiment designs, or missions of adversarial-
target tracking.

Particularly, the optimization problem in eq. (9.2) may be interpreted as a 2-stage perfect
information sequential game between two players [26, Chapter 4], namely, a �maximization�
player (designer), and a �minimization� player (attacker), where the designer plays �rst, and
selects A to maximize the objective function f, and, in contrast, the attacker plays second,
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and selects B to minimize the objective function f. In particular, the attacker �rst observes
the designer's selection A, and then, selects B such that B is a worst-case set removal from A.

In sum, the optimization problem in eq. (9.2) goes beyond traditional (non-resilient) opti-
mization [12, 13, 31, 32, 33] by proposing resilient optimization; beyond merely cardinality-
constrained resilient optimization [34, 35, 56] by proposingmatroid-constrained resilient opti-
mization; and beyond protection against non-adversarial set-removals [36, 37] by proposing
protection against worst-case set-removals. Hence, the problem in eq. (9.2) aims to pro-
tect the complex design of systems, per heterogeneity or global-interdependency constraints,
against attacks, failures, or deletion, which is a vital objective both for the safety of critical
infrastructures, such as power grids [1, 25], and for the safety of critical missions, such as
multi-target surveillance with teams of mobile robots [6].

Contributions. In this chapter, we make the contributions:

• (Problem) We formalize the problem of resilient maximization over matroid constraints
against denial-of-service removals, per eq. (9.2). This is the �rst work to formalize,
address, and motivate this problem.

• (Solution) We develop the �rst algorithm for the problem of resilient maximization
over matroid constraints in eq. (9.2), and prove it enjoys the following properties:

� system-wide resiliency : the algorithm is valid for any number of removals;

� minimal running time: the algorithm terminates with the same running time as
state-of-the-art algorithms for (non-resilient) matroid-constrained optimization;

� provable approximation performance: the algorithm ensures for functions f that
are monotone and (possibly) submodular �as it holds true in all above applica-
tions [1, 4, 5, 6, 9, 10, 11, 25, 53, 58, 218, 219, 220, 221, 222, 223, 224, 225, 226]�
a solution close-to-optimal.

To quantify the algorithm's approximation performance, we use a notion of cur-
vature for monotone (not necessarily submodular) set functions.

• (Simulations) We demonstrate the necessity for the resilient re-formulation of the prob-
lem in eq. (9.1) by conducting numerical experiments in various scenarios of sensing-
constrained autonomous robot navigation, varying the number of sensor failures. In
addition, via the experiments we demonstrate the bene�ts of our approach.

Overall, the proposed algorithm herein enables the resilient re-formulation and solution of
all aforementioned matroid-constrained applications [1, 4, 5, 6, 9, 10, 11, 25, 53, 58, 218,
219, 220, 221, 222, 223, 224, 225, 226]; we describe in detail the matroid-constraints involved
in all aforementioned application in Section 9.2. Moreover, the proposed algorithm enjoys
minimal running time, and provable approximation guarantees.

Organization of the rest of the chapter. Section 9.2 formulates the problem of re-
silient maximization over matroid constraints (Problem 4), and describes types of matroid
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constraints in control, robotics, and optimization. Section 9.3 presents the �rst scalable,
near-optimal algorithm for Problem 4. Section 9.4 presents the main result in this chapter,
which characterizes the scalability and performance guarantees of the proposed algorithm.
Section 9.5 presents numerical experiments over a control-aware sensor selection scenario.
Section 9.6 concludes the chapter. All proofs are found in the chapter's Appendix.

Notation. Calligraphic fonts denote sets (e.g., A). Given a set A, then 2A denotes the
power set of A; |A| denotes A's cardinality; given also a set B, then A \ B denotes the set
of elements in A that are not in B; and the (A,B) is equivalent to A ∪ B. Given a ground
set V, a set function f : 2V 7→ R, and an element x ∈ V, the f(x) denotes f({x}).

9.2. Resilient Non-Submodular Maximization over Matroid Constraints

We formally de�ne resilient non-submodular maximization over matroid constraints. We
start with some basic de�nitions.
De�nition 30 (Monotonicity). Consider a �nite ground set V. Then, a set function f :
2V 7→ R is non-decreasing if and only if for any sets A ⊆ A′ ⊆ V, it holds f(A) ≤ f(A′).
De�nition 31 (Matroid [30, Section 39.1]). Consider a �nite ground set V, and a non-
empty collection of subsets of V, denoted by I. Then, the pair (V, I) is called a matroid if
and only if the following conditions hold:

• for any set X ⊆ V such that X ∈ I, and for any set such that Z ⊆ X , it holds Z ∈ I;

• for any sets X ,Z ⊆ V such that X ,Z ∈ I and |X | < |Z|, it holds that there exists an
element z ∈ Z \ X such that X ∪ {z} ∈ I.

We next motivate De�nition 31 by presenting three matroid examples �uniform, partition,
and transversal matroid� that appear in applications in control, robotics, and optimization.

Uniform matroid, and applications. A matroid (V, I) is a uniform matroid if for a
positive integer α it holds I ≡ {A : A ⊆ V, |A| ≤ α}. Thus, the uniform matroid treats all
elements in V uniformly (that is, as being the same), by only limiting their number in each
set that is feasible in I.

Applications of the uniform matroid in control, robotics, and optimization, arise when one
cannot use an arbitrary number of system elements, e.g., actuators, sensors, or data, to
achieve a desired system performance; for example, such sparse element-selection scenarios
are necessitated in resource constrained environments of, e.g., limited battery, communi-
cation bandwidth, or data processing time [220]. In more detail, applications of sparse,
uniform selection in control, robotics, and optimization include the following:

• (Control) Actuator and sensor placement, e.g., for system controllability with minimal
control e�ort [4, 53], and for optimal smoothing or Kalman �ltering [10, 58];

• (Robotics) Sparse visual-cue selection, e.g., for agile autonomous robot navigation [220];

• (Optimization) Sparse recovery and column subset selection, e.g., for experiment de-
sign [221, 222, 223].
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Partition matroid, and applications. A matroid (V, I) is a partition matroid if for a
positive integer n, disjoint sets V1, . . . ,Vn, and positive integers α1, . . . , αn, it holds V ≡
V1 ∪ · · · ∪ Vn and I ≡ {A : A ⊆ V, |A ∩ Vi| ≤ αi, for all i = 1, . . . , n}. Hence, the
partition matroid goes beyond the uniform matroid by allowing for heterogeneity in the
elements included in each set that is feasible in I. We give two interpretations of the
disjoint sets V1, . . . ,Vn: the �rst interpretation considers that V1, . . . ,Vn correspond to the
available elements across n di�erent types (buckets) of elements, and correspondingly, the
positive integers α1, . . . , αn constrain uniformly the number of elements one can use from
each type 1, . . . , n towards a system design goal; the second interpretation considers that
V1, . . . ,Vn correspond to the available elements across n di�erent times, and correspondingly,
the positive integers α1, . . . , αn constrain uniformly the number of elements that one can
use at each time 1, . . . , n.

Applications of the partition matroid in control, robotics, and optimization include all the
aforementioned applications in scenarios where heterogeneity in the element-selection en-
hances the system performance; for example, to guarantee voltage control in power grids,
one needs to (possibly) actuate di�erent types of actuators [25], and to guarantee active
target tracking, one needs to activate di�erent sensors at each time step [5]. Additional
applications of the partition matroid in control and robotics include the following:

• (Control) Synchronization in complex dynamical networks, e.g., for missions of motion
coordination [9];

• (Robotics) Robot motion planning, e.g., for multi-target tracking with mobile robots [6];

• (Optimization) Sparse approximation and feature selection, e.g., for sparse dictionary
selection [224, 225, 226].

Transversal matroid, and applications. A matroid (V, I) is a transversal matroid if for
a positive integer n, and a collection of subsets S1, . . . ,Sn of V, it holds I is the collection of
all partial transversals of (S1, . . . ,Sn) �a partial transversal is de�ned as follows: for a �nite
set V, a positive integer n, and a collection of subsets S1, . . . ,Sn of V, a partial transversal
of (S1, . . . ,Sn) is a subset P of V such that there exist a one-to-one map φ : P 7→ {1, . . . , n}
so that for all p ∈ P it holds p ∈ Sφ(p); i.e., each element in P intersects with one �and
only one� set among the sets S1, . . . ,Sn.

An application of the transversal matroid in control is that of actuation selection for optimal
control performance subject to structural controllability constraints [218].

Additional examples. Other matroid constraints in control, robotics, and optimization
are found in the following papers:

• (Control) [1], for the stabilization of power grids;

• (Robotics) [11], for task allocation in multi-robot systems;

• (Optimization) [219], for general task assignments.
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Given the aforementioned matroid-constrained application-examples, we now de�ne the
main problem in this chapter.
Problem 4. (Resilient Non-Submodular Maximization over Matroid Constraints)
Consider the problem parameters:

• a matroid (V, I);

• an either uniform or partition matroid (V, I ′);

• a non-decreasing set function f : 2V 7→ R such that (without loss of generality) it holds
f(∅) = 0, and for any set A ⊆ V, it also holds f(A) ≥ 0.

The problem of resilient non-submodular maximization over matroid constraints is to max-
imize the function f by selecting a set A ⊆ V such that A ∈ I, and accounting for any
worst-case set removal B ⊆ A from A such that B ∈ I ′. Formally:2

max
A⊆V, A∈I

min
B⊆A, B∈I′

f(A \ B).

As we mentioned in this chapter's Introduction, Problem 4 may be interpreted as a 2-
stage perfect information sequential game between two players [26, Chapter 4], namely, a
�maximization� player, and a �minimization� player, where the �maximization� player plays
�rst by selecting the set A, and, then, the �minimization� player observes A, and plays
second by selecting a worst-case set removal B from A.

In sum, Problem 4 aims to guard all the aforementioned applications [1, 4, 5, 6, 9, 10, 11,
25, 53, 58, 218, 219, 220, 221, 222, 223, 224, 225, 226] in control, robotics, and optimization
against attacks, failures, or deletions, by proposing their resilient re-formulation, since all
involve the maximization of non-decreasing functions subject to matroid constrains.

Lastly, we discuss the resilient re-formulation of two among the aforementioned applica-
tions [1, 4, 5, 6, 9, 10, 11, 25, 53, 58, 218, 219, 220, 221, 222, 223, 224, 225, 226]:

Actuator placement for minimal control e�ort [4, 53] : Given a dynamical system, the design
objective is to select a few actuators to place in the system to achieve controllability with
minimal control e�ort [53]. In particular, the actuator-selection framework is as follows:
given a set V of available actuators to choose from, then, up to α actuators can be placed in
the system. In more detail, the aforementioned actuator-selection problem can be captured
by a uniform matroid (V, I) where I , {A : A ∈ V, |A| ≤ α}. However, in the case of a
failure-prone environment where up to β actuators may fail, then a resilient re-formulation
of the aforementioned problem formulation is necessary: Problem 4 suggests that such a
resilient re-formulation can be achieved by modelling any set of β actuator-failures in A by
a set B in the uniform matroid on A where B ⊆ A and |B| ≤ β.

Multi-target coverage with mobile robots [6] : A number of adversarial targets are deployed in
the environment, and a team of mobile robotsR is tasked to cover them. To this end, at each

2Given a matroid (V, I′), and any subset A ⊆ V, then, the (A, {B : B ⊆ A,B ∈ I′}) is also a matroid [30,
Section 39.3].
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time step the robots in R need to jointly choose their motion. In particular, the movement-
selection framework is as follows: given a �nite set of possible moves Mi for each robot
i ∈ R, then, at each time step each robot selects a move to make so that the team R covers
collectively as many targets as possible. In more detail, since each robot in R can make only
one move per time, if we denote byA the set of moves to be made by each robot inR, then the
aforementioned movement-selection problem can be captured by a partition matroid (V, I)
such that V = ∪i∈RMi and I = {A : A ⊆ V, |Mi ∩ A| ≤ 1, for all i ∈ R} [6]. However,
in the case of an adversarial scenario where the targets can attack up to β robots, then a
resilient re-formulation of the aforementioned problem formulation is necessary: Problem 4
suggests that such a resilient re-formulation can be achieved by modelling any set of β
attacks to the robots in R by a set B in the uniform matroid on S where B ⊆ S and |B| ≤ β.

9.3. Algorithm for Problem 4

We present the �rst scalable algorithm for Problem 4. The pseudo-code of the algorithm is
described in Algorithm 19.

9.3.1. Intuition behind Algorithm 19

The goal of Problem 4 is to ensure a maximal value for an objective function f through
a single maximization step, despite compromises to the solution of the maximization step.
In particular, Problem 4 aims to select a set A towards a maximal value of f, despite that
A is later compromised by a worst-case set removal B, resulting to f being �nally evaluated
at the set A \ B instead of the set A. In this context, Algorithm 19 aims to ful�l the goal
of Problem 4 by constructing the set A as the union of two sets, namely, the A1 and A2

(line 16 of Algorithm 19), whose role we describe in more detail below:

Set A1 approximates worst-case set removal from A: Algorithm 19 aims with the set A1 to
capture a worst-case set-removal of elements �per the matroid (V, I ′)� from the elements
Algorithm 19 is going to select in the set A; equivalently, the set A1 is aimed to act as a �bait�
to an attacker that selects to remove the best set of elements from A per the matroid (V, I ′)
(best with respect to the elements' contribution towards the goal of Problem 4). However,
the problem of selecting the best elements in V per a matroid constraint is a combinatorial
and, in general, intractable problem [13]. For this reason, Algorithm 19 aims to approximate
the best set of elements in I ′, by letting A1 be the set of elements with the largest marginal
contributions to the value of the objective function f (lines 2-8 of Algorithm 19). In addition,
since per Problem 4 the set A needs to be in the matroid (V, I), Algorithm 19 constructs A1

so that not only it is A1 ∈ I ′, as we described before, but so that it also is A1 ∈ I (lines 4-6
of Algorithm 19).

Set A2 is such that the set A1 ∪ A2 approximates optimal solution to Problem 4: Assum-
ing that A1 is the set that is going to be removed from Algorithm 19's set selection A,
Algorithm 19 needs to select a set of elements A2 to complete the construction of A so
that A = A1 ∪ A2 is in the matroid (V, I), per Problem 4. In particular, for A = A1 ∪ A2

to be an optimal solution to Problem 4 (assuming the removal of A1 from A), Algorithm 19
needs to select A2 as a best set of elements from V \ A1 subject to the constraint that
A1 ∪ A2 is in (V, I) (lines 11-13 of Algorithm 19). Nevertheless, the problem of selecting
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Algorithm 19 Scalable algorithm for Problem 4.

Input: Per Problem 4, Algorithm 19 receives the inputs:
• a matroid (V, I);
• an either uniform or partition matroid (V, I ′);
• a non-decreasing set function f : 2V 7→ R such that it is f(∅) = 0, and for any set
A ⊆ V, it also is f(A) ≥ 0.

Output: Set A.

1: A1 ← ∅; R1 ← ∅; A2 ← ∅; R2 ← ∅;
2: while R1 6= V do
3: x ∈ arg maxy∈V\R1

f(y);
4: if A1 ∪ {x} ∈ I and A1 ∪ {x} ∈ I ′ then
5: A1 ← A1 ∪ {x};
6: end if
7: R1 ← R1 ∪ {x};
8: end while
9: while R2 6= V \ A1 do
10: x ∈ arg maxy∈V\(A1∪R2) f(A2 ∪ {y});
11: if A1 ∪ A2 ∪ {x} ∈ I then
12: A2 ← A2 ∪ {x};
13: end if
14: R2 ← R2 ∪ {x};
15: end while
16: A ← A1 ∪ A2;

a best set of elements subject to such a constraint is a combinatorial and, in general, in-
tractable problem [13]. Hence, Algorithm 19 aims to approximate such a best set, using the
greedy procedure in the lines 9-15 of Algorithm 19.

Overall, Algorithm 19 constructs the sets A1 and A2 to approximate with their union A an
optimal solution to Problem 4.

We next describe the steps in Algorithm 19 in more detail.

9.3.2. Description of steps in Algorithm 19

Algorithm 19 executes four steps:

Initialization (line 1 of Algorithm 19): Algorithm 19 de�nes four auxiliary sets, namely, the
A1, R1, A2, and R2, and initializes each of them with the empty set (line 1 of Algorithm 19).
The purpose of A1 and A2 is to construct the set A, which is the set Algorithm 19 selects
as a solution to Problem 4; in particular, the union of A1 and of A2 constructs A by the
end of Algorithm 19 (line 16 of Algorithm 19). The purpose of R1 and of R2 is to support
the construction of A1 and A2, respectively; in particular, during the construction of A1,
Algorithm 19 stores inR1 the elements of V that have either been included already or cannot
be included in A1 (line 7 of Algorithm 19), and that way, Algorithm 19 keeps track of which
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elements remain to be checked whether they could be added in A1 (line 5 of Algorithm 19).
Similarly, during the construction of A2, Algorithm 19 stores in R2 the elements of V \ A1

that have either been included already or cannot be included in A2 (line 14 of Algorithm 19),
and that way, Algorithm 19 keeps track of which elements remain to be checked whether
they could be added in A2 (line 12 of Algorithm 19).

Construction of set A1 (lines 2-8 of Algorithm 19): Algorithm 19 constructs the set A1

sequentially �by adding one element at a time from V to A1, over a sequence of multiple
time-steps� such that A1 is contained in both the matroid (V, I) and the matroid (V, I ′)
(line 4 of Algorithm 19), and such that each element v ∈ V that is chosen to be added in A1

achieves the highest marginal value of f(v) among all the elements in V that have not been
yet added in A1 and can be added in A1 (line 5 of Algorithm 19).

Construction of set A2 (lines 9-15 of Algorithm 19): Algorithm 19 constructs the set A2

sequentially, by picking greedily elements from the set Vt \A1 such that A1∪A2 is contained
in the matroid (V, I). Speci�cally, the greedy procedure in Algorithm 19's �while loop�
(lines 9-15 of Algorithm 19) selects an element y ∈ V \ (A1 ∪ R2) to add in A2 only if y
maximizes the value of f(A2 ∪ {y}), where the set R2 stores the elements that either have
already been added to A2 or have been considered to be added to A2 but they were not
because the resultant set A1 ∪ A2 would not be in the matroid (V, I).

Construction of set A (line 16 of Algorithm 19): Algorithm 19 constructs the set A as the
union of the previously constructed sets A1 and A2 (lines 16 of Algorithm 19).

In sum, Algorithm 19 proposes a set A as solution to Problem 4, and in particular, Algo-
rithm 19 constructs the set A so it can withstand any compromising set removal from it.

9.4. Performance Guarantees for Algorithm 19

We quantify Algorithm 19's performance, by bounding its running time, and its approx-
imation performance. To this end, we use the following two notions of curvature for set
functions, as well as, a notion of rank for a matroid.

9.4.1. Curvature and total curvature of non-decreasing functions

We present the notions of curvature and of total curvature for non-decreasing set functions.
We start by describing the notions of modularity and submodularity for set functions.
De�nition 32 (Modularity). Consider any �nite set V. The set function g : 2V 7→ R is
modular if and only if for any set A ⊆ V, it holds g(A) =

∑
v∈A g(v).

In words, a set function g : 2V 7→ R is modular if through g all elements in V cannot
substitute each other; in particular, De�nition 32 of modularity implies that for any set
A ⊆ V, and for any element v ∈ V \ A, it holds g({v} ∪ A)− g(A) = g(v).
De�nition 33 (Submodularity [70, Proposition 2.1]). Consider any �nite set V. Then, the
set function g : 2V 7→ R is submodular if and only if for any sets A ⊆ B ⊆ V, and any
element v ∈ V, it holds g(A ∪ {v})−g(A) ≥ g(B ∪ {v})−g(B).

De�nition 33 implies that a set function g : 2V 7→ R is submodular if and only if it satis�es
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a diminishing returns property where for any set A ⊆ V, and for any element v ∈ V, the
marginal gain g(A∪{v})−g(A) is non-increasing. In contrast to modularity, submodularity
implies that the elements in V can substitute each other, since De�nition 33 of submodularity
implies the inequality g({v} ∪ A) − g(A) ≤ g(v); that is, in the presence of the set A, the
element v may lose part of its contribution to the value of g({x} ∪ A).
De�nition 34. (Curvature of monotone submodular functions [33]) Consider a
�nite set V, and a non-decreasing submodular set function g : 2V 7→ R such that (without
loss of generality) for any element v ∈ V, it is g(v) 6= 0. Then, the curvature of g is de�ned
as follows:

κg , 1−min
v∈V

g(V)− g(V \ {v})
g(v)

. (9.3)

De�nition 34 of curvature implies that for any non-decreasing submodular set function g :
2V 7→ R, it holds 0 ≤ κg ≤ 1. In particular, the value of κg measures how far g is
from modularity, as we explain next: if κg = 0, then for all elements v ∈ V, it holds
g(V) − g(V \ {v}) = g(v), that is, g is modular. In contrast, if κg = 1, then there exist an
element v ∈ V such that g(V) = g(V \ {v}), that is, in the presence of V \ {v}, v loses all its
contribution to the value of g(V).
De�nition 35. (Total curvature of non-decreasing functions [15, Section 8]) Con-
sider a �nite set V, and a monotone set function g : 2V 7→ R. Them, the total curvature of
g is de�ned as follows:

cg , 1−min
v∈V

min
A,B⊆V\{v}

g({v} ∪ A)− g(A)

g({v} ∪ B)− g(B)
. (9.4)

De�nition 35 of total curvature implies that for any non-decreasing set function g : 2V 7→ R,
it holds 0 ≤ cg ≤ 1. To connect the notion of total curvature with that of curvature, we note
that when the function g is non-decreasing and submodular, then the two notions coincide,
i.e., it holds cg = κg; the reason is that if g is non-decreasing and submodular, then the
inner minimum in eq. (9.4) is attained for A = B \ {v} and B = ∅. In addition, to connect
the above notion of total curvature with the notion of modularity, we note that if cg = 0,
then g is modular, since eq. (9.4) implies that for any elements v ∈ V, and for any sets
A,B ⊆ V \ {v}, it holds:

(1− cg) [g({v} ∪ B)− g(B)] ≤ g({v} ∪ A)− g(A), (9.5)
which for cg = 0 implies the modularity of g. Finally, to connect the above notion of
total curvature with the notion of monotonicity, we mention that if cg = 1, then eq. (9.5)
implies that g is merely non-decreasing (as it is already assumed by the De�nition 35 of
total curvature).

9.4.2. Rank of a matroid

We present a notion of rank for a matroid.
De�nition 36 (Rank of a matroid [30, Section 39.1]). Consider a matroid (V, I). Then,
the rank of (V, I) is the number equal to the cardinality of the set X ∈ I with the maximum
cardinality among all sets in I.
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For example, per the discussions in Section 9.2, for a uniform matroid (V, I) of the form
I ≡ {A : A ⊆ V, |A| ≤ α}, the rank is equal to α; and for a partition matroid (V, I) of the
form V ≡ V1 ∪ · · · ∪ Vn and I ≡ {A : A ⊆ V, |A ∩ Vi| ≤ αi, for all i = 1, . . . , n}, the rank is
equal to α1 + . . .+ αn.

9.4.3. Performance analysis for Algorithm 19

We quantify Algorithm 19's approximation performance, as well as, its running time per
maximization step in Problem 4.
Theorem 22 (Performance of Algorithm 19). Consider an instance of Problem 4, the no-
tation therein, the notation in Algorithm 19, and the de�nitions:

• let the number f? be the (optimal) value to Problem 4;

• given a set A as solution to Problem 4, let B?(A) be an optimal (worst-case) set removal
from A, per Problem 4, that is: B?(A) ∈ arg min

B⊆A,B∈I′(A)
f(A \ B);

• let the numbers α and β be such that α is the rank of the matroid (V, I); and β is the
rank of the matroid (V, I ′);

• de�ne h(α, β) , max[1/(1 + α), 1/(α− β)].3

The performance of Algorithm 19 is bounded as follows:

leftmirgin=* (Approximation performance) Algorithm 19 returns a set A such that A ⊆
V, A ∈ I, and:

• if f is non-decreasing and submodular, and:

� if (V, I) is a uniform matroid, then:

f(A \ B?(A))

f?
≥

max [1− κf , h(α, β)]

κf
(1− e−κf ); (9.6)

� if (V, I) is any matroid, then:

f(A \ B?(A))

f?
≥

max [1− κf , h(α, β)]

1 + κf
; (9.7)

• if f is non-decreasing, then:

f(A \ B?(A))

f?
≥ (1− cf )3. (9.8)

leftmiirgiin=* (Running time) Algorithm 19 constructs the set A as a solutions to Prob-
lem 4 with O(|V|2) evaluations of f.

