1,559 research outputs found

    Signal Flow Graph Approach to Efficient DST I-IV Algorithms

    Get PDF
    In this paper, fast and efficient discrete sine transformation (DST) algorithms are presented based on the factorization of sparse, scaled orthogonal, rotation, rotation-reflection, and butterfly matrices. These algorithms are completely recursive and solely based on DST I-IV. The presented algorithms have low arithmetic cost compared to the known fast DST algorithms. Furthermore, the language of signal flow graph representation of digital structures is used to describe these efficient and recursive DST algorithms having (n1)(n-1) points signal flow graph for DST-I and nn points signal flow graphs for DST II-IV

    Algebraic Signal Processing Theory: Cooley-Tukey Type Algorithms for Polynomial Transforms Based on Induction

    Full text link
    A polynomial transform is the multiplication of an input vector x\in\C^n by a matrix \PT_{b,\alpha}\in\C^{n\times n}, whose (k,)(k,\ell)-th element is defined as p(αk)p_\ell(\alpha_k) for polynomials p_\ell(x)\in\C[x] from a list b={p0(x),,pn1(x)}b=\{p_0(x),\dots,p_{n-1}(x)\} and sample points \alpha_k\in\C from a list α={α0,,αn1}\alpha=\{\alpha_0,\dots,\alpha_{n-1}\}. Such transforms find applications in the areas of signal processing, data compression, and function interpolation. Important examples include the discrete Fourier and cosine transforms. In this paper we introduce a novel technique to derive fast algorithms for polynomial transforms. The technique uses the relationship between polynomial transforms and the representation theory of polynomial algebras. Specifically, we derive algorithms by decomposing the regular modules of these algebras as a stepwise induction. As an application, we derive novel O(nlogn)O(n\log{n}) general-radix algorithms for the discrete Fourier transform and the discrete cosine transform of type 4.Comment: 19 pages. Submitted to SIAM Journal on Matrix Analysis and Application

    A low multiplicative complexity fast recursive DCT-2 algorithm

    Full text link
    A fast Discrete Cosine Transform (DCT) algorithm is introduced that can be of particular interest in image processing. The main features of the algorithm are regularity of the graph and very low arithmetic complexity. The 16-point version of the algorithm requires only 32 multiplications and 81 additions. The computational core of the algorithm consists of only 17 nontrivial multiplications, the rest 15 are scaling factors that can be compensated in the post-processing. The derivation of the algorithm is based on the algebraic signal processing theory (ASP).Comment: 4 pages, 2 figure

    Algebraic Signal Processing Theory: Cooley-Tukey Type Algorithms for DCTs and DSTs

    Full text link
    This paper presents a systematic methodology based on the algebraic theory of signal processing to classify and derive fast algorithms for linear transforms. Instead of manipulating the entries of transform matrices, our approach derives the algorithms by stepwise decomposition of the associated signal models, or polynomial algebras. This decomposition is based on two generic methods or algebraic principles that generalize the well-known Cooley-Tukey FFT and make the algorithms' derivations concise and transparent. Application to the 16 discrete cosine and sine transforms yields a large class of fast algorithms, many of which have not been found before.Comment: 31 pages, more information at http://www.ece.cmu.edu/~smar
    corecore