28 research outputs found

    Rectilinear Link Diameter and Radius in a Rectilinear Polygonal Domain

    Get PDF
    We study the computation of the diameter and radius under the rectilinear link distance within a rectilinear polygonal domain of nn vertices and hh holes. We introduce a \emph{graph of oriented distances} to encode the distance between pairs of points of the domain. This helps us transform the problem so that we can search through the candidates more efficiently. Our algorithm computes both the diameter and the radius in min{O(nω),O(n2+nhlogh+χ2)}\min \{\,O(n^\omega), O(n^2 + nh \log h + \chi^2)\,\} time, where ω<2.373\omega<2.373 denotes the matrix multiplication exponent and χΩ(n)O(n2)\chi\in \Omega(n)\cap O(n^2) is the number of edges of the graph of oriented distances. We also provide a faster algorithm for computing the diameter that runs in O(n2logn)O(n^2 \log n) time

    L_1 Geodesic Farthest Neighbors in a Simple Polygon and Related Problems

    Get PDF
    In this paper, we investigate the L_1 geodesic farthest neighbors in a simple polygon P, and address several fundamental problems related to farthest neighbors. Given a subset S subseteq P, an L_1 geodesic farthest neighbor of p in P from S is one that maximizes the length of L_1 shortest path from p in P. Our list of problems include: computing the diameter, radius, center, farthest-neighbor Voronoi diagram, and two-center of S under the L_1 geodesic distance. We show that all these problems can be solved in linear or near-linear time based on our new observations on farthest neighbors and extreme points. Among them, the key observation shows that there are at most four extreme points of any compact subset S subseteq P with respect to the L_1 geodesic distance after removing redundancy

    Constrained Geodesic Centers of a Simple Polygon

    Get PDF
    For any two points in a simple polygon P, the geodesic distance between them is the length of the shortest path contained in P that connects them. A geodesic center of a set S of sites (points) with respect to P is a point in P that minimizes the geodesic distance to its farthest site. In many realistic facility location problems, however, the facilities are constrained to lie in feasible regions. In this paper, we show how to compute the geodesic centers constrained to a set of line segments or simple polygonal regions contained in P. Our results provide substantial improvements over previous algorithms
    corecore