Provable approximation performance. Theorem 22 implies on the approximation per-
3A plot of h(α, β) is found in Fig. 10.
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Figure 10: Given a natural number α, plot of h(α, β) versus β. Given a �nite α, then h(α, β) is
always non-zero, with minimum value 2/(α+ 2), and maximum value 1.

formance of Algorithm 19:

Near-optimality : Both for any monotone submodular objective functions f, and for any
merely monotone objective functions f with total curvature cf < 1, Algorithm 19 guar-
antees a value for Problem 4 �nitely close to the optimal. In particular, per ineq. (9.6)
and ineq. (9.7) (case of submodular functions), the approximation factor of Algorithm 19 is
bounded by hf (α,β)

κf
(1 − e−κf ) and hf (α,β)

1+κf
, respectively, which for any �nite number α are

both non-zero (see also Fig. 10); in addition, per ineq. (9.6) and ineq. (9.7), the approxi-
mation factor of Algorithm 19 is also bounded by 1−κf

κf
(1 − e−κf ) and 1−κf

1+κf
, respectively,

which are also non-zero for any monotone submodular function f with κf < 1 (see also
Fig. 11). Similarly, per ineq. (9.8) (case of monotone functions), the approximation factor
of Algorithm 19 is bounded by (1 − cf )3, which is non-zero for any monotone function f
with cf < 1 �notably, although it is known for the problem of (non-resilient) set function
maximization that the approximation bound (1−cf ) is tight [15, Theorem 8.6], the tightness
of the bound (1− cf )3 in ineq. (9.8) for Problem 4 is an open problem.

We discuss classes of functions f with curvatures κf < 1 or cf < 1, along with relevant
applications, in the remark below.
Remark 16. (Classes of functions f with κf < 1 or cf < 1, and applications) Classes
of functions f with κf < 1 are the concave over modular functions [31, Section 2.1], and
the log det of positive-de�nite matrices [227, 228]. Classes of functions f with cf < 1 are
support selection functions [223], and estimation error metrics such as the average minimum
square error of the Kalman �lter [193, Theorem 4].

The aforementioned classes of functions f with κf < 1 or cf < 1 appear in applications of
control, robotics, and optimization, such as actuator and sensor placement [4, 10, 53, 58],
sparse approximation and feature selection [225, 226], and sparse recovery and column subset
selection [221, 222]; as a result, Problem 4 enables critical applications such as resilient
actuator placement for minimal control e�ort, resilient multi-robot navigation with minimal
sensing and communication, and resilient experiment design; see, for example, [229].
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Figure 11: Plot of g(κf ) versus curvature κf of a monotone submodular function f . By
de�nition, the curvature κf of a monotone submodular function f takes values between 0
and 1. g(κf ) increases from 0 to 1 as κf decreases from 1 to 0.

Approximation performance for low curvature: For both monotone submodular and merely
monotone functions f, when the curvature κf and the total curvature cf , respectively, tend to
zero, Algorithm 19 becomes exact, since for κf → 0 and cf → 0 the terms 1−κf

κf
(1− e−κf ),

1−κf
1+κf

, and (1 − cf )3 in ineqs. (9.6)-(9.8) respectively, tend to 1. Overall, Algorithm 19's
curvature-dependent approximation bounds make a �rst step towards separating the classes
of monotone submodular and merely monotone functions into functions for which Problem 4
can be approximated well (low curvature functions), and functions for which it cannot
(high curvature functions).

A machine learning problem where Algorithm 19 guarantees an approximation performance
close to 100% the optimal is that of Gaussian process regression for processes with RBF ker-
nels [114, 230]; this problem emerges in applications of sensor deployment and scheduling for
temperature monitoring. The reason that in this class of regression problems Algorithm 19
performs almost optimally is that the involved objective function is the entropy of the se-
lected sensor measurements, which for Gaussian processes with RBF kernels has curvature
value close to zero [228, Theorem 5].

Approximation performance for no failures, deletions, or attacks: Both for monotone sub-
modular functions f, and for merely monotone functions f, when the number of set removals
is zero, �i.e., when I ′ = ∅ in Problem 4, which implies β = 0 in Theorem 22,� Algo-
rithm 19's approximation performance is the same as that of the state-of-the-art algorithms
for (non-resilient) set function maximization. In particular, for monotone submodular func-
tions, scalable algorithms for (non-resilient) set function maximization have approximation
performance at least 1

κf
(1− e−κf ) the optimal for any uniform matroid constraint [33, The-

orem 5.4], and 1
1+κf

the optimal for any matroid constraint [33, Theorem 2.3]; at the same
time, per Theorem 22, when β = 0, then Algorithm 19 also has approximation performance
at least 1

κf
(1− e−κf ) the optimal for any uniform matroid constraint, and 1

1+κf
the optimal

for any matroid constraint, since for β = 0 it is h(α, β) = 1 in ineq. (9.6) and ineq. (9.7).
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Finally, for monotone functions f, and for I ′ = ∅, Algorithm 19 is the same as the algorithm
proposed in [12, Section 2] for (non-resilient) set function maximization, whose performance
is optimal [15, Theorem 8.6].

Minimal running time. Theorem 22 implies that Algorithm 19, even though it goes
beyond the objective of (non-resilient) set function optimization, by accounting for attacks,
deletions, and failures, it has the same order of running time as state-of-the-art algorithms
for (non-resilient) set function optimization. In particular, such algorithms for (non-resilient)
set function optimization [12, 15, 70] terminate with O(|V|2) evaluations of the function f,
and Algorithm 19 also terminates with O(|V|2) evaluations of the function f.

Summary of theoretical results. In sum, Algorithm 19 is the �rst algorithm for the
problem of resilient maximization over matroid constraints (Problem 4), and it enjoys:

• system-wide resiliency : Algorithm 19 is valid for any number of denial-of-service at-
tacks, deletions, and failures;

• minimal running time: Algorithm 19 terminates with the same running time as state-
of-the-art algorithms for (non-resilient) matroid-constrained optimization;

• provable approximation performance: Algorithm 19 ensures for all monotone objective
functions f that are either submodular, or merely non-decreasing with total curvature
cf < 1, a solution �nitely close to the optimal.

Overall, Algorithm 19 makes the �rst step to ensure the success of critical applications in
control, robotics, and optimization [1, 4, 5, 6, 9, 10, 11, 25, 53, 58, 218, 219, 220, 221, 222,
223, 224, 225, 226], despite compromising worst-case attacks, failures, or deletions, and with
minimal running time.

9.5. Numerical Experiments on Control-Aware Sensor Selection

In this section, we demonstrate a near-optimal performance of Algorithm 19 in numerical
experiments. In particular, we consider a control-aware sensor selection scenario, namely,
sensing-constrained robot navigation, where the robot's localization for navigation is sup-
ported by both sensors on-board to the robot, and sensors deployed in the environment.4

Speci�cally, we consider an unmanned aerial vehicle (UAV) which has the objective to land
but it has limited battery and measurement-processing power to utilize to this end; as a
result, it needs to activate only a subset of the available sensors to localize itself and to
enable that way the generation of a control input for landing; speci�cally, we consider that
the UAV generates its control input via an LQG controller, given the measurements from
the activated sensor set [123].

In more detail, herein we present a Monte Carlo analysis of the above sensing-constrained
robot navigation scenario for instances where sensor failures are present, and observe that
Algorithm 19 results to a near-optimal sensor selection; that is, the resulting navigation

4The scenario of sensing-constrained robot navigation with on-board sensors is introduced and motivated
in [193, Section V]; see also [128] for the case of autonomous robot navigation with deployed sensors in the
environment.
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performance of the UAV matches the optimal in all tested instances where the optimal
sensor selection could be computed via a brute-force algorithm.

Simulation setup. We consider an UAV that moves in a 3D space, starting from a ran-
domly selected initial location. The objective of the UAV is to land at position [0, 0, 0] with
zero velocity. The UAV is modelled as a double-integrator with state xt = [pt vt]

> ∈ R6

at each time t = 1, 2, . . . (pt is the 3D position of the UAV, and vt is its velocity), and can
control its own acceleration ut ∈ R3; the process noise is chosen as Wt = I6. The UAV
may support its localization by utilizing 2 on-board sensors and 12 deployed sensors on the
ground. The on-board sensors are one GPS receiver, measuring the UAV position pt with
a covariance 2 · I3, and one altimeter, measuring only the last component of pt (altitude)
with standard deviation 0.5m. The ground sensors vary with each Monte Carlo run, and are
generated randomly; we consider them to provide linear measurements of the UAV's state.
Among the aforementioned 14 available sensors to the UAV, we assume that the UAV can
use only α of them.

In particular, the UAV chooses the α sensors to activate so to minimize an LQG cost of the
form:

T∑
t=1

[x>t Qxt + u>t Rut], (9.9)

per the problem formulation in [193, Section II], where the cost matrix Q penalizes the devi-
ation of the state vector from the zero state (since the UAV's objective is to land at position
[0, 0, 0] with zero velocity), and the cost matrix R penalizes the control input vector; speci�-
cally, in the simulation setup herein we considerQ = diag

(
[1e−3, 1e−3, 10, 1e−3, 1e−3, 10]

)
and R = I3. Note that the structure of Q re�ects the fact that during landing we are partic-
ularly interested in controlling the vertical direction and the vertical velocity (entries with
larger weight in Q), while we are less interested in controlling accurately the horizontal
position and velocity (assuming a su�ciently large landing site). In [193, Section III] it
is proven that the UAV selects an optimal sensor set S, and enables the generation of an
optimal LQG control input with cost matrices Q and R, if it selects S by minimizing an
objective function of the form:

T∑
t=1

trace[MtΣt|t(S)], (9.10)

where Mt is a positive semi-de�nite matrix that depends on the LQG cost matrices Q and
R, as well as, on the UAV's system dynamics; and Σt|t(S) is the error covariance of the
Kalman �lter given the sensor set selection S.

Compared algorithms. We compare four algorithms; all algorithms only di�er in how
they select the sensors used. The �rst algorithm is the optimal sensor selection algorithm,
denoted as optimal, which attains the minimum of the cost function in eq. (9.10); this
brute-force approach is viable since the number of available sensors is small. The second
approach is a random sensor selection, denoted as random∗. The third approach, denoted
as logdet, selects sensors to greedily minimize the cost function in eq. (9.10), ignoring the
possibility of sensor failures, per the problem formulation in eq. (9.1). The fourth approach

175



uses Algorithm 19 to solve the resilient re-formulation of eq. (9.10) per Problem 4, and is
denoted as s-LQG. From each of the selected sensor sets, by each of the above four algorithms
respectively, we consider an optimal sensor removal, which we compute via brute-force.

Results. We next present our simulation results averaged over 20 Monte Carlo runs of
the above simulation setup, where we vary the number of sensor selections α from 2 up to
12 with step 1, and the number β of sensors failures from 1 to 10 with step 3, and where
we randomize the sensor matrices of the 12 ground sensors. In particular, the results of
our numerical analysis are reported in Fig. 12. In more detail, Fig. 12 shows the attained
LQG cost for all the combinations of α and β values where β ≤ α (for β > α the LQG
cost is considered +∞, since β > α implies that all α selected sensors fail). The following
observations from Fig. 12 are due:

• Near-optimality of the s-LQGAlgorithm 19: Algorithm 19 �blue colour in Fig. 12�
performs close to the optimal algorithm optimal�green colour in Fig. 12. In partic-
ular, across all but two scenarios in Fig. 12, Algorithm 19 achieves an approximation
performance at least 97% the optimal, and 90% the optimal in the two scenarios in
Fig. 12-(a) where α is 3 or 4, and β is 1.

• Performance of the logdetalgorithm: The logdetalgorithm �red colour in Fig. 12�
performs poorly as the number β of sensor failures increases, which is expected, given
that the logdetalgorithm minimizes the cost function in eq. (9.10) ignoring the possi-
bility of sensor failures. Notably, for some of the cases, the logdetperforms worse or
equally poor as the random∗: for example, see Fig. 12-(c) for α ≥ 9, and Fig. 12-(d).

• Performance of the random∗ algorithm: Expectedly, the performance of also the random∗

algorithm �black colour in Fig. 12� is poor across all scenarios in Fig. 12.

Overall, in the above numerical experiments, Algorithm 19 demonstrates a close-to-optimal
approximation performance, and the necessity for a resilient re-formulation of the optimiza-
tion problem in eq. (9.1), e.g., per Problem 4, is exempli�ed.

9.6. Concluding Remarks & Future Work

We made the �rst step to ensure the success of critical missions in control, robotics, and
optimization that involve the design of systems subject to complex optimization constraints
of heterogeneity and global-interdependency �called matroid constraints� against worst-
case denial-of-service attacks, failures, or deletions. In particular, we provided the �rst
algorithm for Problem 4, which, with minimal running time, guarantees a close-to-optimal
performance against system-wide attacks, failures and deletions. To quantify the algorithm's
approximation performance, we exploited a notion of curvature for monotone (not necessarily
submodular) set functions, and contributed a �rst step towards characterizing the curvature's
e�ect on the approximability of resilient matroid-constrained maximization. Our curvature-
dependent characterizations complement the current knowledge on the curvature's e�ect
on the approximability of simpler problems, such as of non-matroid-constrained resilient
maximization [35, 56, 231], and of non-resilient maximization [31, 32, 33]. Finally, we
supported our theoretical analyses with numerical experiments.
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Figure 12: LQG cost for increasing number of sensor selections α (from 2 up to 12 with step 1),
and for 4 values of β (number of sensor failures among the α selected sensors); in particular, the
value of β varies across the sub-�gures as follows: β = 1 in sub-�gure (a); β = 4 in sub-�gure (b);
β = 7 in sub-�gure (c); and β = 10 in sub-�gure (d).

This chapter opens several avenues for future research, both in theory and in applications.
Future work in theory includes the extension of our results to sequential (multi-step) max-
imization, per the recent developments in [231], to enable applications of sensor scheduling
and of path planning in online optimization that adapts against persistent attacks and
failures [6, 182]. Future work in applications includes the experimental testing of the pro-
posed algorithm in applications of motion-planning for multi-target covering with mobile
vehicles [6], to enable resiliency in critical scenarios of surveillance.

9.7. Appendix: Proof of Results

9.7.1. Notation

In the appendices below we use the following notation: given a �nite ground set V, and a
set function f : 2V 7→ R, then, for any sets X ⊆ V and X ′ ⊆ V:

f(X|X ′) , f(X ∪ X ′)− f(X ′).
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Moreover, let the set A? denote an (optimal) solution to Problem 4; formally:

A? ∈ arg max
A⊆V,A∈I

min
B⊆A,B∈I′(A)

f(A \ B).

9.7.2. Preliminary lemmas

We list lemmas that support the proof of Theorem 22.5

Lemma 29. Consider any �nite ground set V, a non-decreasing submodular function f :
2V 7→ R, and non-empty sets Y,P ⊆ V such that for all elements y ∈ Y, and all elements
p ∈ P, it is f(y) ≥ f(p). Then:

f(P|Y) ≤ |P|f(Y).

Proof of Lemma 29 Consider any element y ∈ Y; then:

f(P|Y) = f(P ∪ Y)− f(Y) (9.11)

≤ f(P) + f(Y)− f(Y) (9.12)

= f(P)

≤
∑
p∈P

f(p) (9.13)

≤ |P|max
p∈P

f(p)

≤ |P|f(y) (9.14)

≤ |P|f(Y), (9.15)
where eqs. (9.11)-(9.15) hold for the following reasons: eq. (9.11) holds since for any sets
X ⊆ V and Y ⊆ V, it is f(X|Y) = f(X ∪Y)−f(Y); ineq. (9.12) holds since f is submodular
and, as a result, the submodularity De�nition 33 implies that for any set A ⊆ V and A′ ⊆ V,
it is f(A ∪A′) ≤ f(A) + f(A′) [70, Proposition 2.1]; ineq. (9.13) holds for the same reason
as ineq. (9.12); ineq. (9.14) holds since for all elements y ∈ Y, and for all elements p ∈ P, it
is f(y) ≥ f(p); �nally, ineq. (9.15) holds since f is monotone, and since y ∈ Y. �
Lemma 30. Consider a �nite ground set V, and a non-decreasing submodular set function
f : 2V 7→ R such that f is non-negative and f(∅) = 0. Then, for any A ⊆ V, it holds:

f(A) ≥ (1− κf )
∑
a∈A

f(a).

Proof of Lemma 30 Let A = {a1, a2, . . . , a|A|}. We prove Lemma 30 by proving the
following two inequalities:

f(A) ≥
|A|∑
i=1

f(ai|V \ {ai}), (9.16)

|A|∑
i=1

f(ai|V \ {ai}) ≥ (1− κf )

|A|∑
i=1

f(ai). (9.17)

5The proof of Lemmas 29-33 and of Corollary 10 is also found in [56] and [231].
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We begin with the proof of ineq. (9.16):

f(A) = f(A|∅) (9.18)

≥ f(A|V \ A) (9.19)

=

|A|∑
i=1

f(ai|V \ {ai, ai+1, . . . , a|A|}) (9.20)

≥
|A|∑
i=1

f(ai|V \ {ai}), (9.21)

where ineqs. (9.19)-(9.21) hold for the following reasons: ineq. (9.19) is implied by eq. (9.18)
because f is submodular and ∅ ⊆ V \ A; eq. (9.20) holds since for any sets X ⊆ V and
Y ⊆ V it is f(X|Y) = f(X ∪ Y)− f(Y), and since {a1, a2, . . . , a|A|} denotes the set A; and
ineq. (9.21) holds since f is submodular, and since V \ {ai, ai+1, . . . , aµ} ⊆ V \ {ai}. These
observations complete the proof of ineq. (9.16).

We now prove ineq. (9.17) using the De�nition 34 of κf , as follows: since κf = 1 −
minv∈V

f(v|V\{v})
f(v) , it is implied that for all elements v ∈ V it is f(v|V \ {v}) ≥ (1− κf )f(v).

Therefore, by adding the latter inequality across all elements a ∈ A, we complete the proof
of ineq. (9.17). �
Lemma 31. Consider a �nite ground set V, and a monotone set function f : 2V 7→ R
such that f is non-negative and f(∅) = 0. Then, for any sets A ⊆ V and B ⊆ V such that
A ∩ B = ∅, it holds:

f(A ∪ B) ≥ (1− cf ) (f(A) + f(B)) .

Proof of Lemma 31 Let B = {b1, b2, . . . , b|B|}. Then,

f(A ∪ B) = f(A) +

|B|∑
i=1

f(bi|A ∪ {b1, b2, . . . , bi−1}). (9.22)

The de�nition of total curvature in De�nition 35 implies:

f(bi|A ∪ {b1, b2, . . . , bi−1}) ≥
(1− cf )f(bi|{b1, b2, . . . , bi−1}). (9.23)

The proof is completed by substituting ineq. (9.23) in eq. (9.22) and then by taking into
account that it holds f(A) ≥ (1− cf )f(A), since 0 ≤ cf ≤ 1. �
Lemma 32. Consider a �nite ground set Vm and a non-decreasing set function f : 2V 7→ R
such that f is non-negative and f(∅) = 0. Then, for any set A ⊆ V and any set B ⊆ V such
that A ∩ B = ∅, it holds:

f(A ∪ B) ≥ (1− cf )

(
f(A) +

∑
b∈B

f(b)

)
.
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Proof of Lemma 32 Let B = {b1, b2, . . . , b|B|}. Then,

f(A ∪ B) = f(A) +

|B|∑
i=1

f(bi|A ∪ {b1, b2, . . . , bi−1}). (9.24)
In addition, De�nition 35 of total curvature implies:

f(bi|A ∪ {b1, b2, . . . , bi−1}) ≥ (1− cf )f(bi|∅)
= (1− cf )f(bi), (9.25)where the latter equation holds since f(∅) = 0. The proof is completed by substituting (9.25)

in (9.24) and then taking into account that f(A) ≥ (1− cf )f(A) since 0 ≤ cf ≤ 1. �
Lemma 33. Consider a �nite ground set V and a non-decreasing set function f : 2V 7→ R
such that f is non-negative and f(∅) = 0. Then, for any set A ⊆ V and any set B ⊆ V such
that A \ B 6= ∅, it holds:

f(A) + (1− cf )f(B) ≥ (1− cf )f(A ∪ B) + f(A ∩ B).

Proof of Lemma 33 Let A \ B = {i1, i2, . . . , ir}, where r = |A − B|. From De�nition 35
of total curvature cf , for any i = 1, 2, . . . , r, it is f(ij |A ∩ B ∪ {i1, i2, . . . , ij−1}) ≥ (1 −
cf )f(ij |B ∪ {i1, i2, . . . , ij−1}). Summing these r inequalities:

f(A)− f(A ∩ B) ≥ (1− cf ) (f(A ∪ B)− f(B)) ,which implies the lemma. �
Corollary 10. Consider a �nite ground set Vm and a non-decreasing set function f : 2V 7→
R such that f is non-negative and f(∅) = 0. Then, for any set A ⊆ V and any set B ⊆ V
such that A ∩ B = ∅, it holds:

f(A) +
∑
b∈B

f(b) ≥ (1− cf )f(A ∪ B).

Proof of Corollary 10 Let B = {b1, b2, . . . , b|B|}.

f(A) +

|B|∑
i=1

f(bi) ≥ (1− cf )f(A) +

|B|∑
i=1

f(bi)) (9.26)

≥ (1− cf )f(A ∪ {b1}) +

|B|∑
i=2

f(bi)

≥ (1− cf )f(A ∪ {b1, b2}) +

|B|∑
i=3

f(bi)

...

≥ (1− cf )f(A ∪ B),
where (9.26) holds since 0 ≤ cf ≤ 1, and the rest due to Lemma 33, since A∩B = ∅ implies
A \ {b1} 6= ∅, A ∪ {b1} \ {b2} 6= ∅, . . ., A ∪ {b1, b2, . . . , b|B|−1} \ {b|B|} 6= ∅. �
Lemma 34. Recall the notation in Algorithm 19, and consider the sets A1 and A2 con-
structed by Algorithm 19's lines 2-8 and lines 9-15, respectively. Then, for all elements
v ∈ A1 and all elements v′ ∈ A2, it holds f(v) ≥ f(v′).
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Proof of Lemma 34 Let v1, . . . , v|A1| be the elements inA1, �i.e., A1 ≡ {v1, . . . , v|A1|},�
and be such that for each i = 1, . . . , |A1| the element vi is the i-th element added in
A1 per Algorithm 19's lines 2-8; similarly, let v′1, . . . , v

′
|A2| be the elements in A2, �i.e.,

A2 ≡ {v′1, . . . , v′|A2|},� and be such that for each i = 1, . . . , |A2| the element v′i is the i-th
element added in A2 per Algorithm 19's lines 9-15.

We prove Lemma 34 by the method of contradiction. In particular, assume that there
exists an index i ∈ {1, . . . , |A1|} and an j ∈ {1, . . . , |A2|} such that f(v′j) > f(vi), and,
in particular, assume that i, j are the smallest indexes such that f(v′j) > f(vi). Since
Algorithm 19 constructs A1 and A2 such that A1 ∪ A2 ∈ I, and since it also is that (V, I)
is a matroid and {v1, . . . , vi−1, v

′
j} ⊆ A1 ∪ A2, we have that {v1, . . . , vi−1, v

′
j} ∈ I. In

addition, we have that {v1, . . . , vi−1, v
′
j} ∈ I ′, since I ′ is either a uniform or a partition

matroid and, as a result, if {v1, . . . , vi−1, vi} ∈ I ′ then it also is {v1, . . . , vi−1, v} ∈ I ′ for any
v ∈ V \ {v1, . . . , vi−1}. Overall, {v1, . . . , vi−1, v

′
j} ∈ I, I ′. Now, consider the �while loop� in

Algorithm 19's lines 2-8 at the beginning of its i-th iteration, that is, when Algorithm 19 has
chosen only the elements {v1, . . . , vi−1} among the elements in A1. Then, per Algorithm 19's
lines 3-5, the next element v that is added in {v1, . . . , vi−1} is the one that achieves the
highest value of f(v′) among all elements in v′ ∈ V \ {v1, . . . , vi−1}, and which satis�es
{v1, . . . , vi−1, v} ∈ I, I ′. Therefore, the next element v that is added in {v1, . . . , vi−1} cannot
be vi, since f(v′j) > f(vi) and {v1, . . . , vi−1, v

′
j} ∈ I, I ′. �

Lemma 35. Consider a matroid (V, I), and a set Y ⊆ V such that Y ∈ I. Moreover, de�ne
the following collection of subsets of V \ Y: I ′ , {X : X ⊆ V \ Y,X ∪ Y ∈ I}. Then,
(V \ Y, I ′) is a matroid.

Proof of Lemma 35 We validate that (V \Y, I ′) satis�es the conditions in De�nition 31
of a matroid. In particular:

• to validate the �rst condition in De�nition 31, assume a set X ⊆ V\Y such that X ∈ I ′;
moreover, assume a set Z ⊆ X ; we need to show that Z ∈ I ′. To this end, observe
that the de�nition of I ′ implies X ∪ Y ∈ I, since we assumed X ∈ I ′. In addition,
the assumption Z ⊆ X implies Z ∪ Y ⊆ X ∪ Y, and, as a result, Z ∪ Y ∈ I, since
(V, I) is a matroid. Overall, Z ⊆ V \Y (since Z ⊆ X , by assumption, and X ⊆ V \Y)
and Z ∪ Y ∈ I; hence, Z ∈ I ′, by the de�nition of I ′, and now the �rst condition in
De�nition 31 is validated;

• to validate the second condition in De�nition 31, assume sets X ,Z ∈ V \ Y such that
X ,Z ∈ I ′ and |X | < |Z|; we need to show that there exists an element z ∈ Z \X such
that X ∪{z} ∈ I ′. To this end, observe that since X ,Z ∈ I ′, the de�nition of I ′ implies
that X∪Y,Z∪Y ∈ I. Moreover, since |X | < |Z|, it also is |X ∪Y| < |Z∪Y|. Therefore,
since (V, I) is a matroid, there exists an element z ∈ (Z ∪ Y) \ (X ∪ Y) = Z \ X such
that (X ∪ Y) ∪ {z} ∈ I; as a result, X ∪ {z} ∈ I ′, by the de�nition of I ′. In sum,
z ∈ Z \X and X ∪{z} ∈ I ′, and the second condition in De�nition 31 is validated too.

�
Lemma 36. Recall the notation in Algorithm 19, and consider the sets A1 and A2 con-
structed by Algorithm 19's lines 2-8 and lines 9-15, respectively. Then, for the set A2, it
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holds:

• if the function f is non-decreasing submodular and:

� if (V, I) is a uniform matroid, then:

f(A2) ≥ 1

κf
(1− e−κf ) max

X⊆V\A1,X∪A1∈I
f(X ). (9.27)

� if (V, I) is a matroid, then:

f(A2) ≥ 1

1 + κf
max

X⊆V\A1,X∪A1∈I
f(X ). (9.28)

• if the function f is non-decreasing, then:

f(A2) ≥ (1− cf ) max
X⊆V\A1,X∪A1∈I

f(X ). (9.29)

Proof of Lemma 36 We �rst prove ineq. (9.29), then ineq. (9.28), and, �nally, ineq. (9.27).
In particular, Algorithm 19 constructs the set A2 greedily, by replicating the steps of the
greedy algorithm introduced [12, Section 2], to solve the following optimization problem:

max
X⊆V\A1,X∪A1∈I

f(X ); (9.30)

let in the latter problem I ′ , {X ⊆ V \ A1,X ∪ A1 ∈ I}. Lemma 35 implies that
(A1, I ′) is a matroid, and, as a result, the previous optimization problem is a matroid-
constrained set function maximization problem. Now, to prove ineq. (9.29), ineq. (9.28),
and ineq. (9.27), we make the following observations, respectively: when the function f
is merely non-decreasing, then [15, Theorem 8.1] implies that the greedy algorithm in-
troduced in [12, Section 2] returns for the optimization problem in eq. (9.30) a solution
S such that f(S) ≥ (1 − cf ) max

X⊆V\A1,X∪A1∈I
f(X ); this proves ineq. (9.29). Similarly,

when the function f is non-decreasing and submodular, then [33, Theorem 2.3] implies
that the greedy algorithm introduced in [12, Section 2] returns for the optimization prob-
lem in eq. (9.30) a solution S such that f(S) ≥ 1/(1 + κf ) max

X⊆V\A1,X∪A1∈I
f(X ); this proves

ineq. (9.28). Finally, when the objective function f is non-decreasing submodular, and when
I is a uniform matroid, then [33, Theorem 5.4] implies that the greedy algorithm introduced
in [12, Section 2] returns for the optimization problem in eq. (9.30) a solution S such that
f(S) ≥ 1/κf (1 − e−κf ) max

X⊆V\A1,X∪A1∈I
f(X ); this proves ineq. (9.27), and concludes the

proof of the lemma. �
Lemma 37. Recall the notation in Theorem 22 and Appendix 9.7.1. Also, consider a
uniform or partition matroid (V, I ′). Then, for any set Y ⊆ V such that Y ∈ I and Y ∈ I ′,
it holds:

max
X⊆V\Y,X∪Y∈I

f(X ) ≥ f(A? \ B?(A?)). (9.31)
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Proof of Lemma 37 We start from the left-hand-side of ineq. (9.31), and make the
following observations:

max
X⊆V\Y,X∪Y∈I

f(X ) ≥ min
Ȳ⊆V,Ȳ∈I,I′

max
X⊆V\Ȳ,X∪Ȳ∈I

f(X )

= min
Ȳ⊆V,Ȳ∈I,I′

max
Ā⊆V,Ā∈I

f(Ā \ Ȳ)

, h.
We next complete the proof of Lemma 37 by proving that h ≥ f(A? \B?(A?)). To this end,
observe that for any set A ⊆ V such that A ∈ I, and for any set Y ⊆ V such that Y ∈ I
and Y ∈ I ′, it holds:

max
Ā⊆V,Ā∈I

f(Ā \ Y) ≥ f(A \ Y),

which implies the following observations:

h ≥ min
Ȳ⊆V,Ȳ∈I,I′

f(A \ Ȳ)

≥ min
Ȳ⊆V,Ȳ∈I′

f(A \ Ȳ)

= min
Ȳ⊆A,Ȳ∈I′

f(A \ Ȳ),

and, as a result, it holds:

h ≥ max
Ā⊆V,Ā∈I

min
Ȳ⊆A,Ȳ∈I′

f(Ā \ Ȳ)

= f(A? \ B?(A?)). �

9.7.3. Proof of Theorem 22

We �rst prove Theorem 22's part 1 (approximation performance), and then, Theorem 22's
part 2 (running time).

Proof of Theorem 22's part 1 (approximation performance)

We �rst prove ineq. (9.8), and, then, ineq. (9.7) and ineq. (9.6).

To the above ends, we use the following notation (along with the notation in Algorithm 19,
Theorem 22, and Appendix 9.7.1):

• let A+
1 , A1 \ B?(A), i.e., A+

1 is the set of remaining elements in the set A1 after the
removal from A1 of the elements in the optimal (worst-case) removal B?(A);

• let A+
2 , A2 \ B?(A), i.e., A+

2 is the set of remaining elements in the set A2 after the
removal from A2 of the elements in the optimal (worst-case) removal B?(A).

Proof of ineq. (9.8) Consider that the objective function f is non-decreasing and such
that (without loss of generality) f is non-negative and f(∅) = 0. Then, the proof of ineq. (9.8)
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follows by making the following observations:

f(A \ B?(A))

= f(A+
1 ∪ A

+
2 ) (9.32)

≥ (1− cf )
∑

v∈A+
1 ∪A

+
2

f(v) (9.33)

≥ (1− cf )
∑
v∈A2

f(v) (9.34)

≥ (1− cf )2f(A2) (9.35)

≥ (1− cf )3 max
X⊆V\A1,X∪A1∈I

f(X ) (9.36)

≥ (1− cf )3f(A? \ B?(A?)), (9.37)

where eqs. (9.32)-(9.37) hold for the following reasons: eq. (9.32) follows from the de�nitions
of the sets A+

1 and A+
2 ; ineq. (9.33) follows from ineq. (9.32) due to Lemma 32; ineq. (9.34)

follows from ineq. (9.33) due to Lemma 34, which implies that for any element v ∈ A+
1 and

any element v′ ∈ A+
2 it is f(v) ≥ f(v′) �note that due to the de�nitions of A+

1 and A+
2 it is

|A+
1 | = |A2 \A+

2 |, that is, the number of non-removed elements in A1 is equal to the number
of removed elements in A2,� and the fact A2 = (A2 \ A+

2 ) ∪ A+
2 ; ineq. (9.35) follows from

ineq. (9.34) due to Corollary 10; ineq. (9.36) follows from ineq. (9.35) due to Lemma 36's
ineq. (9.29); �nally, ineq. (9.37) follows from ineq. (9.36) due to Lemma 37. �

In what follows, we �rst prove ineq. (9.7), and then ineq. (9.6): we �rst prove the part 1−κf
1+κf

and 1−κf
κf

(1− e−κf ) of ineq. (9.7) and of ineq. (9.6), respectively, and then, the part hf (α,β)
1+κf

and hf (α,β)
κf

(1− e−κf ) of ineq. (9.7) and of ineq. (9.6), respectively.

Proof of part (1− κf )/(1 + κf ) of ineq. (9.7) Consider that the objective function f is
non-decreasing submodular and such that (without loss of generality) f is non-negative and
f(∅) = 0. To prove the part (1− κf )/(1 + κf ) of ineq. (9.7) we follow similar observations
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to the ones we followed in the proof of ineq. (9.8); in particular:

f(A \ B?(A))

= f(A+
1 ∪ A

+
2 ) (9.38)

≥ (1− κf )
∑

v∈A+
1 ∪A

+
2

f(v) (9.39)

≥ (1− κf )
∑
v∈A2

f(v) (9.40)

≥ (1− κf )f(A2) (9.41)

≥
1− κf
1 + κf

max
X⊆V\A1,X∪A1∈I

f(X ) (9.42)

≥
1− κf
1 + κf

f(A? \ B?(A?)), (9.43)

where eqs. (9.38)-(9.43) hold for the following reasons: eq. (9.38) follows from the de�nitions
of the sets A+

1 and A+
2 ; ineq. (9.39) follows from ineq. (9.38) due to Lemma 30; ineq. (9.40)

follows from ineq. (9.39) due to Lemma 34, which implies that for any element v ∈ A+
1 and

any element v′ ∈ A+
2 it is f(v) ≥ f(v′) �note that due to the de�nitions of the sets A+

1

and A+
2 it is |A+

1 | = |A2 \ A+
2 |, that is, the number of non-removed elements in A1 is

equal to the number of removed elements in A2,� and because A2 = (A2 \ A+
2 ) ∪ A+

2 ;
ineq. (9.41) follows from ineq. (9.40) because the set function f is submodular, and as a
result, the submodularity De�nition 33 implies that for any sets S ⊆ V and S ′ ⊆ V, it is
f(S) + f(S ′) ≥ f(S ∪ S ′) [70, Proposition 2.1]; ineq. (9.42) follows from ineq. (9.41) due to
Lemma 36's ineq. (9.28); �nally, ineq. (9.43) follows from ineq. (9.42) due to Lemma 37. �

Proof of part (1−κf )/κf (1−e−κf ) of ineq. (9.6) Consider that the objective function f
is non-decreasing submodular and such that (without loss of generality) f is non-negative
and f(∅) = 0. Moreover, consider that the pair (V, I) is a uniform matroid. To prove the
part (1 − κf )/κf (1 − e−κf ) of ineq. (9.6) we follow similar steps to the ones we followed
in the proof of ineq. (9.7) via the ineqs. (9.38)-(9.43). We explain next where these steps
di�er: if instead of using Lemma 36's ineq. (9.28) to get ineq. (9.42) from ineq. (9.41), we
use Lemma 36's ineq. (9.27), and afterwards apply Lemma 37, then, we derive ineq. (9.6).
�

Proof of parts hf (α, β)/(1+κf ) and hf (α, β)/κf (1−e−κf ) of ineq. (9.7) and ineq. (9.6),
respectively We complete the proof by �rst proving that:

f(A \ B?(A)) ≥ 1

1 + β
f(A2), (9.44)

and, then, proving that:

f(A \ B?(A)) ≥ 1

α− β
f(A2). (9.45)
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V

A1 B?1 A2 B?2

Figure 13: Venn diagram, where the sets A1,A2,B?1 ,B?2 are as follows: per Algorithm 19, A1 and
A2 are such that A = A1∪A2. Due to their construction, it holds A1∩A2 = ∅. Next, B?1 and B?2 are
such that B?1 = B?(A) ∩ A1, and B?2 = B?(A) ∩ A2; therefore, B?1 ∩ B?2 = ∅ and B?(A) = (B?1 ∪ B?2).

The combination of ineq. (9.44) and ineq. (9.45) proves the part hf (α,β)
1+κf

and hf (α,β)
κf

(1−e−κf )

of ineq. (9.7) and of ineq. (9.6), respectively, after also applying Lemma 36's ineq. (9.28)
and ineq. (9.27), respectively, and then Lemma 37.

To prove ineq. (9.44), we follow the steps of the proof of [56, Theorem 1], and use the
notation introduced in Fig. 13, along with the following notation:

η =
f(B?2|A \ B?(A))

f(A2)
. (9.46)

In particular, to prove ineq. (9.44) we focus on the worst-case where B?2 6= ∅; the reason is
that if we assume otherwise, i.e., if we assume B?2 = ∅, then f(A \ B?(A)) = f(A2), which
is a tighter inequality to ineq. (9.44). Hence, considering B?2 6= ∅, we prove ineq. (9.44) by
�rst observing that:

f(A \ B?(A)) ≥ max{f(A \ B?(A)), f(A+
1 )}, (9.47)

and then proving the following three inequalities:

f(A \ B?(A)) ≥ (1− η)f(A2), (9.48)

f(A+
1 ) ≥ η 1

β
f(A2), (9.49)

max{(1− η), η
1

β
} ≥ 1

β + 1
. (9.50)

Speci�cally, if we substitute ineqs. (9.48)-(9.50) to ineq. (9.47), and take into account that
f(A2) ≥ 0, then:

f(A \ B?(A)) ≥ 1

β + 1
f(A2),

which implies ineq. (9.44).

We complete the proof of ineq. (9.47) by proving 0 ≤ η ≤ 1, and ineqs. (9.48)-(9.50),
respectively.
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Proof of ineq. 0 ≤ η ≤ 1 We �rst prove that η ≥ 0, and then, that η ≤ 1: it holds η ≥
0, since by de�nition η = f(B?2|A \ B?(A))/f(A2), and since f is non-negative; and it
holds η ≤ 1, since f(A2) ≥ f(B?2), due to monotonicity of f and that B?2 ⊆ A2, and since
f(B?2) ≥ f(B?2|A \ B?(A)), due to submodularity of f and that ∅ ⊆ A \ B?(A).

Proof of ineq. (9.48) We complete the proof of ineq. (9.48) in two steps. First, it can be
veri�ed that:

f(A \ B?(A)) = f(A2)−
f(B?2|A \ B?(A)) + f(A1|A2)− f(B?1|A \ B?1), (9.51)

since for any X ⊆ V and Y ⊆ V, it holds f(X|Y) = f(X ∪ Y) − f(Y). Second, eq. (9.51)
implies ineq. (9.48), since f(B?2|A \ B?(A)) = ηf(A2), and f(A1|A2) − f(B?1|A \ B?1) ≥ 0.
The latter is true due to the following two observations: f(A1|A2) ≥ f(B?1|A2), since f
is monotone and B?1 ⊆ A1; and f(B?1|A2) ≥ f(B?1|A \ B?1), since f is submodular and
A2 ⊆ A \ B?1 (see also Fig. 13).

Proof of ineq. (9.49) Since it is B?2 6= ∅ (and as a result, it also is A+
1 6= ∅), and since for

all elements a ∈ A+
1 and all elements b ∈ B?2 it is f(a) ≥ f(b), from Lemma 29 we have:

f(B?2|A+
1 ) ≤ |B?2|f(A+

1 )

≤ βf(A+
1 ), (9.52)

since |B?2| ≤ β. Overall,

f(A+
1 ) ≥ 1

β
f(B?2|A+

1 ) (9.53)

≥ 1

β
f(B?2|A+

1 ∪ A
+
2 ) (9.54)

=
1

β
f(B?2|A \ B?(A)) (9.55)

= η
1

β
f(A2), (9.56)

where ineqs. (9.53)-(9.56) hold for the following reasons: ineq. (9.53) follows from ineq. (9.52);
ineq. (9.54) holds since f is submodular and A+

1 ⊆ A
+
1 ∪ A

+
2 ; eq. (9.55) holds due to the

de�nitions of the sets A+
1 , A

+
2 and B?(A); �nally, eq. (9.56) holds due to the de�nition of η.

Proof of ineq. (9.50) Let b = 1/β. We complete the proof �rst for the case where
(1−η) ≥ ηb, and then for the case (1−η) < ηb: when (1−η) ≥ ηb, max{(1−η), ηb} = 1−η
and η ≤ 1/(1 + b); due to the latter, 1− η ≥ b/(1 + b) = 1/(β + 1) and, as a result, (9.50)
holds. Finally, when (1 − η) < ηb, max{(1 − η), ηb} = ηb and η > 1/(1 + b); due to the
latter, ηb > b/(1 + b) and, as a result, (9.50) holds.

We completed the proof of 0 ≤ η ≤ 1, and of ineqs. (9.48)-(9.50). Thus, we also completed
the proof of ineq. (9.44).
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To prove ineq. (9.45), we consider the following mutually exclusive and collectively exhaus-
tive cases:

• consider B?2 = ∅, i.e., all elements in A1 are removed, and as result, none of the
elements in A2 is removed. Then, f(A \ B?(A)) = f(A2), and ineq. (9.45) holds.

• Consider B?2 6= ∅, i.e., at least one of the elements in A1 is not removed; call any of
these elements s. Then:

f(A \ B?(A)) ≥ f(s), (9.57)

since f is non-decreasing. In addition:

f(A2) ≤
∑
v∈A2

f(v) ≤ (α− β)f(s), (9.58)

where the �rst inequality holds since f is submodular [70, Proposition 2.1], and the
second holds due to Lemma 34 and the fact that A2 is constructed by Algorithm 19
such that A1 ∪ A2 ⊆ V and A1 ∪ A2 ∈ I, where |A1| = β (since A1 is constructed
by Algorithm 19 such that A1 ⊆ V and A1 ∈ I ′, where (V, I ′) is a matroid with
rank β) and (V, I) is a matroid that has rank α; the combination of ineq. (9.57) and
ineq. (9.58) implies ineq. (9.45).

Overall, the proof of ineq. (9.45) is complete. �

Proof of Theorem 22's part 2 (running time)

We complete the proof in two steps, where we denote the time for each evaluation of the
objective function f as τf . In particular, we �rst compute the running time of lines 2-8 and,
then, of lines 9-15: lines 2-8 need at most |V|[|V|τf + |V| log(|V|) + |V|+O(log(|V|))] time,
since they are repeated at most |V| times, and at each repetition line 3 asks for at most
|V| evaluations of f, and for their sorting, which takes |V| log(|V|) + |V|+O(log(|V|)) time,
using, e.g., the merge sort algorithm. Similarly, lines 9-15 need |V|[|V|τf + |V| log(|V|)+ |V|+
O(log(|V|))]. Overall, Algorithm 19 runs in 2|V|[|V|τf + |V| log(|V|) + |V| + O(log(|V|))] =
O(|V|2τf ) time. �
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CHAPTER 10 : Resilient (Non-)Submodular Sequential Maximization

Applications in machine learning, optimization, and control require the sequential selection
of a few system elements, such as sensors, data, or actuators, to optimize the system perfor-
mance across multiple time steps. However, in failure-prone and adversarial environments,
sensors get attacked, data get deleted, and actuators fail. Thence, traditional sequential de-
sign paradigms become insu�cient and, in contrast, resilient sequential designs that adapt
against system-wide attacks, deletions, or failures become important. In general, resilient
sequential design problems are computationally hard. Also, even though they often involve
objective functions that are monotone and (possibly) submodular, no scalable approxima-
tion algorithms are known for their solution. In this chapter, we provide the �rst scalable
algorithm, that achieves the following characteristics: system-wide resiliency, i.e., the algo-
rithm is valid for any number of denial-of-service attacks, deletions, or failures; adaptiveness,
i.e., at each time step, the algorithm selects system elements based on the history of in�icted
attacks, deletions, or failures; and provable approximation performance, i.e., the algorithm
guarantees for monotone objective functions a solution close to the optimal. We quantify
the algorithm's approximation performance using a notion of curvature for monotone (not
necessarily submodular) set functions. Finally, we support our theoretical analyses with
simulated experiments, by considering a control-aware sensor scheduling scenario, namely,
sensing-constrained robot navigation.1

10.1. Introduction

Problems in machine learning, optimization, and control [6, 50, 54, 193, 221, 222, 225, 226,
232] require the design of systems in applications such as:

• Car-congestion prediction: Given a �ood of driving data, collected from the drivers'
smart-phones, which few drivers' data should we process at each time of the day to
enable the accurate prediction of car tra�c? [232]

• Adversarial-target tracking : At a �ying robot, that uses on-board sensors to navigate
itself, which few sensors should we activate at each time step both to maximize the
robot's battery life, and to ensure its ability to track targets moving in a cluttered
environment? [193]

• Hazardous environmental-monitoring : In a team of mobile robots, which few robots
should we choose at each time step as actuators (leaders) to guarantee the team's
capability to monitor the radiation around a nuclear reactor despite intro-robot com-
munication noise? [50]

In particular, all the aforementioned applications [6, 50, 54, 193, 221, 222, 225, 226, 232]
motivate the sequential selection of a few system elements, such as sensors, data, or actua-
tors, to optimize the system performance across multiple time steps, subject to a resource
constraint, such as limited battery for sensor activation. More formally, each of the above

1This chapter is based on the paper by Tzoumas et al. [231].
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applications motivate the solution to a sequential optimization problem of the form:

max
A1⊆V1

· · · max
AT⊆VT

f(A1, . . . ,AT ),

such that:

|At| = αt, for all t = 1, . . . , T,

(10.1)

where T represents the number of design steps in time; the objective function f is monotone
and (possibly) submodular �submodularity is a diminishing returns property;� and the
cardinality bound αt captures a resource constraint at time t. The problem in eq. (10.1) is
combinatorial, and, speci�cally, it is NP-hard [13]; notwithstanding, several approximation
algorithms have been proposed for its solution, such as the greedy [12].

But in all the above critical applications, sensors can get cyber-attacked [24]; data can
get deleted [36]; and actuators can fail [23]. Hence, in such failure-prone and adversarial
scenarios, resilient sequential designs that adapt against denial-of-service attacks, deletions,
or failures become important.

In this chapter, we formalize for the �rst time a problem of resilient monotone sequential
maximization, that goes beyond the traditional objective of the problem in eq. (10.1), and
guards adaptively against real-time attacks, deletions, or failures. In particular, we introduce
the following resilient re-formulation of the problem in eq. (10.1):

max
A1⊆V1

min
B1⊆A1

· · · max
AT⊆VT

min
BT⊆AT

f(A1 \ B1, . . . ,AT \ BT ),

such that:

|At| = αt and |Bt| ≤ βt, for all t = 1, . . . , T,

(10.2)

where the number βt represents the number of possible attacks, deletions, or failures �in gen-
eral, it is βt ≤ αt. Overall, the problem in eq. (10.2) maximizes the function f despite real-
time worst-case failures that compromise the consecutive maximization steps in eq. (10.1).
Therefore, the problem formulation in eq. (10.2) is suitable in scenarios where there is no
prior on the removal mechanism, as well as, in scenarios where protection against worst-case
failures is essential, such as in expensive experiment designs, or missions of adversarial-target
tracking.

In more detail, the problem in eq. (10.2) may be interpreted as a T -stage perfect informa-
tion sequential game between two players [26, Chapter 4], namely, a �maximization� player
(designer), and a �minimization� player (attacker), who play sequentially, both observing all
past actions of all players, and with the designer starting the game. That is, at each time
t = 1, . . . , T, both the designer and the attacker adapt their set selections to the history of
all the players' selections so far, and, in particular, the attacker adapts its selection also to
the current (t-th) selection of the designer (since at each step t, the attacker plays after it
observes the selection of the `designer).

In sum, the problem in eq. (10.2) goes beyond traditional (non-resilient) optimization [31,
32, 33, 39, 40] by proposing resilient optimization; beyond single-step resilient optimiza-
tion [34, 35, 56] by proposing multi-step (sequential) resilient optimization; beyond memo-
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ryless resilient optimization [41] by proposing adaptive resilient optimization; and beyond
protection against non-adversarial attacks [36, 37] by proposing protection against worst-
case attacks. Hence, the problem in eq. (10.2) aims to protect the system performance over
extended periods of time against real-time denial-of-service attacks or failures, which is vital
in critical applications, such as multi-target surveillance with teams of mobile robots [6].

Contributions. In this chapter, we make the contributions:

• (Problem de�nition) We formalize the problem of resilient monotone sequential max-
imization against denial-of-service removals, per eq. (10.2). This is the �rst work to
formalize, address, and motivate this problem.

• (Solution) We develop the �rst algorithm for the problem of resilient monotone se-
quential maximization in eq. (10.2), and prove it has the following properties:

� system-wide resiliency : the algorithm is valid for any number of removals;

� adaptiveness: the algorithm adapts the solution to each of the maximization steps
in eq. (10.2) to the history of realized (in�icted) removals;

� minimal running time: the algorithm terminates with the same running time
as state-of-the-art algorithms for (non-resilient) set function optimization, per
eq. (10.1);

� provable approximation performance: the algorithm ensures for all T ≥ 1, and for
objective functions f that are monotone and (possibly) submodular �as it holds
true in all aforementioned applications [6, 50, 54, 193, 221, 222, 225, 226, 232],�
a solution �nitely close to the optimal.

To quantify the algorithm's approximation performance, we used a notion of
curvature for monotone (not necessarily submodular) set functions.

• (Simulations) We conduct simulations in a variety of sensor scheduling scenarios for
autonomous robot navigation, varying the number of sensor failures. Our simulations
validate the bene�ts of our approach.

Overall, the proposed algorithm in this chapter enables the resilient reformulation and so-
lution of all the aforementioned applications [6, 50, 54, 193, 221, 222, 225, 226, 232] against
worst-case attacks, deletions, or failures, over multiple design steps, and with provable ap-
proximation guarantees.

Notation. Calligraphic fonts denote sets (e.g., A). Given a set A, then 2A denotes the
power set of A; in addition, |A| denotes A's cardinality; given also a set B, then A \ B
denotes the set of elements in A that are not in B. Given a ground set V, a set function
f : 2V 7→ R, and an element x ∈ V, the f(x) denotes f({x}), and the f(A,B) denotes
f(A ∪ B).
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10.2. Resilient Monotone Sequential Maximization

We formally de�ne resilient monotone sequential maximization. We start with the basic
de�nition of monotonicity.
De�nition 37 (Monotonicity). Consider any �nite ground set V. The set function f : 2V 7→
R is non-decreasing if and only if for any sets A ⊆ A′ ⊆ V, it holds f(A) ≤ f(A′).

We de�ne next the main problem in this chapter.
Problem 5. (Resilient Monotone Sequential Maximization) Consider the parame-
ters: an integer T ; �nite ground sets V1, . . . ,VT ; a non-decreasing set function f : 2V1 ×
· · · × 2VT 7→ R such that, without loss of generality, it holds f(∅) = 0 and f is non-negative;
�nally, integers αt and βt such that 0 ≤ βt ≤ αt ≤ |Vt|, for all t = 1, 2, . . . , T.

The problem of resilient monotone sequential maximization is to maximize the objective
function f through a sequence of T maximization steps, despite compromises to the solutions
of each of the maximization steps; in particular, at each maximization step t = 1, . . . , T a
set At ⊆ Vt of cardinality αt is selected, and is compromised by a worst-case set removal Bt
of cardinality βt. Formally:

max
A1⊆V1

min
B1⊆A1

· · · max
AT⊆VT

min
BT⊆AT

f(A1 \ B1, . . . ,AT \ BT ),

such that:

|At| = αt and |Bt| ≤ βt, for all t = 1, . . . , T.

(10.3)

As we mentioned in this chapter's Introduction, Problem 20 may be interpreted as a T -stage
perfect information sequential game between two players [26, Chapter 4], a �maximization�
player, and a �minimization� player, who play sequentially, both observing all past actions
of all players, and with the �maximization� player starting the game. In the following
paragraphs, we describe this game in more detail:

• 1st round of the game in Problem 5: the �maximization� player selects the set A1;
then, the �minimization� player observes A1, and selects the set B1 against A1;

• 2nd round of the game in Problem 5: the �maximization� player, who already knows
A1, observes B1, and selects the set A2, given A1 and B1; then, the �minimization�
player, who already knows A1 and B1, observes A2, and selects the set B2 against A2,
given A1 and B1.

...

• T -th round of the game in Problem 5: the �maximization� player, who already knows
the history of selections A1, . . . ,AT−1, as well as, removals B1, . . . ,BT−1, selects the set
AT , given A1, . . . ,AT−1 and B1, . . . ,BT−1; then, the �minimization� player, who also
already knows the history of selectionsA1, . . . ,AT−1, as well as, removals B1, . . . ,BT−1,
observes AT , and selects the set BT against AT , given A1, . . . ,AT−1 and B1, . . . ,BT−1.
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10.3. Adaptive Algorithm for Problem 5

We present the �rst algorithm for Problem 5, show it is adaptive, and, �nally, describe the
intuition behind it. The pseudo-code of the algorithm is described in Algorithm 20.

10.3.1. Intuition behind Algorithm 20

The goal of Problem 5 is to ensure a maximal value for an objective function f through
a sequence of T maximization steps, despite compromises to the solutions of each of the
maximization steps. In particular, at each maximization step t = 1, . . . , T, Problem 5 aims
to select a set At towards a maximal value of f, despite that each At is compromised by
a worst-case set removal Bt from At, resulting to f being �nally evaluated at the sequence
of sets A1 \ B1, . . . ,AT \ BT instead of the sequence of sets A1, . . . ,AT . In this context,
Algorithm 20 aims to ful�l the goal of Problem 5 by constructing each set At as the union of
the sets St,1, and St,2 (line 9 of Algorithm 20), whose role we describe in more detail below:

Set St,1 approximates worst-case set removal from At: Algorithm 20 aims with the set St,1
to capture the worst-case removal of βt elements among the αt elements that Algorithm 20
is going to select in At; equivalently, the set St,1 is aimed to act as a �bait� to an attacker
that selects to remove the best βt elements from At (best with respect to the elements'
contribution towards the goal of Problem 5). However, the problem of selecting the best βt
elements in Vt is a combinatorial and, in general, intractable problem [13]. For this reason,
Algorithm 20 aims to approximate the best βt elements in Vt, by letting St,1 be the set of βt
elements with the largest marginal contributions in the value of the objective function f
(lines 3-4 of Algorithm 20).

Set St,2 is such that St,1∪St,2 approximates optimal set solution to t-th maximization step of
Problem 5: Assuming that St,1 is the set of βt elements that are going to be removed from
Algorithm 20's set selectionAt, Algorithm 20 needs next to select a set St,2 of αt−βt elements
to complete the construction of At, since it is |At| = αt per Problem 5. In particular, for
At = St,1 ∪St,2 to be an optimal solution to t-th maximization step of Problem 5 (assuming
the removal of St,1 from At), Algorithm 20 needs to select St,2 as a best set of αt−βt elements
from Vt\St,1. Nevertheless, the problem of selecting a best set of αt−βt elements from Vt\St,1
is a combinatorial and, in general, intractable problem [13]. As a result, Algorithm 20 aims
to approximate such a best set, using the greedy procedure in the lines 5-8 of Algorithm 20.

Overall, Algorithm 20 constructs the sets St,1 and St,2 to approximate an optimal solution
At to the t-th maximization step of Problem 5 with their union (line 9 of Algorithm 20).

We describe next the steps in Algorithm 20 in more detail.

10.3.2. Description of steps in Algorithm 20

Algorithm 20 executes four steps for each t = 1, . . . , T , where T is the number of maximiza-
tion steps in Problem 5:

Initialization (line 2 of Algorithm 20): Algorithm 20 de�nes two auxiliary sets, namely,
the St,1 and St,2, and initializes each of them with the empty set (line 2 of Algorithm 20).
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Algorithm 20 Adaptive algorithm for Problem 5.

Input: Per Problem 5, Algorithm 20 receives two input types:
• (O�-line) Integer T ; �nite ground sets V1, . . . ,VT ; set function f : 2V1×· · ·×2VT 7→
R such that f is non-decreasing, non-negative, and f(∅) = 0; integers αt and βt
such that 0 ≤ βt ≤ αt ≤ |Vt|, for all t = 1, . . . , T.
• (On-line) At each step t = 2, 3, . . . , T : realized set removal Bt−1 from Algo-
rithm 20's set selection At−1.

Output: At each step t = 1, 2, . . . , T, set At.

1: for all t = 1, . . . , T do
2: St,1 ← ∅; St,2 ← ∅;
3: Sort elements in Vt such that Vt ≡ {vt,1, . . . , vt,|Vt|} and f(vt,1) ≥ . . . ≥ f(vt,|Vt|);
4: St,1 ← {vt,1, . . . , vt,β};
5: while |St,2| < αt − βt do
6: x ∈ arg maxy∈Vt\(St,1∪St,2) f(A1 \ B1, . . . ,At−1 \ Bt−1,St,2 ∪ {y});
7: St,2 ← {x} ∪ St,2;
8: end while
9: At ← St,1 ∪ St,2;
10: end for

The purpose of St,1 and of St,2 is to construct the set At, which is the set Algorithm 20
selects as a solution to Problem 5's t-th maximization step; in particular, the union of St,1
and of St,2 constructs At at the end of the t-th execution of the algorithm's �for loop�
(lines 1-10 of Algorithm 20).

Construction of set St,1 (lines 3-4 of Algorithm 20): Algorithm 20 constructs the set St,1
such that St,1 contains βt elements from the ground set Vt and, for any element s ∈ St,1 and
any element s′ /∈ St,1, the marginal value of f(s) is at least that of f(s′); that is, among
all elements in Vt, the set St,1 contains a collection of βt elements that correspond to the
highest marginal values of f. In detail, Algorithm 20 constructs St,1 by �rst sorting and
indexing all elements in Vt such that Vt = {vt,1, . . . , vt,|Vt|} and f(vt,1) ≥ . . . ≥ f(vt,|Vt|)
(line 3 of Algorithm 20), and, then, by including in St,1 the �st βt elements among the
{vt,1, . . . , vt,|Vt|} (line 4 of Algorithm 20).

Construction of set St,2 (lines 5-8 of Algorithm 20): Algorithm 20 constructs the set St,2 by
picking greedily αt−βt elements from the set Vt \St,1, and by accounting for the e�ect that
the history of set selections and removals (A1 \ B1, . . . ,At−1 \ Bt−1) has on the objective
function f of Problem 5. Speci�cally, the greedy procedure in Algorithm 20's �while loop�
(lines 5-8 of Algorithm 20) selects an element y ∈ Vt \ (St,1 ∪ St,2) to add in St,2 only if y
maximizes the value of f(A1 \ B1, . . . ,At−1 \ Bt−1,St,2 ∪ {y}).

Construction of set At (line 9 of Algorithm 20): Algorithm 20 proposes the set At as a
solution to Problem 5's t-th maximization step. To this end, Algorithm 20 constructs At as
the union of the previously constructed sets St,1 and St,2.

In sum, Algorithm 20 enables an adaptive solution of Problem 5: for each t = 1, 2, . . .,
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Algorithm 20 constructs a solution set At to the t-th maximization step of Problem 5 based
on both the history of selected solutions up to step t−1, namely, the sets A1, . . . ,At−1, and
the corresponding history of set removals from A1, . . . ,At−1, namely, the B1, . . . ,Bt−1.

10.4. Performance Guarantees for Algorithm 20

We quantify Algorithm 20's performance, by bounding its running time, and its approx-
imation performance. To this end, we use the following two notions of curvature for set
functions.

10.4.1. Curvature and total curvature of non-decreasing functions

We present the notions of curvature and of total curvature for non-decreasing set functions.
We start by describing the notions of modularity and submodularity for set functions.
De�nition 38 (Modularity). Consider any �nite set V. The set function g : 2V 7→ R is
modular if and only if for any set A ⊆ V, it holds g(A) =

∑
v∈A g(v).

In words, a set function g : 2V 7→ R is modular if through g all elements in V cannot
substitute each other; in particular, De�nition 38 of modularity implies that for any set
A ⊆ V, and for any element v ∈ V \ A, it holds g({v} ∪ A)− g(A) = g(v).
De�nition 39 (Submodularity [70, Proposition 2.1]). Consider any �nite set V. The set
function g : 2V 7→ R is submodular if and only if for any sets A ⊆ B ⊆ V, and any element
v ∈ V, it holds g(A ∪ {v})−g(A) ≥ g(B ∪ {v})−g(B).

De�nition 39 implies that a set function g : 2V 7→ R is submodular if and only if it satis�es
a diminishing returns property where for any set A ⊆ V, and for any element v ∈ V, the
marginal gain g(A∪{v})−g(A) is non-increasing. In contrast to modularity, submodularity
implies that the elements in V can substitute each other, since De�nition 39 of submodularity
implies the inequality g({v} ∪ A) − g(A) ≤ g(v); that is, in the presence of the set A, the
element v may lose part of its contribution to the value of g({x} ∪ A).
De�nition 40. (Curvature of monotone submodular functions [33]) Consider a
�nite set V, and a non-decreasing submodular set function g : 2V 7→ R such that (without
loss of generality) for any element v ∈ V, it is g(v) 6= 0. The curvature of g is de�ned as
follows:

κg , 1−min
v∈V

g(V)− g(V \ {v})
g(v)

. (10.4)

De�nition 40 of curvature implies that for any non-decreasing submodular set function g :
2V 7→ R, it holds 0 ≤ κg ≤ 1. In particular, the value of κg measures how far g is
from modularity, as we explain next: if κg = 0, then for all elements v ∈ V, it holds
g(V) − g(V \ {v}) = g(v), that is, g is modular. In contrast, if κg = 1, then there exist an
element v ∈ V such that g(V) = g(V \ {v}), that is, in the presence of V \ {v}, v loses all its
contribution to the value of g(V).
De�nition 41. (Total curvature of non-decreasing functions [15, Section 8]) Con-
sider a �nite set V, and a monotone set function g : 2V 7→ R. The total curvature of g is
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de�ned as follows:

cg , 1−min
v∈V

min
A,B⊆V\{v}

g({v} ∪ A)− g(A)

g({v} ∪ B)− g(B)
. (10.5)

De�nition 41 of total curvature implies that for any non-decreasing set function g : 2V 7→ R,
it holds 0 ≤ cg ≤ 1. To connect the notion of total curvature with that of curvature, we note
that when the function g is non-decreasing and submodular, then the two notions coincide,
i.e., it holds cg = κg; the reason is that if g is non-decreasing and submodular, then the
inner minimum in eq. (10.5) is attained for A = B \ {v} and B = ∅. In addition, to connect
the above notion of total curvature with the notion of modularity, we note that if cg = 0,
then g is modular, since eq. (10.5) implies that for any elements v ∈ V, and for any sets
A,B ⊆ V \ {v}, it holds:

(1− cg) [g({v} ∪ B)− g(B)] ≤ g({v} ∪ A)− g(A), (10.6)

which for cg = 0 implies the modularity of g. Finally, to connect the above notion of
total curvature with the notion of monotonicity, we mention that if cg = 1, then eq. (10.6)
implies that g is merely non-decreasing (as it is already assumed by the De�nition 41 of
total curvature).
De�nition 42 (Approximate submodularity). Consider a �nite set V, and a non-decreasing
set function g : 2V 7→ R, whose total curvature cg is such that cg < 1. Then, we say that g
is approximately submodular.

10.4.2. Performance analysis for Algorithm 20

We quantify Algorithm 20's approximation performance, as well as, its running time per
maximization step in Problem 5.
Theorem 23 (Performance of Algorithm 20). Consider an instance of Problem 5, the no-
tation therein, the notation in Algorithm 20, and the de�nitions:

• let the number f? be the (optimal) value to Problem 5;

• given sets A1:T , (A1, . . . ,AT ) as solutions to the maximization steps in Problem 5,
let B?(A1:T ) be the collection of optimal (worst-case) set removals from each of the At,
where t = 1, . . . , T, per Problem 5, i.e.:

B?(A1:T ) ∈ arg min
B1⊆A1,|B1|≤β1

· · · min
BT⊆AT ,|BT |≤βT

f(A1 \ B1, . . . ,AT \ BT );

The performance of Algorithm 20 is bounded as follows:

leftmirgin=* (Approximation performance) Algorithm 20 returns the sequence of sets
A1:T , (A1, . . . ,AT ) such that, for all t = 1, . . . , T, it holds At ⊆ Vt,
|At| ≤ αt, and:
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• if the objective function f is non-decreasing and submodular, then:

f(A1:T \ B?(A1:T ))

f?
≥ (1− κf )4, (10.7)

where κf is the curvature of f (De�nition 40).

• if the objective function f is non-decreasing, then:

f(A1:T \ B?(A1:T ))

f?
≥ (1− cf )5, (10.8)

where cf is the total curvature of f (De�nition 41).

leftmiirgiin=* (Running time) Algorithm 20 constructs each set At, for each t = 1, . . . , T,
to solve the t-th maximization step of Problem 5, with O(|Vt|(αt − βt))
evaluations of f.

Provable approximation performance. Theorem 23 implies on the approximation per-
formance of Algorithm 20:

Near-optimality : Both for monotone submodular objective functions f with curvature κf <
1, and for merely monotone objective functions f with total curvature cf < 1, Algo-
rithm 20 guarantees a value for Problem 5 �nitely close to the optimal. In particular,
per ineq. (10.7) (case of submodular objective functions), the approximation factor of Algo-
rithm 20 is bounded by (1−κf )4, which is non-zero for any monotone submodular function f
with κf < 1; similarly, per ineq. (10.8) (case of approximately-submodular functions), the
approximation factor of Algorithm 20 is bounded by (1 − cf )5, which is non-zero for any
monotone function f with cf < 1 �notably, although it is known for the problem of (non-
resilient) set function maximization that the approximation bound (1 − cf ) is tight [15,
Theorem 8.6], the tightness of the bound (1− cf )5 in ineq. (10.8) for Problem 5 is an open
problem.

We discuss classes of functions f with curvatures κf < 1 or cf < 1, along with relevant
applications, in the remark below.
Remark 17. (Classes of functions f with κf < 1 or cf < 1, and applications) Classes
of functions f with κf < 1 are the concave over modular functions [31, Section 2.1], and
the log det of positive-de�nite matrices [227, 228]. Classes of functions f with cf < 1 are
support selection functions [223], and estimation error metrics such as the average minimum
square error of the Kalman �lter [193, Theorem 4]

The aforementioned classes of functions f with κf < 1 or cf < 1 appear in applications
of facility location, machine learning, and control, such as sparse approximation and fea-
ture selection [225, 226], sparse recovery and column subset selection [221, 222], and ac-
tuator and sensor scheduling [54, 193]; as a result, Problem 5 enables applications such
as resilient experiment design, resilient actuator scheduling for minimal control e�ort, and
resilient multi-robot navigation with minimal sensing and communication.

Approximation performance for low curvature: For both monotone submodular and merely
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monotone objective functions f, when the curvature κf and the total curvature cf , respec-
tively, tend to zero, Algorithm 20 becomes exact since for κf → 0 and cf → 0 the terms
(1 − κf )4 and (1 − cf )5 in ineq. (10.7) and ineq. (10.8) tend to 1. Overall, Algorithm 20's
curvature-dependent approximation bounds make a �rst step towards separating the classes
of monotone submodular and merely monotone functions into functions for which Prob-
lem 5 can be approximated well (low curvature functions), and functions for which it cannot
(high curvature functions).

A machine learning problem where Algorithm 20 guarantees an approximation performance
close to 100% the optimal is that of Gaussian process regression for processes with RBF ker-
nels [114, 230]; this problem emerges in applications of sensor deployment and scheduling for
temperature monitoring. The reason that in this class of regression problems Algorithm 20
performs almost optimally is that the involved objective function is the entropy of the se-
lected sensor measurements, which for Gaussian processes with RBF kernels has curvature
value close to zero [228, Theorem 5].

Approximation performance for no failures or attacks: Both for monotone submodular objec-
tive functions f, and for merely monotone objective functions f, when the number of attacks,
deletions, and failures is zero (βt = 0, for all t = 1, . . . , T ), Algorithm 20's approximation
performance is the same as that of the state-of-the-art algorithms for (non-resilient) set func-
tion maximization. In particular, when for all t = 1, . . . , T it is βt = 0, then Algorithm 20
is the same as the local greedy algorithm, proposed in [12, Section 4] for (non-resilient) set
function maximization, whose approximation performance is optimal [15, Theorem 8.6].

Minimal running time. Theorem 23 implies that Algorithm 20, even though it goes
beyond the objective of (non-resilient) multi-step set function optimization, by accounting
for attacks, deletions, and failures, it has the same order of running time as state-of-the-art
algorithms for (non-resilient) multi-step set function optimization. In particular, such algo-
rithms for (non-resilient) multi-step set function optimization [12, Section 4] [15, Section 8]
terminate with O(|Vt|(αt − βt)) evaluations of the objective function f per maximization
step t = 1, . . . , T , and Algorithm 20 also terminates with O(|Vt|(αt−βt)) evaluations of the
objective function f per maximization step t = 1, . . . , T .

Summary of theoretical results. In sum, Algorithm 20 is the �rst algorithm for Prob-
lem 5, and it enjoys:

• system-wide resiliency : Algorithm 20 is valid for any number of denial-of-service at-
tacks, deletions, and failures;

• adaptiveness: Algorithm 20 adapts the solution to each of the maximization steps in
Problem 5 to the history of in�icted denial-of-service attacks and failures;

• minimal running time: Algorithm 20 terminates with the same running time as state-
of-the-art algorithms for (non-resilient) multi-step submodular function optimization;

• provable approximation performance: Algorithm 20 ensures for all monotone objective
functions f that are either submodular or approximately submodular (cf < 1), and
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for all T ≥ 1, a solution �nitely close to the optimal.

Notably, Algorithm 20 is also the �rst to guarantee for any number of failures, and for
monotone approximately-submodular functions f, a provable approximation performance
for the one-step version of Problem 5 where T = 1.

10.5. Numerical Experiments

In this section, we demonstrate a near-optimal performance of Algorithm 20 via numerical
experiments. In particular, we consider a control-aware sensor scheduling scenario, namely,
sensing-constrained robot navigation.2 According to this scenario, an unmanned aerial vehi-
cle (UAV), which has limited remaining battery and measurement-processing power, has the
objective to land, and to this end, it schedules to activate at each time step only a subset
of its on-board sensors, so to localize itself and enable the generation of a control input for
landing; speci�cally, at each time step, the UAV generates its control input by implementing
an LQG-optimal controller, given the measurements collected by the activated sensors up
to the current time step [123, 193].

In more detail, in the following paragraphs we present a Monte Carlo analysis for an in-
stance of the aforementioned sensing-constrained robot navigation scenario, in the presence
of worst-case sensor failures, and observe that Algorithm 20 results to a near-optimal sensor
selection schedule: in particular, the resulting navigation performance of the UAV matches
the optimal in all tested instances for which the optimal selection could be computed via a
brute-force approach.

Simulation setup. We adopt the same instance of the sensing-constrained robot navigation
scenario adopted in [193, Section V.B]. Speci�cally, a UAVmoves in a 3D space, starting from
a randomly selected initial location. The objective of the UAV is to land at position [0, 0, 0]
with zero velocity. The UAV is modelled as a double-integrator with state xt = [pt vt]

> ∈ R6

at each time t = 1, 2, . . . (pt is the 3D position of the UAV, and vt is its velocity), and can
control its own acceleration ut ∈ R3; the process noise is chosen as Wt = I6. The UAV is
equipped with multiple sensors, as follows: it has two on-board GPS receivers, measuring
the UAV position pt with a covariance 2 · I3, and an altimeter, measuring only the last
component of pt (altitude) with standard deviation 0.5m. Moreover, the UAV can use a
stereo camera to measure the relative position of 10 landmarks on the ground; we assume
the location of each landmark to be known only approximately, and we associate to each
landmark an uncertainty covariance, which is randomly generated at the beginning of each
run. The UAV has limited on-board resource-constraints, hence it can only activate a subset
of sensors (possibly di�erent at each time step). For instance, the resource-constraints may
be due to the power consumption of the GPS and the altimeter, or due to computational
constraints that prevent to run object-detection algorithms to detect all landmarks on the
ground.

Among the aforementioned 13 possible sensor measurements available to the UAV at each
time step, we assume that the UAV can use only α = 11 of them. In particular, the

2The scenario of sensing-constrained robot navigation is introduced in [193, Section V.B], yet in the
absence of sensor failures.
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UAV chooses the sensors to activate at each time step so to minimize an LQG cost with
cost matrices Q (which penalizes the state vector) and R (which penalizes the control input
vector), per the problem formulation in [193, Section II]; speci�cally, in this simulation setup
we set Q = diag

(
[1e−3, 1e−3, 10, 1e−3, 1e−3, 10]

)
and R = I3. Note that the structure of

Q (which penalizes the magnitude of the state vector) re�ects the fact that during landing
we are particularly interested in controlling the vertical direction and the vertical velocity
(entries with larger weight in Q), while we are less interested in controlling accurately the
horizontal position and velocity (assuming a su�ciently large landing site). Given a time
horizon T for landing, in [193] it is proven that the UAV selects an optimal sensor schedule
and generates an optimal LQG control input with cost matrices Q and R if it selects the
sensors set St to activate at each time t = 1, . . . , T by minimizing an objective function of
the form:

T∑
t=1

trace[MtΣt|t(S1, . . . ,St)], (10.9)

where Mt is a positive semi-de�nite matrix that depends on the LQG cost matrices Q and
R, as well as, on the UAV's model dynamics; and Σt|t(S1, . . . ,St) is the error covariance of
the Kalman �lter given the sensor selections up to time t.

In the remaining paragraphs, we present results averaged over 10 Monte Carlo runs of the
above simulation setup, where in each run we randomize the covariances describing the
landmark position uncertainty, and where we vary the number β of sensors failures at each
time step t: in particular, we consider β to vary among the values 1, 4, 7, 10.

Compared algorithms. We compare four algorithms. All algorithms only di�er in how
they select the sensors used. The �rst algorithm is the optimal sensor selection algorithm,
denoted as optimal, which attains the minimum of the cost function in eq. (10.9); this
brute-force approach is viable since the number of available sensors is small. The second
approach is a pseudo-random sensor selection, denoted as random∗, which selects one of
the GPS measurements and a random subset of the lidar measurements; note that we do
not consider a fully random selection since in practice this often leads to an unobservable
system. The third approach, denoted as logdet, selects sensors to greedily minimize the cost
function in eq. (10.9), ignoring the possibility of sensor failures, per the problem formulation
in eq. (9.1). The fourth approach uses Algorithm 20 to solve the resilient reformulation of
eq. (10.9), per Problem 5, and is denoted as s-LQG.

At each time step, from each of the selected sensor sets, selected by any of the above four
algorithms, we consider an optimal sensor removal, which we compute via a brute-force.

Results. The results of our numerical analysis are reported in Fig. 14. In particular, Fig. 14
shows the LQG cost for increasing time, for the case where the number of selected sensors
at each time step is α = 11, while the number of sensor failures β at each time step varies
across the values 10, 7, 4, 1. The following observations are due:

• (Near-optimality of Algorithm 20) Algorithm 20 (blue colour in Fig. 14) performs close
to the optimal brute-force algorithm (green colour in Fig. 14); in particular, across all
scenarios in Fig. 14, Algorithm 20 achieves an approximation performance at least
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Figure 14: LQG cost for increasing time, where across all sub-�gures (a)-(d) it is α = 11 (number
of active sensors per time step). The value of β (number of sensor failures at each time step among
the α active sensors) varies across the sub-�gures.

97% the optimal.

• (Performance of greedy algorithm) The greedy algorithm (red colour in Fig. 14) per-
forms poorly as the number β of sensor failures increases, which was expected, given
that this algorithm greedily minimizes the cost function in eq. (10.9) ignoring the
possibility of sensor failures.

• (Performance of random algorithm) Expectedly, also the performance of the random
algorithm (black colour in Fig. 14) is poor across all scenarios in Fig. 14.

Overall, in the above numerical experiments, Algorithm 20 demonstrates a near-optimal
approximation performance, and the necessity for the resilient reformulation of the problem
in eq. (9.1) per Problem 5 is exempli�ed.

10.6. Concluding Remarks & Future Work

We made the �rst step to ensure the success of critical missions in machine learning and
control, that involve the optimization of systems across multiple time-steps, against persis-
tent failures or denial-of-service attacks. In particular, we provided the �rst algorithm for
Problem 5, which, with minimal running time, adapts to the history of the in�icted failures
and attacks, and guarantees a close-to-optimal performance against system-wide failures
and attacks. To quantify the algorithm's approximation performance, we exploited a notion
of curvature for monotone (not necessarily submodular) set functions, and contributed a
�rst step towards characterizing the curvature's e�ect on the approximability of resilient se-
quential maximization. Our curvature-dependent characterizations complement the current
knowledge on the curvature's e�ect on the approximability of simpler problems, such as of
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non-sequential resilient maximization [35, 56], and of non-resilient maximization [31, 32, 33].
Finally, we supported our theoretical analyses with simulated experiments.

This chapter opens several avenues for future research, both in theory and in applications.
Future work in theory includes the extension of our results to matroid constraints, to enable
applications of set coverage and of network design [17, 233]. Future work in applications in-
cludes the experimental testing of the proposed algorithm in applications of motion-planning
for multi-target covering with mobile vehicles [6], and in applications of control-aware sen-
sor scheduling for multi-agent autonomous navigation [193], to enable resiliency in critical
scenarios of surveillance, and of search and rescue.

10.7. Appendix: Proof of Results

10.7.1. Notation

In the appendix we use the following notation to support the proofs in this chapter: given
a �nite ground set V, and a set function f : 2V 7→ R, then, for any sets X ⊆ V and X ′ ⊆ V:

f(X|X ′) , f(X ∪ X ′)− f(X ′). (10.10)

Moreover, let the sets A?1:T = (A?1, . . . ,A?T ) denote an (optimal) solution to Problem 5, i.e.:

A?1:T ∈
arg max

A1⊆V1
min
B1⊆A1

· · · max
AT⊆VT

min
BT⊆AT

f(A1 \ B1, . . . ,AT \ BT ),

such that:

|At| = αt and |Bt| ≤ βt, for all t = 1, . . . , T.

(10.11)

10.7.2. Preliminary lemmas

We list lemmas that support the proof of Theorem 23.
Lemma 38. Consider a �nite ground set V and a non-decreasing submodular set function
f : 2V 7→ R such that f is non-negative and f(∅) = 0. Then, for any A ⊆ V, it holds:

f(A) ≥ (1− κf )
∑
a∈A

f(a).

Proof of Lemma 38 Let A = {a1, a2, . . . , a|A|}. We prove Lemma 38 by proving the
following two inequalities:

f(A) ≥
|A|∑
i=1

f(ai|V \ {ai}), (10.12)

|A|∑
i=1

f(ai|V \ {ai}) ≥ (1− κf )

|A|∑
i=1

f(ai). (10.13)
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We begin with the proof of ineq. (10.12):

f(A) = f(A|∅) (10.14)

≥ f(A|V \ A) (10.15)

=

|A|∑
i=1

f(ai|V \ {ai, ai+1, . . . , a|A|}) (10.16)

≥
|A|∑
i=1

f(ai|V \ {ai}), (10.17)

where ineqs. (10.15) to (10.17) hold for the following reasons: ineq. (10.15) is implied by
eq. (10.14) because f is submodular and ∅ ⊆ V \ A; eq. (10.16) holds since for any sets
X ⊆ V and Y ⊆ V it is f(X|Y) = f(X ∪Y)−f(Y), and it also {a1, a2, . . . , a|A|} denotes the
set A; and ineq. (10.17) holds since f is submodular and V \ {ai, ai+1, . . . , aµ} ⊆ V \ {ai}.
These observations complete the proof of ineq. (10.12).

We now prove ineq. (10.13) using the De�nition 40 of κf , as follows: since κf = 1 −
minv∈V

f(v|V\{v})
f(v) , it is implied that for all elements v ∈ V it is f(v|V \ {v}) ≥ (1− κf )f(v).

Therefore, adding the latter inequality across all elements a ∈ A completes the proof of
ineq. (10.13). �
Lemma 39. Consider a �nite ground set V and a monotone set function f : 2V 7→ R such
that f is non-negative and f(∅) = 0. Then, for any sets A ⊆ V and B ⊆ V such that
A ∩ B = ∅, it holds:

f(A ∪ B) ≥ (1− cf ) (f(A) + f(B)) .

Proof of Lemma 39 Let B = {b1, b2, . . . , b|B|}. Then,

f(A ∪ B) = f(A) +

|B|∑
i=1

f(bi|A ∪ {b1, b2, . . . , bi−1}). (10.18)

The de�nition of total curvature in De�nition 41 implies:

f(bi|A ∪ {b1, b2, . . . , bi−1}) ≥
(1− cf )f(bi|{b1, b2, . . . , bi−1}). (10.19)

The proof is completed by substituting ineq. (10.19) in eq. (10.18) and then by taking into
account that it holds f(A) ≥ (1− cf )f(A), since 0 ≤ cf ≤ 1. �
Lemma 40. Consider a �nite ground set V and a non-decreasing set function f : 2V 7→ R
such that f is non-negative and f(∅) = 0. Then, for any set A ⊆ V and any set B ⊆ V such
that A ∩ B = ∅, it holds:

f(A ∪ B) ≥ (1− cf )

(
f(A) +

∑
b∈B

f(b)

)
.
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Proof of Lemma 40 Let B = {b1, b2, . . . , b|B|}. Then,

f(A ∪ B) = f(A) +

|B|∑
i=1

f(bi|A ∪ {b1, b2, . . . , bi−1}). (10.20)

In addition, De�nition 41 of total curvature implies:

f(bi|A ∪ {b1, b2, . . . , bi−1}) ≥ (1− cf )f(bi|∅)
= (1− cf )f(bi), (10.21)

where the latter equation holds since f(∅) = 0. The proof is completed by substitut-
ing (10.21) in (10.20) and then taking into account that f(A) ≥ (1−cf )f(A) since 0 ≤ cf ≤
1. �
Lemma 41. Consider a �nite ground set V and a non-decreasing set function f : 2V 7→ R
such that f is non-negative and f(∅) = 0. Then for any set A ⊆ V and any set B ⊆ V such
that A \ B 6= ∅, it holds:

f(A) + (1− cf )f(B) ≥ (1− cf )f(A ∪ B) + f(A ∩ B).

Proof of Lemma 41 Let A \ B = {i1, i2, . . . , ir}, where r = |A − B|. From De�nition 41
of total curvature cf , for any i = 1, 2, . . . , r, it is f(ij |A ∩ B ∪ {i1, i2, . . . , ij−1}) ≥ (1 −
cf )f(ij |B ∪ {i1, i2, . . . , ij−1}). Summing these r inequalities,

f(A)− f(A ∩ B) ≥ (1− cf ) (f(A ∪ B)− f(B)) ,

which implies the lemma. �
Corollary 11. Consider a �nite ground set V and a non-decreasing set function f : 2V 7→ R
such that f is non-negative and f(∅) = 0. Then, for any set A ⊆ V and any set B ⊆ V such
that A ∩ B = ∅, it holds:

f(A) +
∑
b∈B

f(b) ≥ (1− cf )f(A ∪ B).
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Proof of Corollary 11 Let B = {b1, b2, . . . , b|B|}.

f(A) +

|B|∑
i=1

f(bi) ≥ (1− cf )f(A) +

|B|∑
i=1

f(bi)) (10.22)

≥ (1− cf )f(A ∪ {b1}) +

|B|∑
i=2

f(bi)

≥ (1− cf )f(A ∪ {b1, b2}) +

|B|∑
i=3

f(bi)

...

≥ (1− cf )f(A ∪ B),

where ineq. (10.22) holds since 0 ≤ cf ≤ 1, and the rest due to Lemma 41 since A ∩ B = ∅
implies A \ {b1} 6= ∅, A ∪ {b1} \ {b2} 6= ∅, . . ., A ∪ {b1, b2, . . . , b|B|−1} \ {b|B|} 6= ∅. �
Lemma 42. Recall the notation in Algorithm 20. Given the sets S1,1, . . . ,ST,1 selected by
Algorithm 20 (lines 3-4 of Algorithm 20), then, for each t = 1, . . . , T, let the set Ot be a
subset �any subset� of Vt \ St,1 of cardinality αt − βt. Then, for the sets S1,2, . . . ,ST,2
selected by Algorithm 20 (lines 5-8 of Algorithm 20), it holds:

f(S1,2, . . . ,ST,2) ≥ (1− cf )2f(O1, . . . ,OT ). (10.23)

Proof of Lemma 42 For all t = 1, 2, . . . , T, let the set Rt , At \ Bt; namely, Rt is
the set that remains after the optimal (worst-case) removal Bt from At. Furthermore, let
the element sit,2 ∈ St,2 denote the i-th element added in St,2 per the greedy subroutine in

lines 5-8 of Algorithm 20; i.e., St,2 = {s1
t,2, . . . , s

αt−βt
t,2 }. In addition, for all i = 1, . . . , αt−βt,

denote Sit,2 , {s1
t,2, . . . , s

i
t,2}, and also set S0

t,2 , ∅. Next, order the elements in each Ot so
that O = {o1

t , . . . , o
αt−βt
t } and so that if oit is also in St,2, then it holds oit = sit,2; i.e., order

the elements in each Ot so that the common elements in Ot and St,2 appear at the same
index. Moreover, for all i = 1, . . . , αt − βt, denote Oit , {o1

t , . . . , o
i
t}, and also set O0

t , ∅.
Finally, let: O1:t , O1 ∪ . . .∪Ot; O1:0 , ∅; S1:t,2 , S1,2 ∪ . . .∪St,2; and S1:0,2 , ∅. Then, it
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Algorithm 21 Local greedy algorithm [12, Section 4].

Input: Integer T ; �nite ground sets K1, . . . ,KT ; set function f : 2K1 × · · · × 2KT 7→ R
such that f is non-decreasing, non-negative, and f(∅) = 0; integers δ1, . . . , δT such that
0 ≤ δt ≤ |Kt|, for all t = 1, . . . , T.

Output: At each step t = 1, 2, . . . , T, setMt.

1: for all t = 1, . . . , T do
2: Mt ← ∅;
3: while |Mt| < δt do
4: x ∈ arg maxy∈Kt\Mt

f(S1, . . . ,St−1,Mt ∪ {y});
5: Mt ← {x} ∪Mt;
6: end while
7: end for

holds:

f(O1, . . . ,OT )

=

T∑
t=1

αt−βt∑
i=1

f(oit|O1:t−1 ∪ Oi−1
t ) (10.24)

≤ 1

1− cf

T∑
t=1

αt−βt∑
i=1

f(oit|R1:t−1 ∪ Si−1
t,2 ) (10.25)

≤ 1

1− cf

T∑
t=1

αt−βt∑
i=1

f(sit,2|R1:t−1 ∪ Si−1
t,2 ) (10.26)

≤ 1

(1− cf )2

T∑
t=1

αt−βt∑
i=1

f(sit,2|S1:t−1,2 ∪ Si−1
t,2 ) (10.27)

=
1

(1− cf )2
f(S1,2, . . . ,ST,2). (10.28)

where the eqs. (10.24)-(10.28) hold for the following reasons: eq. (10.24) holds due the
notation introduced in eq. (10.10); ineq. (10.25) holds since De�nition 41 of total curvature
implies ineq. (10.6), and since the de�nition of each oit implies that because oit /∈ Oi−1

t , then it
also is oit /∈ Si−1

t,2 , and as a result, because oit /∈ O1:t−1∪Oi−1
t , then it also is oit /∈ R1:t−1∪Si−1

t,2

(which fact allows the application of ineq. (10.6)); ineq. (10.26) holds since the element sit,2 is
chosen greedily, given R1:t−1∪Si−1

t,2 ; ineq. (10.27) holds for the same reasons as ineq. (10.25);
similarly, eq. (10.28) holds for the same reasons as eq. (10.24). �
Lemma 43. Recall the notation in Algorithm 20; in particular, consider the sets S1,1, . . . ,ST,1
selected by Algorithm 20 (lines 3-4 of Algorithm 20). Moreover, consider the notation
in Algorithm 21,3 and for all t = 1, 2, . . . , T, let in Algorithm 21 be Kt = Vt \ St,1 and
δt = αt − βt. Finally, for all t = 1, 2, . . . , T, let the set Pt be such that Pt ⊆ Kt, |Pt| ≤ δt,

3The local greedy Algorithm 21 is connected to Algorithm 20 as follows: Algorithm 20 reduces to Al-
gorithm 21 if in Problem 5 we assume no removals; equivalently, if in Algorithm 20 we assume that for all
t = 1, . . . , T it is Bt = ∅ (no attacks), and correspondingly, that βt = 0, which implies St,1 = ∅.
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and f(P1, . . . ,PT ) is maximal, that is:

(P1, . . . ,PT ) ∈
arg max

P̄1⊆K1,|P̄1|≤δ1
· · · max
P̄T⊆KT ,|P̄T |≤δT

f(P̄1, . . . , P̄T ). (10.29)

Then, it holds:
f(M1,M2, . . . ,MT ) ≥ (1− cf )f(P1,P2, . . . ,PT ). (10.30)

Proof of Lemma 43 We use similar notation to the one introduced in the proof of
Lemma 42. In addition, �again similarly to the proof of Lemma 42,� we order the elements
in each Pt so that Pt = {p1

t , . . . , p
δt
T } and so that they appear in the same place as inMt.

Moreover, we let the element mi
t ∈Mt denote the i-th element added inMt per the greedy

subroutine in lines 3-6 of Algorithm 21. Then, it holds:

f(P1,P2, . . . ,PT )

=

T∑
t=1

δt∑
i=1

f(pit|P1:t−1 ∪ P i−1
t ) (10.31)

≤ 1

1− cf

T∑
t=1

δt∑
i=1

f(pit|M1:t−1 ∪Mi−1
t ) (10.32)

≤ 1

1− cf

T∑
t=1

δt∑
i=1

f(mi
t|M1:t−1 ∪Mi−1

t ) (10.33)

=
1

1− cf
f(M1,M2, . . . ,MT ). (10.34)

where the eqs. (10.31)-(10.34) hold for the following reasons: eq. (10.31) holds due to the
notation introduced in eq. (10.10); ineq. (10.32) holds since De�nition 41 of total curvature
implies ineq. (10.6), and since the de�nition of each pit implies that because pit /∈ P i−1

t , then it
also is pit /∈Mi−1

t , and as a result, because pit /∈ P1:t−1∪P i−1
t , then it also is pit /∈M1:t−1∪Mi−1

t

(which fact allows the application of ineq. (10.6)); ineq. (10.33) holds since the element mi
t is

chosen greedily, givenM1:t−1 ∪Mi−1
t ; eq. (10.34) holds for the same reasons as eq. (10.31).

�
Corollary 12. Recall the notation in Algorithm 20. In particular, consider the sets S1,1, . . . ,ST,1
selected by Algorithm 20 (lines 3-4 of Algorithm 20), as well as, the sets S1,2, . . . ,ST,2 se-
lected by Algorithm 20 (lines 5-8 of Algorithm 20). Finally, per the notation of Lemma 43,
for all t = 1, 2, . . . , T, consider Kt = Vt \ St,1 and δt = αt − βt, and let the set Pt be such
that Pt ⊆ Kt, |Pt| ≤ δt, and f(P1, . . . ,PT ) is maximal, per eq. (10.29). Then, for the sets
S1,2, . . . ,ST,2 selected by Algorithm 20 (lines 5-8 of Algorithm 20), it holds:

f(S1,2, . . . ,ST,2) ≥ (1− cf )3f(P1,P2, . . . ,PT ). (10.35)
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Proof of Corollary 12 The proof follows from Lemma 42 and Lemma 43. In particular,
let Ot =Mt in ineq. (10.23) to get:

f(S1,2, . . . ,ST,2) ≥ (1− cf )2f(M1, . . . ,MT ). (10.36)

Using in ineq. (10.36) the ineq. (10.30), the proof is complete. �
Lemma 44. Recall the notation in Theorem 23. In addition, per the notation of Corol-
lary 12, for all t = 1, 2, . . . , T, consider Kt = Vt \ St,1 and δt = αt − βt, and let the set Pt be
such that Pt ⊆ Kt, |Pt| ≤ δt, and f(P1, . . . ,PT ) is maximal, per eq. (10.29). Then, it holds:

f(P1, . . . ,PT ) ≥ f(A?1:T \ B?(A?1:T )). (10.37)

Proof of Lemma 44 Consider the following notation: since for each t = 1, . . . , T, it is
Kt = Vt \ St,1, let:

h(S1,1, . . . ,ST,1) ,

max
P̄1⊆V1\S1,1,|P̄1|≤δ1

· · · max
P̄T⊆VT \ST,1,|P̄T |≤δT

f(P̄1, . . . , P̄T ). (10.38)

Given the above notation, for any P̂1, . . . , P̂T such that for all t = 1, . . . , T it is P̂t ⊆ Vt \St,1
and |P̂t| ≤ δt, it holds:

h(S1,1, . . . ,ST,1) ≥ f(P̂1, . . . , P̂T )⇒ (10.39)

h(S1,1, . . . ,ST,1) ≥
max

P̄T⊆VT \ST,1,|P̄T |≤δT
f(P̂1, . . . , P̂T−1, P̄T )⇒

min
B̄T⊆VT ,|B̄T |≤βT

h(S1,1, . . . ,ST−1,1, B̄T ) ≥

min
B̄T⊆VT ,|B̄T |≤βT

max
P̄T⊆VT \B̄T ,|P̄T |≤δT

f(P̂1, . . . , P̂T−1, P̄T ). (10.40)

Denote the right-hand-side of ineq. (10.40) by z(P̂1, . . . , P̂T−1). Since δT = αT − βT , and
for P̄T in ineq. (10.40) it is P̄T ⊆ VT \ B̄T and |P̄T | ≤ δT , then it equivalently holds:

z(P̂1, . . . , P̂T−1) =

min
B̄T⊆VT ,|B̄T |≤βT

max
ĀT⊆VT ,|ĀT |≤αT

f(P̂1, . . . , P̂T−1, ĀT \ B̄T ). (10.41)

Let in ineq. (10.41) be w(ĀT \B̄T ) , f(P̂1, . . . , P̂T−1, ĀT \B̄T ). We prove next that it holds:

z(P̂1, . . . , P̂T−1) ≥
max

ĀT⊆VT ,|ĀT |≤αT
min

B̄T⊆VT ,|B̄T |≤βT
w(ĀT \ B̄T ). (10.42)

The proof of ineq. (10.42) is as follows: for any ÂT ⊆ VT , |ÂT | ≤ αT , and any ŜT,1 ⊆
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VT , |ŜT,1| ≤ βT , it holds:

max
ĀT⊆VT ,|ĀT |≤αT

w(ĀT \ ŜT,1) ≥ w(ÂT \ ŜT,1)⇒

min
B̄T⊆VT ,|B̄T |≤βT

max
ĀT⊆VT ,|ĀT |≤αT

w(ĀT \ B̄T ) ≥

min
B̄T⊆VT ,|B̄T |≤βT

w(ÂT \ B̄T ), (10.43)

and now ineq. (10.43) implies ineq. (10.41). Overall, ineq. (10.40) becomes:

min
B̄T⊆VT ,|B̄T |≤βT

h(S1,1, . . . ,ST−1,1, B̄T ) ≥

max
ĀT⊆VT ,|ĀT |≤αT

min
B̄T⊆VT ,|B̄T |≤βT

f(P̂1, . . . , P̂T−1, ĀT \ B̄T ). (10.44)

The left-hand-side of ineq. (10.44) is a function of S1,1, . . . ,ST−1,1; denote it as h′(S1,1, . . . ,ST−1,1).
Similarly, the right-hand-side of ineq. (10.44) is a function of P̂1, . . . , P̂T−1; denote it as
f ′(P̂1, . . . , P̂T−1). Given these notations, ineq. (10.44) is equivalently written as:

h′(S1,1, . . . ,ST−1,1) ≥ f ′(P̂1, . . . , P̂T−1), (10.45)

which has the same form as ineq. (10.39). Therefore, following the same steps as those we
used starting from ineq. (10.39) to prove ineq. (10.44), it holds:

min
B̄T−1⊆VT−1,|B̄T−1|≤βT−1

h′(S1,1, . . . ,ST−2,1, B̄T−1) ≥

max
ĀT−1⊆VT−1,|ĀT−1|≤αT−1

min
B̄T−1⊆VT−1,|B̄T−1|≤βT−1

f ′(P̂1, . . . , P̂T−2, ĀT−1 \ B̄T−1), (10.46)

which has the same form as ineq. (10.44). Repeating the same steps as those we used starting
from ineq. (10.39) to prove ineq. (10.44) for another T − 2 times, it holds:

min
B̄1,⊆V1,|B̄1|≤β1

· · · min
B̄T⊆VT ,|B̄T |≤βT

h(B̄1, . . . B̄T ) ≥

max
Ā1⊆V1,|Ā1|≤α1

min
B̄1⊆V1,|B̄1|≤β1

· · · max
ĀT⊆VT ,|ĀT |≤αT

min
B̄1⊆VT ,|B̄T |≤βT

f(Ā1 \ B̄1, . . . , ĀT \ B̄T ), (10.47)

which is implies ineq. (10.37), since the right-hand-side of ineq. (10.47) is equal to the right-
hand-side of ineq. (10.37), and �with respect now to the left-hand-side of ineq. (10.47)� it
is:

f(P1, . . . ,PT ) ≥
min

B̄1,⊆V1,|B̄1|≤β1
· · · min
B̄T⊆VT ,|B̄T |≤βT

h(B̄1, . . . B̄T ).
�
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Vt

St,1 B?t,1 St,2 B?t,2

Figure 15: Venn diagram, where the sets St,1,St,2,B?t,1,B?t,2 are as follows: per Algorithm 20,
St,1 and St,2 are such that At = St,1 ∪ St,2. In addition, due to their construction, it
holds St,1 ∩ St,2 = ∅. Next, B?t,1 and B?t,2 are such that B?t,1 = B?(A1:T ) ∩ St,1, and B?2 =
B?(A1:T )∩St,2; therefore, it is B?t,1∩B?t,2 = ∅ and B?(A1:T ) = (B?1,1∪B?1,2)∪· · ·∪(B?T,1∪B?T,2).

10.7.3. Proof of Theorem 23

We �rst prove Theorem 23's part 1 (approximation performance), and then, Theorem 23's
part 2 (running time).

Proof of Theorem 23's part 1 (approximation performance)

We �rst prove ineq. (10.8); then, we prove ineq. (10.7).

To the above ends, we use the following notation (along with the notation introduced in
Algorithm 20, Theorem 23, and in Appendix 10.7.1): for each t = 1, . . . , T :

• let S+
t,1 , St,1 \ B?(A1:T ), i.e., S+

t,1 is the set of remaining elements in the set St,1 after
the removal from St,1 of the elements in the optimal (worst-case) removal B?(A1:T );

• let S+
t,2 , St,2 \ B?(A1:T ), i.e., S+

t,2 is the set of remaining elements in the set St,2 after
the removal from St,2 of the elements in the optimal (worst-case) removal B?(A1:T );

• let the sets P1, . . . ,PT be a solution to the maximization problem in eq. (10.29) per
the conditions in Corollary 12, i.e., for Kt = Vt \ St,1 and δt = αt − βt.

Proof of ineq. (10.8) Consider that the objective function f is non-decreasing and such
that (without loss of generality) f is non-negative and f(∅) = 0. Then, the proof of
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ineq. (10.8) follows by making the following observations:

f(A1:T \ B?(A1:T ))

= f(S+
1,1 ∪ S

+
1,2, . . . ,S

+
T,1 ∪ S

+
T,2) (10.48)

≥ (1− cf )
T∑
t=1

∑
v∈S+t,1∪S

+
t,2

f(v) (10.49)

≥ (1− cf )

T∑
t=1

∑
v∈St,2

f(v) (10.50)

≥ (1− cf )2f(S1,2, . . . ,ST,2) (10.51)

≥ (1− cf )5f(P1, . . . ,PT ) (10.52)

≥ (1− cf )5f(A?1:T \ B?(A?1:T )), (10.53)

where eqs. (10.48) to (10.53) hold for the following reasons: eq. (10.48) follows from the
de�nitions of the sets S+

t,1 and S
+
t,2; ineq. (10.49) follows from ineq. (10.48) due to Lemma 40;

ineq. (10.50) follows from ineq. (10.49) because for all elements v ∈ S+
t,1 and all elements

v′ ∈ St,2 \ S+
t,2 it is f(v) ≥ f(v′) (note that due to the de�nitions of the sets S+

t,1 and S+
t,2 it

is |S+
t,1| = |St,2 \ S+

t,2|, that is, the number of non-removed elements in St,1 is equal to the
number of removed elements in St,2), and because St,2 = (St,2 \ S+

t,2) ∪ S+
t,2; ineq. (10.51)

follows from ineq. (10.50) due to Corollary 11; ineq. (10.52) follows from ineq. (10.51) due to
Corollary 12; �nally, ineq. (10.53) follows from ineq. (10.52) due to Lemma 44. The above
conclude the proof of ineq. (10.8). �

Proof of ineq. (10.7) Consider that the objective function f is non-decreasing submod-
ular and such that (without loss of generality) f is non-negative and f(∅) = 0. To prove
ineq. (10.7) we follow similar observations to the ones we followed in the proof of ineq. (10.8);
in particular:

f(A1:T \ B?(A1:T ))

= f(S+
1,1 ∪ S

+
1,2, . . . ,S

+
T,1 ∪ S

+
T,2) (10.54)

≥ (1− κf )

T∑
t=1

∑
v∈S+t,1∪S

+
t,2

f(v) (10.55)

≥ (1− κf )
T∑
t=1

∑
v∈St,2

f(v) (10.56)

≥ (1− κf )f(S1,2, . . . ,ST,2) (10.57)

≥ (1− κf )4f(P1, . . . ,PT ) (10.58)

≥ (1− κf )4f(A?1:T \ B?(A?1:T )), (10.59)

where eqs. (10.54) to (10.59) hold for the following reasons: eq. (10.54) follows from the
de�nitions of the sets S+

t,1 and S
+
t,2; ineq. (10.55) follows from ineq. (10.54) due to Lemma 38;
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ineq. (10.56) follows from ineq. (10.55) because for all elements v ∈ S+
t,1 and all elements

v′ ∈ St,2 \S+
t,2 it is f(v) ≥ f(v′) (note that due to the de�nitions of the sets S+

t,1 and S
+
t,2 it is

|S+
t,1| = |St,2\S

+
t,2|, that is, the number of non-removed elements in St,1 is equal to the number

of removed elements in St,2), and because St,2 = (St,2 \S+
t,2)∪S+

t,2; ineq. (10.57) follows from
ineq. (10.56) because the set function f is submodular and, as a result, the submodularity
De�nition 39 implies that for any sets S ⊆ V and S ′ ⊆ V, it is f(S) + f(S ′) ≥ f(S ∪S ′) [70,
Proposition 2.1]; ineq. (10.58) follows from ineq. (10.57) due to Corollary 12, along with the
fact that since f is monotone submodular it is cf = κf , per De�nition 41 of total curvature;
�nally, ineq. (10.59) follows from ineq. (10.58) due to Lemma 44. The above conclude the
proof of the (1− κf )4 part in ineq. (10.7). �

Proof of Theorem 23's part 2 (running time)

We follow the proof of [56, Part 2 of Theorem 23]. In particular, we complete the proof
in two steps, where we denote the time for each evaluation of the objective function f as
τf : for each t = 1, . . . , T, we �rst compute the time line 3 of Algorithm 20 needs to be
executed, and then the time lines 5-8 of Algorithm 20 need to be executed: line 3 needs
|Vt|τf + |Vt| log(|Vt|) + |Vt| + O(log(|Vt|)) time, since it asks for |Vt| evaluations of f, and
their sorting, which takes |Vt| log(|Vt|) + |Vt|+O(log(|Vt|)) time, using, e.g., the merge sort
algorithm. Lines 5-8 need (αt−βt)[|Vt|τf + |Vt|] time, since the while loop is repeated αt−βt
times, and during each loop at most |Vt| evaluations of f are needed by line 5, as well as,
at most |Vt| time-steps for a maximal element in line 6 to be found. Overall, Algorithm 20
runs in (αt− βt)[|Vt|τf + |Vt|] + |Vt| log(|Vt|) + |Vt|+O(log(|Vt|)) = O(|Vt|(αt− βt)τf ) time.

�
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CHAPTER 11 : Resilient Active Information Gathering with Mobile Robots

Applications in robotics, such as multi-robot target tracking, involve the execution of infor-
mation acquisition tasks by teams of mobile robots. However, in failure-prone or adversarial
environments, robots get attacked, their communication channels get jammed, and their sen-
sors fail, resulting in the withdrawal of robots from the collective task, and, subsequently, the
inability of the remaining active robots to coordinate with each other. As a result, traditional
design paradigms become insu�cient and, in contrast, resilient designs against system-wide
failures and attacks become important. In general, resilient design problems are hard, and
even though they often involve objective functions that are monotone and (possibly) sub-
modular, scalable approximation algorithms for their solution have been hitherto unknown.
In this chapter, we provide the �rst algorithm, enabling the following capabilities: minimal
communication, i.e., the algorithm is executed by the robots based only on minimal commu-
nication between them; system-wide resiliency, i.e., the algorithm is valid for any number of
denial-of-service attacks and failures; and provable approximation performance, i.e., the al-
gorithm ensures for all monotone and (possibly) submodular objective functions a solution
that is �nitely close to the optimal. We support our theoretical analyses with simulated
and real-world experiments, by considering an active information acquisition application
scenario, namely, multi-robot target tracking.1

11.1. Introduction

Advances in robotic miniaturization, perception, and communication [2, 3, 43, 235, 236, 237,
238] envision the deployment of robots to support critical missions such as:

• Hazardous environmental monitoring : Deploy a team of mobile robots to monitor the
radiation �ow around a nuclear reactor after an explosion; [43]

• Adversarial-target tracking : Deploy a team of agile robots to track an adversarial
target that moves in a cluttered urban environment, aiming to escape; [3]

• Search and rescue: Deploy a team of aerial micro-robots to localize people trapped in
a burning building; [2]

Each of the above scenarios requires the deployment of a mobile team of robots, where each
robot needs to be agile; coordinate its motion with its team in a decentralized way; and
navigate itself in unknown, complex, and GPS-denied environments, with the objective of
gathering the most information about a process of interest. In particular, the problem of
designing the motion of a team of mobile robots to infer the state of a process is known as
active information gathering.

But in all above mission scenarios the robots operate in failure-prone and adversarial en-
vironments, where the robots' can get attacked; their communications channels can get
jammed; or their sensors can fail. Therefore, in such failure-prone or adversarial scenarios,
resilient designs against worst-case and system-wide failures and attacks become important.

1This chapter is based on the paper by B. Schlotfeldt, V. Tzoumas, D. Thakur, and G. J. Pappas [234].
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In this chapter we formalize for the �rst time a problem of resilient active information
gathering with mobile robots, that goes beyond the traditional objective of (non-resilient)
active information gathering, and guards against worst-case failures or attacks that can
cause not only the withdrawal of robots from the information gathering task, but also the
inability of the remaining robots to jointly optimize their control inputs, due to disruptions
to their communication network.

Evidently, resilient active information gathering with mobile robots is a computationally
challenging task, since it needs to account for all possible removals of robots from the joint
motion-design task, which is a problem of combinatorial complexity. In particular, this
computational challenge motivates one of the primary goals in this chapter, namely, to
provide a scalable and provably near-optimal approximation algorithm for resilient active
information gathering with mobile robots.

Related work. Related work on problems of information gathering focuses on the deploy-
ment of either static sensors [58, 239, 240] or mobile sensors (mounted on robots) [42, 241,
242, 243, 244, 245, 246, 247, 248, 249] to monitor a target process. Among these works, the
line of work [42, 241, 242, 243, 244, 245, 246, 247, 248, 249] is the most relevant to ours, as it
considers mobile sensors. In particular, [241, 242, 243, 244, 245] focus on information gath-
ering tasks over non-Gaussian processes, whereas the remaining [42, 246, 247, 248, 249] focus
on information gathering tasks over Gaussian processes. The advantage in the latter case is
that open-loop robot-motion designs are optimal [42], an observation that led [42, 248, 249]
to provide the �rst scalable, non-myopic robot-motion algorithms for active information
gathering, along with sub-optimality guarantees. However, in all of these works, there is no
resilience to failures or attacks.

In contrast to robotic control, resilient optimization problems have recently received atten-
tion in the literature of set function optimization [56, 231, 250]. However, [56, 231, 250] focus
on the resilient selection of a small subset of elements in the event of attacks or failures,
whereas the information acquisition problem requires the selection of controls for all robots
over a time horizon. In this chapter, we capitalize on the recent results in [56, 231] and seek
to bridge the gap between developments in set function optimization and robotic control
design to enable critical missions necessitating resilient active information gathering with
mobile robots.

Contributions. We make the following contributions:

• (Problem de�nition) We formalize the problem of resilient active information gathering
with mobile robots against multi-robot denial-of-service attacks or failures. This is the
�rst work to formalize, address, and demonstrate the importance of this problem.

• (Solution) We develop the �rst algorithm for resilient active information gathering
with the following properties:

� minimal communication: it terminates within the same order of communication
rounds as state-of-the-art algorithms for (non-resilient) information gathering;
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� system-wide resiliency : it is valid for any number of denial-of-service attacks or
failures;

� provable approximation performance: for all monotone and (possibly) submodu-
lar information gathering objective functions in the active robot set (non-failed
robots), it ensures a solution close to the optimal.

• (Simulations) We conduct simulations in a variety of multi-robot multi-target tracking
scenarios, varying the number of robots, targets, and failures. Our simulations validate
the bene�ts of our approach to achieve resilient robotic control against failures or
attacks.

• (Experiments) We conduct hardware experiments of multiple quad-rotors tracking
static ground targets, to demonstrate visually the necessity for resilient robot motion
design against robotic failures or denial-of-service attacks.

Notation. Calligraphic fonts denote sets (e.g., A). Given a set A, then |A| denotes A's
cardinality; given also a set B, then A\B denotes the set of elements in A that are not in B.
Given a random variable v, with mean µ and covariance Σ, then v ∼ N(µ,Σ) denotes that v
is a Gaussian random variable.

11.2. Problem Statement

We formalize the problem of resilient active information gathering. To this end, we start
with some basic de�nitions.

11.2.1. Basic de�nitions

We introduce standard models for the notions robots, target, sensors, and information ob-
jective function [42].

Robots. Active information gathering utilizes a team of mobile robots to track the evolu-
tion of a target process. We denote the set of available robots as V, and model each robot's
dynamics as a discrete-time non-linear system:

xi,t = fi(xi,t−1, ui,t−1), i ∈ V, t = 1, 2, . . . , (11.1)

where the vector xi,t ∈ Rnxi,t represents the state of robot i at time t, and the vector
ui,t ∈ Ui,t represents the control input, where Ui,t is a �nite set of admissible control inputs.

Target. The objective of active information gathering is to track the evolution of a target
process. We model the target's evolution as a standard discrete-time (possibly time-varying)
linear system with additive process noise:

yt = At−1yt−1 + wt−1, t = 1, 2, . . . , (11.2)

where the vector yt ∈ Rnyt represents the state of the target at time t, the vector wt−1 ∈ Rnyt
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represents process noise, and the matrix At−1 has suitable dimension. In addition, we let y0

be a random variable with covariance Σ0|0, and wt−1 be a random variable with zero mean
and covariance Wt−1 such that wt−1 is independent of y0 and of wt′−1, for all t′ 6= t.

Sensor measurements. We consider the sensor measurements to be linearly dependent
on the state of the target,2 and non-linearly dependent on the robots' state, as follows:

zi,t = Hi,t(xi,t)yt + vi,t(xi,t), i ∈ V, t = 1, 2, . . . , (11.3)

where the vector zi,t ∈ Rnzi,t is the measurement obtained at time t by the on-board sensor at
robot i, the vector vi,t(xi,t) ∈ Rnzi,t represents measurement noise, and the matrix Hi,t(xi,t)
has suitable dimension. In addition, we let vi,t(xi,t) be a random variable with zero mean
and covariance vi,t(xi,t) such that vi,t(xi,t) is independent of y0, of wt′−1, and of vi′,t′ for all
t′ 6= t, and i′ 6= i.

Information objective function. The problem of active information gathering requires
the team of robots in V to select their control inputs to maximize the team's tracking
capability of a target. To the latter end, we assume the robots to use a Kalman �ltering
algorithm to track the evolution of the target over an observation time-horizon T. Moreover,
we consider the robots' collective tracking capability to be quanti�ed by an information
objective function, denoted henceforth by J , that depends solely on the Kalman �lter's error
covariances across all times t = 1, 2, . . . , T. Naturally, the Kalman �lter's error covariances
depend on the robots' control inputs, as well as on both the target process's initial condition
y0 and the robots' initial conditions {xi,0 : i ∈ V}. Overall, given an observation time-horizon
T , it is:

J =J(u1:T (V)) ,

J [Σ1(u1(V)),Σ2(u1:2(V)), . . . ,ΣT (u1:T (V))],
(11.4)

where Σt(u1:t(V)) denotes that Kalman �lter's error covariance at time t given the robots'
control inputs up to time t, namely, given u1:t(V) , {ui,t′ : ui,t′ ∈ Ui,t′ , i ∈ V, t′ =
1, 2, . . . , t}. Examples of information objective functions of the same form as in eq. (11.4) are
the average minimum mean square error 1/T

∑T
t=1 tr (Σt), the average con�dence-ellipsoid

volume 1/T
∑T

t=1 log det(Σt) [123, Appendix E], as well as information theoretic objectives
such as the mutual information I(yt|z1:t) and conditional entropy h(yt|z1:t) [42], where z1:t ,
{zi,t′ : i ∈ V, t′ = 1, 2, . . . , t}, i.e., z1:t is the set of measurements collected by all robots'
across all times.

11.2.2. Resilient Active Information Gathering

We de�ne next the main problem in this chapter.
Problem 6 (Resilient Active Information Gathering). Given a time horizon T , consider
a set of robots V, with dynamics per eq. (11.1), with sensing capabilities per eq. (11.3),

2This standard modeling consideration is without loss of generality whenever linearization over the current
estimate of the target's state is possible.

217



and with a connected communication network; in addition, consider a target process per
eq. (11.2); moreover, consider an information gathering objective function J per eq. (11.4);
�nally, consider a number α ≤ |V|. For all robots i ∈ V, and for all times t = 1, 2, . . . , T,
�nd control inputs ui,t to maximize the objective function J against a worst-case failure or
attack to the robots in V that causes the removal α robots from V at the beginning of time
(t = 0), as well as the disruption of all communications among the remaining robots in V
across all times (t = 1, 2, . . . , T ). Formally:

max
ui,t ∈ Ui,t, i ∈ V,
t = 1, 2 . . . , T

min
A⊆V

J(u1:T (V \ A)) :

such that, for all i ∈ V, t = 1, 2, . . . , T :

yt = At−1yt−1 + wt−1,

xi,t = fi(xi,t−1, ui,t−1),

zi,t = Hi,t(xi,t)yi,t + vi,t(xi,t),

ui,t = ui,t(zi,1, zi,2, . . . , zi,t),

|A| ≤ α,

(11.5)

where for any robot set R ⊆ V and any time horizon T , we let u1:T (R) , {ui,t : ui,t ∈
Ui,t, i ∈ R, t = 1, 2, . . . , T}.

We henceforth denote the problem in eq. (11.5) by:

P(V, α), (11.6)

where we stress the dependence of the problem only on the set of robots V, and the maximum
number of failures or attacks α. Given an instance of Problem 6, and the notation in
eq. (11.6), then the (non-resilient) active information gathering problem is the instance of
the problem in eq. (11.5) where α = 0, namely, P(V, 0). Hence, Problem 6 goes beyond the
objective of the active information gathering problem P(V, 0), by accounting in the planning
process for worst-case failures or attacks that (i) not only may cause the removal of robots
from the information gathering task, but also, (ii) they may prevent the remaining robots
from jointly re-planning their motion, e.g., due to the caused disruptions to the robots'
communication network after the removal of the attacked or failed robots.

11.3. Algorithm for Resilient Active Information gathering

We present the �rst scalable algorithm for Problem 6, whose pseudo-code is described in
Algorithm 22; afterwards, we describe the intuition behind it.

11.3.1. Scalable algorithm for Problem 6

Algorithm 22 is composed of four steps:

Computation of robots' marginal contributions in the absence of attacks (step 1 of Algo-
rithm 22): Each robot i ∈ V solves the problem of active information gathering in eq. (11.7),
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Algorithm 22 Scalable algorithm for Problem 6.

Input: Time horizon T ; set of robots V; dynamics of robots in V, per eq. (11.1); dynamics
of target process, per eq. (11.2); sensing capabilities of robots in V, per eq. (11.3);
information objective function J , per eq. (11.4); number α ≤ |V|, per Problem 6, that
represents the maximum number of possible robot removals from V.

Output: Control inputs ui,t for all robots i ∈ V, and for all times t = 1, 2, . . . , T .

1: Each robot i ∈ V computes the value of the (non-resilient) active information gathering
problem:

P({i}, 0), (11.7)

per the notation in eq. (11.6), and denotes it by qi.
2: All robots in V �nd a subset L of α robots among them (that is, L ⊆ V and |L| = α),

such that for all robots i ∈ L and all robots j ∈ V \ L, it is qi > qj ;
3: Each robot in L adopts the control inputs it computed in Algorithm 22's line 1 by solving

the problem in eq. (11.7).
4: The robots in V \ L compute their control inputs by solving the following active infor-

mation gathering problem:
P(V \ L, 0), (11.8)

per the notation we introduced in eq. (11.6).

which is an instance of Problem 6 where no other robot participates in the information
gathering task, and where no attacks or failures are possible; algorithms to solve such infor-
mation gathering problems have been proposed in [42, 248, 249]. Overall, each robot i ∈ V,
by solving the problem in eq. (11.7), computes its marginal contribution to the information
gathering task in Problem 6 in the absence of any other robot in V \ {i}, and in the absence
of any attacks and failures.

Computation of robot set L with the α largest marginal contributions in the absence of
attacks (step 2 of Algorithm 22): The robots in V share their marginal contribution to
the information gathering task, which they computed in Algorithm 22's step 1, and decide
which subset L of them composes a set of α robots with the α largest marginal contributions;
this procedure can be executed with minimal communication (at most 2|V| communication
rounds), e.g., by accumulating (through the communication network) to one robot all the
marginal contributions {qi : i ∈ V}, and, then, by letting this robot to select the set L, and
to communicate it back to the rest of the robots.

Computation of control inputs of robots in L (step 3 of Algorithm 22): The robots in the
set L, per Algorithm 22's step 2, adopt the control inputs they computed in Algorithm 22's
step 1 (e.g., using the algorithm in [42]).

Computation of control inputs of robots in V \ L (step 4 of Algorithm 22): Given the set of
robots L, per Algorithm 22's line 2, the remaining robots in V \ L jointly solve the problem
of active information gathering in eq. (11.8), which is an instance of Problem 6 where the
robots in L do not participate in the information gathering task, and where any attacks
or failures are impossible. In particular, the robots in V \ L can jointly solve the problem
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in eq. (11.8) with minimal communication (at most 2|V| communication rounds) using the
algorithm coordinate descent [249, Section IV].

11.3.2. Intuition behind Algorithm 22

The goal of Problem 6 is to ensure the success of an information gathering task despite
failures or attacks that cause the removal of α robots from the task, and, consequently,
disruptions to the robot's communication network (due to the robots' previous removal),
which prevent the remaining robots from jointly re-planning their motion. In this context,
Algorithm 22 aims to ful�ll Problem 6's goal �rst by separating the set of robots V into
two subsets �the set of robots L, and the (remaining) set of robots V \ L (Algorithm 22's
line 1 and line 2),� and second by designing the robots' control inputs in each of the two
sets (Algorithm 22's line 3 and line 4). In particular, Algorithm 22 aims with set L to
capture the worst-case attack or failure to α robots among the robots in V; equivalently,
the set L is aimed to act as a �bait� to an attacker that selects the best α robots in V
(best with respect to the robots' contribution towards attaining the goal of Problem 6).
However, the problem of selecting the best α robots in V is a combinatorial problem, and,
in general, intractable [13]. Therefore, Algorithm 22 aims to approximate the best α robots
in V by letting the set L be the set of α robots with the α largest marginal contributions,
and, then, it assigns to them the corresponding control inputs (Algorithm 22's line 2 and
line 3). Afterwards, given the set L, Algorithm 22 assumes the removal of the robots in L
from V, and coordinates the remaining robots in V \ L to jointly plan their motion using
a decentralized active information gathering algorithm, such as the coordinated descent
algorithm proposed in [249, Section IV] (Algorithm 22's line 4).

11.4. Performance Guarantees

We quantify Algorithm 22's performance, by bounding the number of robot communication
rounds it requires, as well as, by bounding its approximation performance. To this end, we
use the following two notions of curvature for set functions.3

11.4.1. Curvature and total curvature of monotone functions

We present the notions of curvature and of total curvature for non-decreasing set functions.
We start with the notions of monotonicity, and of submodularity for set functions.
De�nition 43 (Monotonicity). Consider any �nite set V. The set function g : 2V 7→ R is
non-decreasing if and only if for any sets A ⊆ B ⊆ V, it holds g(B) ≥ g(A).
De�nition 44 (Submodularity [70, Proposition 2.1]). Consider any �nite set V. The set
function g : 2V 7→ R is submodular if and only if for any sets A ⊆ B ⊆ V, and any element
v ∈ V, it holds g(A ∪ {v})−g(A) ≥ g(B ∪ {v})−g(B).

In words, a set function g is submodular if and only if it satis�es a diminishing returns
property where for any A ⊆ V and v ∈ V, the drop g(A ∪ {v})− g(A) is non-increasing.
De�nition 45. (Curvature of monotone submodular functions [33]) Consider a

3We focus on properties of set functions to quantify Algorithm 22's approximation performance by ana-
lyzing the properties of Problem 6's objective function J as a function of the remaining robot set after the
removal of a subset of robots from V (due to failures or attacks).
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�nite set V and a non-decreasing submodular set function g : 2V 7→ R such that (without
loss of generality) for any elements v ∈ V, it is g(v) 6= 0. The curvature of g is de�ned as
follows:

κg , 1−min
v∈V

g(V)− g(V \ {v})
g(v)

. (11.9)

Notably, the above notion of curvature implies that for any non-decreasing submodular set
function g, it is 0 ≤ κg ≤ 1.
De�nition 46. (Total curvature of non-decreasing functions [15, Section 8]) Con-
sider a �nite set V and a monotone set function g : 2V 7→ R. The total curvature of g is
de�ned as follows:

cg , 1−min
v∈V

min
A,B⊆V\{v}

g({v} ∪ A)− g(A)

g({v} ∪ B)− g(B)
. (11.10)

The above notion of total curvature implies that for any non-decreasing set function g, it
is 0 ≤ cg ≤ 1. Moreover, to connect the notion of total curvature with that of curvature,
we note that when a function g is non-decreasing and submodular, then the two notions
coincide, i.e., cg = κg.

11.4.2. Performance analysis for Algorithm 22

We quantify Algorithm 22's approximation performance, as well as, the number of commu-
nication rounds it requires.
Theorem 24. (Performance of Algorithm 22) Consider an instance of Problem 6, and
the de�nitions:

• let the number J? be the (optimal) value to Problem 6, i.e., it is J? , P(V, α);

• given any control inputs u1:T (V) for the robots in V, let the set A?[u1:T (V)] be a (worst-
case) removal of α robots from V, i.e., A?[u1:T (V)] , arg minA⊆V J(u1:T (V \ A));

• given any removal of a subset of robots A from the robot set V (due to attacks or
failures), call the remaining robot set V \ A active robot set.

Finally, consider the robots in V to solve optimally the problems in Algorithm 22's step 1
and step 4, using an algorithm that terminates in ρ communication rounds.

1. (Approximation performance) Algorithm 22 returns control inputs u1:T (V) such that:

• If the objective function J is non-decreasing and submodular in the active robot
set, and (without loss of generality) J is non-negative and J [u1:T (∅)] = 0, then,
it is:

J{u1:T [V \ A?(u1:T (V)]}
J?

≥ max

(
1− κJ ,

1

1 + α

)
, (11.11)

where κJ is the curvature of J (De�nition 45).

• If the objective function J is non-decreasing in the active robot set, and (without
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loss of generality) J is non-negative and J [u1:T (∅)] = 0, then, it is:

J{u1:T [V \ A?(u1:T (V)]}
J?

≥ (1− cJ)2, (11.12)

where cJ is the total curvature of J (De�nition 46).

2. (Communication rounds) Algorithm 22 terminates in at most 2|V|+ ρ communication
rounds.

Theorem 24 implies on Algorithm 22's performance:

Near-optimality : For both monotone submodular and merely monotone information objec-
tive functions, Algorithm 22 guarantees a value for Problem 6 which is �nitely close to
the optimal. For example, per ineq. (11.11), the approximation factor of Algorithm 22 is
bounded by 1/(1 + α), which, for any �nite number of robots |V|, is non-zero.

Approximation di�culty : For both monotone submodular and merely monotone information
objective functions, when the curvature κJ or the total curvature cJ , respectively, tend to
zero, Algorithm 22 becomes exact since for κJ → 0 and cJ → 0 the terms 1− κJ and 1− cJ
in ineq. (11.11) and ineq. (11.12) tend to 1. Overall, Algorithm 22's curvature-dependent
approximation bounds make a �rst step towards separating the classes of monotone submod-
ular and merely monotone information objective functions into functions for which Prob-
lem 6 can be approximated well (low curvature functions), and functions for which it cannot
(high curvature functions).

Overall, Theorem 24 quanti�es Algorithm 22's approximation performance when the robots
in V solve optimally the problems in Algorithm 22's step 1 and step 4. However, the
problems in Algorithm 22's step 1 and step 4 are computationally challenging, and only
approximation algorithms are known for their solution, among which the recently proposed
coordinate descent [249, Section IV]; in particular, coordinate descent has the advantages
of being scalable and of having provable approximation performance. We next quantify
Algorithm 22's performance when the robots in V solve the problem in Algorithm 22's step 4
using coordinate descent (we refer the reader to AppendixA for a description of coordinate
descent).
Proposition 12. Consider an instance of Problem 6, and the notation introduced in The-
orem 24. Finally, consider the robots in V to solve the problem in Algorithm 22's step 1
optimally, and the problem in Algorithm 22's step 4 using coordinate descent [249, Sec-
tion IV].

1. (Approximation performance) Algorithm 22 returns control inputs u1:T (V) such that:

• If the objective function J is non-decreasing and submodular in the active robot
set, and (without loss of generality) J is non-negative and J [u1:T (∅)] = 0, then,
it is:

J(u1:T (V))

J?
≥ max (1− κJ , 1/(1 + α))

2
. (11.13)
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• If the objective function J is non-decreasing in the active robot set, and (without
loss of generality) J is non-negative and J [u1:T (∅)] = 0, then, it is:

J(u1:T (V))

J?
≥ (1− cJ)3

2
. (11.14)

2. (Communication rounds) Algorithm 22 terminates in at most 3|V| communication
rounds.

Proposition 12 implies on Algorithm 22's performance:

Approximation performance for low curvature: For both monotone submodular and merely
monotone information objective functions, when the curvature κJ or the total curvature cJ ,
respectively, tend to zero, Algorithm 22 recovers the same approximation performance as
that of the state-of-the-art algorithms for (non-resilient) active information gathering Algo-
rithm 22 calls as subroutines. For example, for submodular information objective functions,
the algorithm for active information gathering coordinate descent [249, Section IV] has ap-
proximation performance at least 1/2 the optimal [249, Theorem 2], and, per Proposition 12,
when Algorithm 22 calls as subroutine this algorithm, it has approximation performance at
least (1− κJ)/2 the optimal, which tends to 1/2 for κJ → 0.

Approximation performance for no failures or attacks: For submodular information objective
functions, and for zero number of failures or attacks (α = 0), Algorithm 22's approximation
performance becomes the same as that of the state-of-the-art algorithms for (non-resilient)
active information gathering Algorithm 22 calls as subroutines. In particular, for submodular
information objective functions, the algorithm for active information gathering coordinate
descent [249, Section IV] has approximation performance at least 1/2 the optimal, and, per
Proposition 12, when Algorithm 22 calls as subroutine this algorithm, it has approximation
performance at least 1/2 the optimal for α = 0, since it is 1/(1 + 0) = 1 in ineq. (11.13).

Minimal communication: Algorithm 22, even though it goes beyond the objective of (non-
resilient) active information gathering, by accounting for attacks or failures, it terminates
within the same order of communication rounds as state-of-the-art algorithms for (non-
resilient) active information gathering. In particular, the algorithm for active information
gathering coordinate descent [249, Section IV] terminates in at most |V| rounds, and, per
Proposition 12, when Algorithm 22 calls as a subroutine this algorithm, then it terminates
in at most 3|V| rounds; evidently, |V| and 3|V| have the same order.

Summary of theoretical results. Overall, Algorithm 22 is the �rst algorithm for Prob-
lem 6, and it enjoys the following:

• minimal communication: Algorithm 22 terminates within the same order of communi-
cation rounds as state-of-the-art algorithms for (non-resilient) information gathering;

• system-wide resiliency : Algorithm 22 is valid for any number of denial-of-service at-
tacks and failures;

• provable approximation performance: Algorithm 22 ensures for all monotone and (pos-
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sibly) submodular objective functions a solution �nitely close to the optimal.

11.5. Application: Multi-target tracking with mobile robots
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Figure 16: Simulation environment depicting �ve robots. The jammed robot is indicated in red.

We motivate the importance of Problem 6, as well as, demonstrate the performance of
Algorithm 22, by considering an application of active information gathering, namely, multi-
target tracking with mobile robots. In particular, the application's setting is as follows:
a team V of mobile robots is tasked with tracking the position of M moving targets. In
more detail, each robot moves according to unicycle dynamics on SE(2), discretized with a
sampling period τ : x1

t+1

x2
t+1

θt+1

 =

x1
t

x2
t

θt

+

ν sinc(ωτ2 ) cos(θt + ωτ
2 )

ν sinc(ωτ2 ) sin(θt + ωτ
2 )

τω

 . (11.15)

The set of admissible controls is given by U := {(ν, ω) : ν ∈ {1, 3} m/s, ω ∈ {0,±1,±3}
rad/s}.

The targets move according to double integrator dynamics, corrupted with additive Gaussian
noise. ForM targets, their state at time t is yt =

[
y>t,1y

>
t,2, . . . , y

>
t,M

]>
where yt,m contains the

planar coordinates and velocities of the m-th target, denoted by (y1, y2, ẏ1, ẏ2). The model
is:

yt+1,m = A

[
I2 τI2

0 I2

]
yt,m + wt, wt ∼ N

(
0, q

[
τ3/3I2 τ2/2I2

τ2/2I2 τI2

])
.

The sensor observation model consists of a range and bearing for each targetm ∈ {0, . . . ,M−
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1}:
zt,m = h(xt, yt,m) + vt, vt ∼ N

(
0, V (xt, yt,m)

)
;

h(x, ym) =

[
r(x, ym)
α(x, ym)

]
:=

[ √
(y1 − x1)2 + (y2 − x2)2

tan−1((y2 − x2)(y1 − x1))− θ

]
.

We note that since the sensor observation model is non-linear, we linearize it around the
predicted target trajectory y 6= x:

∇yh(x, ym) =
1

r(x, ym)

[
(y1 − x1) (y2 − x2) 01x2

− sin(θ + α(x, ym)) cos(θ + α(x, ym)) 01x2

]
.

The observation model for the joint target state can then be expressed as a block diagonal
matrix containing the linearized observation models for each target along the diagonal, i.e.,

H , diag (∇y1h(x, y1), . . . ,∇yMh(x, yM )) .

The sensor noise covariance grows linearly in range and in bearing, up to σ2
r , and σ

2
b , where

σr and σb are the standard deviation of the range and the bearing noise, respectively. The
model here also includes a limited range and �eld of view, denoted by the parameters rsense
and ψ, respectively.

Finally, as information objective function, in the simulations we use the average log deter-
minant of the covariance matrix[248, 249]. Overall, we solve an instance of Problem 6 with
the aforementioned constraints, and the monotone objective function [5]:

J ,
1

T

T∑
t=1

log det(Σt),

where Σt+1 = ρet+1(ρpt (Σt), xt+1) is the Kalman �ltering Riccati map [42].4 We use the sub-
routines described in [248] and [249] for the step 1 and step 4 of Algorithm 22, respectively.

11.5.1. Simulations on multi-target tracking with mobile robots

We use simulations to evaluate the performance of our Algorithm 22 across di�erent sce-
narios. In particular, we vary the number of robots, n, the number of targets M , and the
number of attacks α. In each of these scenarios we compare the performance of the resilient
Algorithm 22 with that of the non-resilient algorithm coordinate descent [249, Section IV].
To this end, we consider two information performance measures: the average entropy and
average root mean square error (RMSE) per target, averaged over the robots in the team.
We describe the parameters of the simulation: the robots and targets in the environment
are restricted to move inside a 64x64 meter environment, as in Fig. 16. For the evaluation,

4We remark that the problem scenario is dependent on a prior distribution of the target's initial conditions
y0 and Σ0|0. Notwithstanding, if a prior distribution is unknown, an exploration strategy can be incorporated
to �nd the targets by placing exploration landmarks at the map frontiers [249].
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(a) (b)

(c) (d)

Figure 17: The �gures depict the average entropy and position RMSE (root mean square error)
per target, averaged over the robots. Figs. (a-b) were obtained from a simulation with 10 robots,
10 targets, with 2 jamming attacks. Figs. (c-d) have the same con�guration but up to 6 jamming
attacks. The blue colors correspond to the non-resilient algorithm, and the red colors correspond
to the resilient algorithm. The shaded regions are the spread between the minimum and maximum
values of the information measure, and the solid lines are the mean value. The plots are the aggregate
of ten trials, each executed over 500 time-steps.

we �x the initial positions of both the robots and targets, and the robots are given a prior
distribution of the targets before starting the simulation. The targets start with a zero
velocity, and in the event that a target leaves the environment its velocity is re�ected to re-
main in bounds. Across all simulations we �x the remaining parameters as follows: T = 25,
τ = 0.5, rsense = 10, ψ = 94◦, σr = .15m, σb = 5◦, q = .001. Finally, we run Algorithm 6
in a receding horizon fashion every T time-steps, for a total of 500 steps, and average each
con�guration over 10 trials. The robots are forced to execute the entire T -step trajectory
without re-planning, due to the jamming attack that occurs at the onset of every planning
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phase. Our results are depicted in Fig. 17 and Table I.
We observe in Fig. 17 that the performance of the resilient Algorithm 22 is superior both
with respect to the average entropy and the RMSE per target. Importantly, as the number
of jamming attacks grows, the Algorithm 22's superiority becomes more pronounced, and
for the non-resilient algorithm the peaks in RMSE error grow much larger.

Table I suggests that the resilient Algorithm 22 achieves a lower average error than the
non-resilient algorithm, and, crucially, is highly e�ective in reducing the peak estimation
error; in particular, Algorithm 22 achieves a performance that is 2 to 30 times better in
comparison to the performance achieved by the non-resilient algorithm. We also observe
that the impact of Algorithm 22 is most prominent when the number of attacks is large
relative to the size of the robot team.

11.5.2. Experiments on multi-target tracking with mobile robots

We implement Algorithm 22 in a multi-UAV scenario with two quadrotors tracking the po-
sitions of two static ground targets, shown in Fig. 18. The UAV trajectories are computed
o�-board but in real-time on a laptop with an Intel Core i7 CPU. The UAVs are local-
ized using the Vicon Motion Capture system. The UAVs are quad-rotors equipped with
Qualcomm FlightTM. The UAVs use Vicon pose estimates to generate noisy measurements
corresponding to a downward facing camera which has a 360◦ �eld-of-view, and a 1 meter
sensing radius. The UAVs move in a 4x8 meter testing laboratory environment with no
obstacles. One robot is jammed at all times.
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Figure 18: The experimental setup with two quad-rotors equipped with Qualcomm FlightTM, and
two Scarabs as ground targets.

The goal of the hardware experiments is to acquire a visual interpretation of the properties of
the trajectories designed using the resilient Algorithm 22. To isolate the e�ect of resilience,
we simplify the problem to static targets (i.e. stationary) and to the smallest possible team,
i.e., 2 robots.

We observe from the experiments that the trajectories planned by the UAVs under the
non-resilient algorithm stick to the target they are closest to, whereas under the resilient
Algorithm 22, the UAVs switch amongst the two targets (Fig. 19). Intuitively, the reason
is that the resilient algorithm always assumes that one of the robots will fail, in which case
the optimal strategy for one UAV is to track two targets is to switch amongst the targets,
whereas the non-resilient algorithm assumes that none of the robots will fail, in which case
the optimal strategy for two UAVs is to allocate themselves to the closest target. When
there is the possibility of one UAV failing, switching amongst the targets is preferable, since
both robots have information about both targets.

11.6. Concluding Remarks & Future Work

We made the �rst steps to ensure the success of critical active information gathering tasks
against failures and denial-of-service attacks, per Problem 6. In particular, we provided the
�rst algorithm for Problem 6, and proved it guarantees near-optimal performance against
system-wide failures, even with minimal robot communication. We motivated the need for
resilient active information gathering, and showcased the success of our algorithm, with
simulated and real-world experiments in a series of multi-robot target tracking scenarios.
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Figure 19: The plot in (a) depicts the experimental robot trajectories in the non-resilient algorithm.
The �gure in (b) depicts the resilient algorithm. The targets are in green.
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This chapter opens a number of avenues for future research, both in theory and in appli-
cations. Future work in theory includes the resilient design of the robot's communication
network against network-wide failures, to balance the trade-o� betweenminimal communica-
tion and connectedness, which is necessitated in scenarios that are both resource constrained
(e.g., where bandwidth or battery is limited), and failure-prone (e.g., where attacks can dis-
rupt communication links). Future work in applications includes the experimental testing
of resilient active information gathering with mobile robots in environmental monitoring,
search and rescue scenarios, and simultaneous localization and mapping.

11.7. Appendix: Proof of Results

11.7.1. Preliminary lemmas and de�nitions

Notation. In the appendix we use the following notation to support the proofs in this
chapter: in particular, consider a �nite ground set V and a set function f : 2V 7→ R. Then,
for any set X ⊆ V and any set X ′ ⊆ V, the symbol f(X|X ′) denotes the marginal value
f(X ∪X ′)− f(X ′). Moreover, the symbol κf is the total curvature of f (De�nition 45), and
the symbol cf is the total curvature of f (De�nition 46).

This appendix contains lemmas that will support the proof of Theorem 24 in this chapter;
moreover, it contains a generalized description of the algorithm coordinate descent [249,
Section IV] (to any non-decreasing information objective function in the active robot set),
and a lemma, which will support the proof of Proposition 12 in this chapter.

Lemmas that support the proof of Theorem 24

The proof of the lemmas is also found in [56, 231].
Lemma 45. Consider a �nite ground set V and a non-decreasing and submodular set func-
tion f : 2V 7→ R such that f is non-negative and f(∅) = 0. For any A ⊆ V, it is:

f(A) ≥ (1− κf )
∑
a∈A

f(a).

Proof of Lemma 45 Let A = {a1, a2, . . . , a|A|}. We prove Lemma 47 by proving the
following two inequalities:

f(A) ≥
|A|∑
i=1

f(ai|V \ {ai}), (11.16)

|A|∑
i=1

f(ai|V \ {ai}) ≥ (1− κf )

|A|∑
i=1

f(ai). (11.17)
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We begin with the proof of ineq. (11.16):

f(A) = f(A|∅) (11.18)

≥ f(A|V \ A) (11.19)

=

|A|∑
i=1

f(ai|V \ {ai, ai+1, . . . , a|A|}) (11.20)

≥
|A|∑
i=1

f(ai|V \ {ai}), (11.21)

where ineqs. (11.19) to (11.21) hold for the following reasons: ineq. (11.19) is implied by
eq. (11.18) because f is submodular and ∅ ⊆ V \ A; eq. (11.20) holds since for any sets
X ⊆ V and Y ⊆ V it is f(X|Y) = f(X ∪Y)−f(Y), and it also {a1, a2, . . . , a|A|} denotes the
set A; and ineq. (11.21) holds since f is submodular and V \ {ai, ai+1, . . . , aµ} ⊆ V \ {ai}.
These observations complete the proof of ineq. (11.16).

We now prove ineq. (11.17) using the De�nition 45 of κf , as follows: since κf = 1 −
minv∈V

f(v|V\{v})
f(v) , it is implied that for all elements v ∈ V it is f(v|V \ {v}) ≥ (1− κf )f(v).

Therefore, adding the latter inequality across all elements a ∈ A completes the proof of
ineq. (11.17). �
Lemma 46. Consider any �nite ground set V, a non-decreasing and submodular function
f : 2V 7→ R and non-empty sets Y,P ⊆ V such that for all elements y ∈ Y and all elements
p ∈ P it is f(y) ≥ f(p). Then, it is:

f(P|Y) ≤ |P|f(Y).

Proof of Lemma 46 Consider any element y ∈ Y (such an element exists since Lemma 46
considers that Y is non-empty); then,

f(P|Y) = f(P ∪ Y)− f(Y) (11.22)

≤ f(P) + f(Y)− f(Y) (11.23)

= f(P)

≤
∑
p∈P

f(p) (11.24)

≤ |P|max
p∈P

f(p)

≤ |P|f(y) (11.25)

≤ |P|f(Y), (11.26)

where eq. (11.22) to ineq. (11.26) hold for the following reasons: eq. (11.22) holds since for
any sets X ⊆ V and Y ⊆ V, it is f(X|Y) = f(X ∪ Y) − f(Y); ineq. (11.23) holds since
f is submodular and, as a result, the submodularity De�nition 44 implies that for any set
A ⊆ V and A′ ⊆ V, it is f(A∪A′) ≤ f(A) + f(A′); ineq. (11.24) holds for the same reason
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as ineq. (11.23); ineq. (11.25) holds since or all elements y ∈ Y and all elements p ∈ P it is
f(y) ≥ f(p); �nally, ineq. (11.26) holds because f is monotone and y ∈ Y. �
Lemma 47. Consider a �nite ground set V and a non-decreasing set function f : 2V 7→ R
such that f is non-negative and f(∅) = 0. For any set A ⊆ V and any set B ⊆ V such that
A ∩ B = ∅, it is:

f(A ∪ B) ≥ (1− cf )

(
f(A) +

∑
b∈B

f(b)

)
.

Proof of Lemma 47 Let B = {b1, b2, . . . , b|B|}. Then,

f(A ∪ B) = f(A) +

|B|∑
i=1

f(bi|A ∪ {b1, b2, . . . , bi−1}). (11.27)

In addition, De�nition 46 of total curvature implies:

f(bi|A ∪ {b1, b2, . . . , bi−1}) ≥ (1− cf )f(bi|∅)
= (1− cf )f(bi), (11.28)

where the latter equation holds since f(∅) = 0. The proof is completed by substitut-
ing (11.28) in (11.27) and then taking into account that f(A) ≥ (1−cf )f(A) since 0 ≤ cf ≤
1. �
Lemma 48. Consider a �nite ground set V and a non-decreasing set function f : 2V 7→ R
such that f is non-negative and f(∅) = 0. For any set A ⊆ V and any set B ⊆ V such that
A \ B 6= ∅, it is:

f(A) + (1− cf )f(B) ≥ (1− cf )f(A ∪ B) + f(A ∩ B).

Proof of Lemma 48 Let A \ B = {i1, i2, . . . , ir}, where r = |A − B|. From De�nition 46
of total curvature cf , for any i = 1, 2, . . . , r, it is f(ij |A ∩ B ∪ {i1, i2, . . . , ij−1}) ≥ (1 −
cf )f(ij |B ∪ {i1, i2, . . . , ij−1}). Summing these r inequalities,

f(A)− f(A ∩ B) ≥ (1− cf ) (f(A ∪ B)− f(B)) ,

which implies the lemma. �
Corollary 13. Consider a �nite ground set V and a non-decreasing set function f : 2V 7→ R
such that f is non-negative and f(∅) = 0. For any set A ⊆ V and any set B ⊆ V such that
A ∩ B = ∅, it is:

f(A) +
∑
b∈B

f(b) ≥ (1− cf )f(A ∪ B).
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Proof of Corollary 13 Let B = {b1, b2, . . . , b|B|}.

f(A) +

|B|∑
i=1

f(bi) ≥ (1− cf )f(A) +

|B|∑
i=1

f(bi)) (11.29)

≥ (1− cf )f(A ∪ {b1}) +

|B|∑
i=2

f(bi)

≥ (1− cf )f(A ∪ {b1, b2}) +

|B|∑
i=3

f(bi)

...

≥ (1− cf )f(A ∪ B),

where (11.29) holds since 0 ≤ cf ≤ 1, and the rest due to Lemma 48 since A∩B = ∅ implies
A \ {b1} 6= ∅, A ∪ {b1} \ {b2} 6= ∅, . . ., A ∪ {b1, b2, . . . , b|B|−1} \ {b|B|} 6= ∅.

�

Generalized Coordinate Descent and a lemma
that supports the proof of Proposition 12

In this section we generalize the proof in [249] that the algorithm coordinate descent pro-
posed therein guarantees for the information objective function of mutual information an
approximation performance up to a multiplicative factor 1/2 the optimal. In particular, we
extend the proof to any non-decreasing and submodular information objective function, as
well as to any non-decreasing information objective function.

The algorithm coordinate descent works as follows: consider an arbitrary ordering of the
robots in V, such that V ≡ {1, 2, . . . , n}, and suppose that robot 1 chooses �rst its controls,
without considering the other robots; in other words, robot 1 solves the single robot version
of Problem 6, i.e. P({1}, 0), to obtain control inputs ucd1:T ({1}) such that:

ucd1:T ({1}) ∈ arg min
ût∈U1,t,t=1,2,...,T

J(û1:T ). (11.30)

Afterwards, robot 1 communicates its chosen control sequence to robot 2, and robot 2, given
the control sequence of robot 1, computes its control input as follows:

ucd1:T ({2}) ∈ arg min
ût∈U2,t,t=1,2,...,T

J(ucd1:T ({1}), û1:T ). (11.31)

This continues such that robot i+ 1 solves a single robot problem, given the control inputs
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from the robots 1, 2, . . . , i:

ucd1:T ({i}) ∈ arg min
ût∈U2,t,t=1,2,...,T

J(ucd1:T ({1, 2, . . . , i}), û1:T ). (11.32)

Notably, if we let u∗1:T ({i}) be the control inputs for the i-th robot resulting from the optimal
solution to the n robot problem, then from the coordinate descent algorithm it is:

J(ucd1:T ({1, 2, . . . , i}), u∗1:T ({i})) ≤ J(ucd1:T ({1, 2, . . . , i}). (11.33)

Lemma 49. (Approximation performance of coordinate descent) Consider a set
of robots V, and an instance of problem P(V, 0), per eq. (11.6). Denote the optimal control
inputs for problem P(V, 0), across all robots and all times, by u∗1:T (V). The coordinate descent
algorithm returns control inputs ucd1:T (V), across all robots and all times, such that:

• if the objective function J is non-decreasing submodular in the active robot set, and
(without loss of generality) J is non-negative and J [u1:T (∅)] = 0, then, it is:

J(ucd1:T (V))

J(u∗1:T (V))
≥ 1

2
. (11.34)

• If the objective function J is non-decreasing in the active robot set, and (without loss
of generality) J is non-negative and J [u1:T (∅)] = 0, then, it is:

J(ucd1:T (V))

J(u∗1:T (V))
≥ 1− cJ

2
. (11.35)

Proof of Lemma 49 For notational simplicity, assume an ordering among the robots in
V, and let V = {1, 2, . . . , n}, and uA , u1:T (A) for some set A of active robots. Moreover,
let J(uaA, u

b
B) be the value of the objective function when the robots in set A design controls

with a scheme a, and robots in set B design controls with scheme b. Then:

• if the objective function J is non-decreasing and submodular in the active robot set,
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and (without loss of generality) J is non-negative and J [u1:T (∅)] = 0, then:

J(u∗1:n) ≤ J(u∗1:n) +
n∑
i=1

[J(ucd1:i, u
∗
i+1:n) (11.36)

− J(ucd1:i−1, u
∗
i+1:n)]

= J(ucd1:n) +
n∑
i=1

[J(ucd1:i−1, u
∗
i:n) (11.37)

− J(ucd1:i−1, u
∗
i+1:n)]

= J(ucd1:n) +
n∑
i=1

J(u∗i |{ucd1:i−1, u
∗
i+1,n}) (11.38)

≤ J(ucd1:n) +
n∑
i=1

J(u∗i |ucd1:i−1) (11.39)

≤ J(ucd1:n) +
n∑
i=1

J(ucdi |ucd1:i−1) (11.40)

= J(ucd1:n) + J(ucd1:n) (11.41)

≤ 2J(ucd1:n), (11.42)

where ineq. (11.36) holds due to monotonicity of J ; eq. 11.37) is a shift in indexes of
the �rst term in the sum; eq. (11.38) is an expression of the sum as a sum of marginal
gains; ineq. (11.39) holds due to submodularity; ineq. (11.40) holds by the coordinate-
descent policy (per eq. (11.33)); eq. (11.41) holds due to the de�nition of the marginal
gain symbol J(u∗i |ucd1:i−1) (for any i = 1, 2, . . . , n) as J(u∗i , u

cd
1:i−1) − J(ucd1:i−1); �nally,

a re-arrangement of the terms in eq. (11.42) gives J(ucd1:n)/J(u∗1:n) ≥ 1/2.

• If the objective function J is non-decreasing in the active robot set, and (without loss
of generality) J is non-negative and J [u1:T (∅)] = 0, then multiplying both sides of
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eq. (11.38) (which holds for any non-decreasing J) with (1− cJ), we have:

(1−cJ)J(u∗1:n)

= (1− cJ)J(ucd1:n)+

(1− cJ)

n∑
i=1

J(u∗i |{ucd1:i−1, u
∗
i+1,n})

≤ J(ucd1:n) + (1− cJ)

n∑
i=1

J(u∗i |{ucd1:i−1, u
∗
i+1,n}) (11.43)

≤ J(ucd1:n) +

n∑
i=1

J(u∗i |ucd1:i−1) (11.44)

≤ J(ucd1:n) +
n∑
i=1

J(ucdi |ucd1:i−1) (11.45)

= J(ucd1:n) + J(ucd1:n) (11.46)

≤ 2J(ucd1:n), (11.47)

where, ineq. (11.43) holds since 0 ≤ cJ ≤ 1; ineq. (11.44) holds since J is non-
decreasing in the set of active robots, and De�nition 46 of total curvature implies that
for any non-decreasing set function g : 2V 7→ R, for any element v ∈ V, and for any
set A,B ⊆ V \ {v}, it is:

(1− cg)g(v|B) ≤ g({v}|A); (11.48)

ineq. (11.45) holds by the coordinate-descent algorithm; eq. (11.46) holds due to
the de�nition of the marginal gain symbol J(u∗i |ucd1:i−1) (for any i = 1, 2, . . . , n) as
J(u∗i , u

cd
1:i−1) − J(ucd1:i−1); �nally, a re-arrangement of terms gives J(ucd1:n)/J(u∗1:n) ≥

(1− cJ)/2. �

11.7.2. Proof of Theorem 24

We �rst prove Theorem 24's part 1 (approximation performance), and then, Theorem 24's
part 2 (communication rounds).

Proof of Theorem 24's part 1 (approximation performance)

The proof follows the steps of the proof of [56, Theorem 1] and of the proof of [231, Theo-
rem 1].

We �rst prove ineq. (11.11); then, we prove ineq. (11.12).

To the above ends, we use the following notation (along with the notation introduced in
Theorem 24 and in Appendix A): given that using Algorithm 22 the robots in V select
control inputs u1:T (V), then, for notational simplicity:

• for any active robot set R ⊆ V, let J(R) , J [u1:T (R)].
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• let A? , A?[u1:T (V)];

• let L+ , L \A?, i.e., S1 are the remaining robots in L after the removal of the robots
in A?;

• let (V \L)+ , (V \L) \A?, i.e., S2 are the remaining robots in V \L after the removal
of the robots in A?.

Proof of ineq. (11.11) Consider that the objective function J is non-decreasing and
submodular in the active robot set, such that (without loss of generality) J is non-negative
and J [u1:T (∅)] = 0. We �rst prove the part 1 − κJ of the bound in the right-hand-side of
ineq. (11.11), and then, the part h(|V|, α) of the bound in the right-hand-side of ineq. (11.11).

To prove the part 1− κJ of the bound in the right-hand-side of ineq. (11.11), we follow the
steps of the proof of [56, Theorem 1], and make the following observations:

J(V \ A?)
= J(L+ ∪ (V \ L)+) (11.49)

≥ (1− κJ)
∑

v∈L+∪(V\L)+

J(v) (11.50)

≥ (1− κJ)

 ∑
v∈(V\L)\(V\L)+

J(v) +
∑

v∈(V\L)+

J(v)

 (11.51)

≥ (1− κJ)J{[(V \ L) \ (V \ L)+] ∪ (V \ L)+} (11.52)

= (1− κJ)J(V \ L), (11.53)

where eq. (11.49) to (11.53) hold for the following reasons: eq. (11.49) follows from the
de�nitions of the sets L+ and (V \ L)+; ineq. (11.50) follows from ineq. (11.49) due to
Lemma 45; ineq. (11.51) follows from ineq. (11.50) because for all elements v ∈ L+ and
all elements v′ ∈ (V \ L) \ (V \ L)+ it is J(v) ≥ J(v′) (note that due to the de�nitions
of the sets L+ and (V \ L)+ it is |L+| = |(V \ L) \ (V \ L)+|, that is, the number of
non-removed elements in L is equal to the number of removed elements in V \ L); �nally,
ineq. (11.52) follows from ineq. (11.51) because the set function J is submodular and, as a
result, the submodularity De�nition 44 implies that for any sets S ⊆ V and S ′ ⊆ V, it is
J(S) + J(S ′) ≥ J(S ∪ S ′) [70, Proposition 2.1]. We now complete the proof of the part
1− κJ of the bound in the right-hand-side of ineq. (11.11) by proving that in ineq. (11.53)
it is:

J(V \ L) ≥ J?, (11.54)

when the robots in V solve optimally the problems in Algorithm 22's step 4, per the state-
ment of Theorem 24. In particular, if for any active robot set R ⊆ V, we let ū1:T (R) ,
{ūi,t : ūi,t ∈ Ui,t, i ∈ R, t = 1, 2, . . . , T} denote a collection of control inputs to the
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robots in R, then it is:

J(V \ L) ≡ max
ūi,t ∈ Ui,t, i ∈ V,
t = 1, 2 . . . , T

J [ū1:T (V \ L)] (11.55)

≥ min
L̄ ⊆ V,
|L̄| ≤ α

max
ūi,t ∈ Ui,t, i ∈ V,
t = 1, 2 . . . , T

J [ū1:T (V \ L̄)] (11.56)

≥ max
ūi,t ∈ Ui,t, i ∈ V,
t = 1, 2 . . . , T

min
L̄ ⊆ V,
|L̄| ≤ α

J [ū1:T (V \ L̄)] (11.57)

≡ J?, (11.58)

where the ineqs. (11.55)-(11.58) hold for the following reasons: the equivalence in eq. (11.55)
holds since the robots in V solve optimally the problems in Algorithm 22's step 4, per the
statement of Theorem 24; (11.56) holds since we minimize over the set L; (11.57) holds
because for any set L̂ ⊆ V and any control inputs û1:T (R) , {ûi,t : ûi,t ∈ Ui,t, i ∈ R, t =
1, 2, . . . , T}:

max
ūi,t ∈ Ui,t, i ∈ V,
t = 1, 2 . . . , T

J [ū1:T (V \ L̂)] ≥ J [û1:T (V \ L̂)]⇒

min
L̄ ⊆ V,
|L̄| ≤ α

max
ūi,t ∈ Ui,t, i ∈ V,
t = 1, 2 . . . , T

J [ū1:T (V \ L̄)] ≥

min
L̄ ⊆ V,
|L̄| ≤ α

J [û1:T (V \ L̄)]⇒

min
L̄ ⊆ V,
|L̄| ≤ α

max
ūi,t ∈ Ui,t, i ∈ V,
t = 1, 2 . . . , T

J [ū1:T (V \ L̄)] ≥

max
ūi,t ∈ Ui,t, i ∈ V,
t = 1, 2 . . . , T

min
L̄ ⊆ V,
|L̄| ≤ α

J [ū1:T (V \ L̄)],

where the last one is eq. (11.57); �nally, the equivalence in eq. (11.58) holds since J? (per
the statement of Theorem 24) denotes the optimal value to Problem 6. Overall, we proved
that ineq. (11.58) proves ineq. (11.54); and, now, the combination of ineq. (11.53) and
ineq. (11.54) proves the part 1− κJ of the bound in the right-hand-side of ineq. (11.11).

We �nally prove the part 1/(1 +α) of the bound in the right-hand-side of ineq. (11.11), and
complete this way the proof of Theorem 24. To this end, we follow the steps of the proof
of [56, Theorem 1], and use the notation introduced in Fig. 20, along with the following
notation:

η ,
J(A?2|V \ A?)
J(V \ L)

(11.59)
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V

L A?1 A?2

Figure 20: Venn diagram, where the set L is the robot set de�ned in step 2 of Algorithm 22, and
the set A?

1 and the set A?
2 are such that A?

1 = A? ∩ L, and A?
2 = A? ∩ (V \ L) (observe that these

de�nitions imply A?
1 ∩ A?

2 = ∅ and A? = A?
1 ∪ A?

2).

Later in this proof, we prove 0 ≤ η ≤ 1. We �rst observe that:

J(V \ A?) ≥ max{J(V \ A?), J(L+)}; (11.60)

in the following paragraphs, we prove the three inequalities:

J(V \ A?) ≥ (1− η)J(V \ L), (11.61)

J(L+) ≥ η 1

α
J(V \ L), (11.62)

max{(1− η), η
1

α
} ≥ 1

α+ 1
. (11.63)

Then, if we substitute ineq. (11.61), ineq. (11.62) and ineq. (11.63) to ineq. (11.60), and take
into account that J(V \ L) ≥ 0, then:

J(V \ A?) ≥ 1

α+ 1
J(V \ L),

which implies the part 1/(1 + α) of the bound in the right-hand-side of ineq. (11.11), after
taking into account ineq. (11.54).

We next complete the proof of the part 1/(1 + α) of the bound in the right-hand-side of
ineq. (11.11) by proving 0 ≤ η ≤ 1, ineq. (11.61), ineq. (11.62), and ineq. (11.63).

Proof of ineq. 0 ≤ η ≤ 1 We �rst prove η ≥ 0, and then η ≤ 1: η ≥ 0, since η ≡
J(A?2|V \ A?)/J(V \ L), and J is non-negative; and η ≤ 1, since J(V \ L) ≥ J(A?2), due to
monotonicity of J and that A?2 ⊆ V \ L, and J(A?2) ≥ J(A?2|V \ A?), due to submodularity
of J and that ∅ ⊆ V \ A?.

Proof of ineq. (11.61) We complete the proof of ineq. (11.61) in two steps. First, it can
be veri�ed that:

f(V \ A?) = f(V \ L)−
J(A?2|V \ A?) + J(L|V \ L)− J(A?1|V \ A?1), (11.64)
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since for any sets X ⊆ V and Y ⊆ V, it is J(X|Y) ≡ J(X ∪ Y)− J(Y). Second, eq. (11.64)
implies ineq. (11.61), since J(A?2|V \ A?) = ηJ(V \ L), and J(L|V \ L)− J(A?1|V \ A?1) ≥ 0;
the latter is true due to the following two observations: J(L|V \ L) ≥ J(A?1|V \ L), since
J is monotone and A?1 ⊆ L; and J(A?1|V \ L) ≥ J(A?1|V \ A?1), since J is submodular and
V \ L ⊆ V \ A?1 (see also Fig. 20).

Proof of ineq. (11.62) To prove ineq. (11.62), since it is A?2 6= ∅ (and, as a result, also
L+ 6= ∅), and for all elements a ∈ L+ and all elements b ∈ A?2, it is J(a) ≥ J(b), from
Lemma 46 we have:

J(A?2|L+) ≤ |A?2|J(L+)

≤ αJ(L+), (11.65)

since |A?2| ≤ α. Overall,

J(L+) ≥ 1

α
J(A?2|L+) (11.66)

≥ 1

α
J(A?2|L+ ∪ (V \ L)+) (11.67)

=
1

α
J(A?2|V \ A?) (11.68)

= η
1

α
J(V \ L), (11.69)

where ineq. (11.66) to eq. (11.69) hold for the following reasons: ineq. (11.66) follows from
ineq. (11.65); ineq. (11.67) holds since J is submodular and L+ ⊆ L+∪ (V \L)+; eq. (11.68)
holds due to the de�nitions of the sets L+, (V \ L)+ and A?; �nally, eq. (11.69) holds due
to the de�nition of η. Overall, the latter derivation concludes the proof of ineq. (11.62).

Proof of ineq. (11.63) Let b = 1/α. We complete the proof �rst for the case where
(1−η) ≥ ηb, and then for the case (1−η) < ηb: i) When (1−η) ≥ ηb, max{(1−η), ηb} = 1−η
and η ≤ 1/(1 + b). Due to the latter, 1− η ≥ b/(1 + b) = 1/(α+ 1) and, as a result, (11.63)
holds. ii) When (1− η) < ηb, max{(1− η), ηb} = ηb and η > 1/(1 + b). Due to the latter,
ηb > b/(1 + b) and, as a result, (11.63) holds.

We completed the proof of 0 ≤ η ≤ 1, and of ineqs. (11.61), (11.62) and (11.63). Thus,
we also completed the proof of the part 1/(1 + α) of the bound in the right-hand-side of
ineq. (11.11), and, in sum, the proof of ineq. (11.11).

Proof of ineq. (11.12) Consider that the objective function J is non-decreasing in the
active robot set, such that (without loss of generality) J is non-negative and J [u1:T (∅)] = 0.

The proof follows the steps of the proof of [231, Theorem 1], by making the following
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observations:

J(V \ A?)
= J(L+ ∪ (V \ L)+) (11.70)

≥ (1− cJ)
∑

v∈L+∪(V\L)+

J(v) (11.71)

≥ (1− cJ)

 ∑
v∈(V\L)\(V\L)+

J(v) +
∑

v∈(V\L)+

J(v)

 (11.72)

≥ (1− cJ)2J{[(V \ L) \ (V \ L)+] ∪ (V \ L)+} (11.73)

= (1− cJ)2J(V \ L), (11.74)

where eq. (11.70) to (11.74) hold for the following reasons: eq. (11.70) follows from the
de�nitions of the sets L+ and (V \ L)+; ineq. (11.71) follows from ineq. (11.70) due to
Lemma 47; ineq. (11.72) follows from ineq. (11.71) because for all elements v ∈ L+ and
all elements v′ ∈ (V \ L) \ (V \ L)+ it is J(v) ≥ J(v′) (note that due to the de�nitions
of the sets L+ and (V \ L)+ it is |L+| = |(V \ L) \ (V \ L)+|, that is, the number of
non-removed elements in L is equal to the number of removed elements in V \ L); �nally,
ineq. (11.73) follows from ineq. (11.72) because the set function J is non-decreasing and
Corollary 13 applies. Overall, the combination of ineq. (11.74) and ineq. (11.54) (observe
that ineq. (11.54) still holds if the objective function J is merely non-decreasing) proves
ineq. (11.12). �

Proof of Theorem 24's part 2 (communication rounds)

We described the steps of Algorithm 22 in Section 11.3.1. In particular, Algorithm 22 is
composed of four steps:

Computation of robots' marginal contributions in the absence of attacks (step 1
of Algorithm 22) This step requires zero rounds of communication among the robots,
since each robot i ∈ V, by solving the problem in eq. (11.7), merely computes its own
marginal contribution to the information gathering task in Problem 6 in the absence of any
other robot in V \ {i}, and in the absence of any attacks and failures.

Computation of robot set L with the α largest marginal contributions in the
absence of attacks (step 2 of Algorithm 22) This step requires at most 2|V| com-
munication rounds, since in this step the robots in V share their marginal contribution to
the information gathering task, which they computed in Algorithm 22's step 1, and decide
which subset L of them composes a set of α robots with the α largest marginal contributions;
this procedure can be executed with minimal communication (at most 2|V| communication
rounds), e.g., by accumulating (through the communication network) to one robot all the
marginal contributions {qi : i ∈ V}, and, then, by letting this robot to select the set L, and
to communicate it back to the rest of the robots.
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Computation of control inputs of robots in L (step 3 of Algorithm 22) This steps
requires zero rounds of communication among the robots, since each robot in the set L, per
Algorithm 22's step 2, merely adopts the controls it computed in Algorithm 22's step 1 (e.g.,
using the algorithm in [42]).

Computation of control inputs of robots in V \ L (step 4 of Algorithm 22) This
step is executed in ρ rounds per the statement of Theorem 24.

In sum, Algorithm 22 requires 2|V|+ ρ rounds of communication among the robots in V to
terminate. �

11.7.3. Proof of Proposition 12

We �rst prove Proposition 12's part 1 (approx. bounds), and then, Proposition 12's part 2
(communication rounds).

Proof of Proposition 12's part 1 (approximation bounds)

The proof follows the steps of the proof of Theorem 24; hence, we describe here only the
steps where the proof di�ers.

We �rst prove ineq. (11.13); then, we prove ineq. (11.14).

Proof of ineq. (11.13) Consider that the objective function J is non-decreasing and
submodular in the active robot set, such that (without loss of generality) J is non-negative
and J [u1:T (∅)] = 0. Since, per Proposition 12, Algorithm 22 calls the coordinate descent
algorithm in step 4, the equivalence in eq. (11.55) is now invalid, and, in particular, using
Lemma 49, the following inequality holds instead:

J(V \ L) ≥ 1

2
max

ūi,t ∈ Ui,t, i ∈ V,
t = 1, 2 . . . , T

J [ū1:T (V \ L)]. (11.75)

Using ineq. (11.75), and following the same steps as in eqs. (11.55)-(11.58), we conclude:

J(V \ L) ≥ 1

2
J?. (11.76)

Using ineq. (11.76) the same way that ineq. (11.54) was used in the proof of Theorem 24's
part 1, ineq. (11.14) is proved.

Proof of ineq. (11.14) Consider that the objective function J is non-decreasing in the
active robot set, such that (without loss of generality) J is non-negative and J [u1:T (∅)] = 0.
Similarly with the observations we made in the proof of ineq. (11.13), since, per Proposi-
tion 12, Algorithm 22 calls the coordinate descent algorithm in step 4, the equivalence in
eq. (11.55) is now invalid, and, in particular, using Lemma 49, the following inequality holds
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instead:
J(V \ L) ≥ 1− cJ

2
max

ūi,t ∈ Ui,t, i ∈ V,
t = 1, 2 . . . , T

J [ū1:T (V \ L)]. (11.77)

Using ineq. (11.77), and following the same steps as in eqs. (11.55)-(11.58), we conclude:

J(V \ L) ≥ 1− cJ
2

J?. (11.78)

Using ineq. (11.78) the same way that ineq. (11.54) was used in the proof of Theorem 24's
part 1, ineq. (11.14) is proved. �

Proof of Proposition 12's part 2 (communication rounds)

The description of the generalized coordinate descent in Appendix 11.7.1 implies that the
generalized coordinate descent terminates in at most |V| rounds, since each robot in V
needs to communicate with at most one robot in V and at most once. Therefore, per the
notation in Theorem 24, for the generalized coordinate descent it is ρ = |V|. Overall, per
Theorem 24's part 2, when Algorithm 22 calls generalized coordinate descent in step 4, it
requires 2|V|+ ρ = 3|V| rounds of communication among the robots in V to terminate. �
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