546 research outputs found

    Upper Tail Estimates with Combinatorial Proofs

    Get PDF
    We study generalisations of a simple, combinatorial proof of a Chernoff bound similar to the one by Impagliazzo and Kabanets (RANDOM, 2010). In particular, we prove a randomized version of the hitting property of expander random walks and apply it to obtain a concentration bound for expander random walks which is essentially optimal for small deviations and a large number of steps. At the same time, we present a simpler proof that still yields a "right" bound settling a question asked by Impagliazzo and Kabanets. Next, we obtain a simple upper tail bound for polynomials with input variables in [0,1][0, 1] which are not necessarily independent, but obey a certain condition inspired by Impagliazzo and Kabanets. The resulting bound is used by Holenstein and Sinha (FOCS, 2012) in the proof of a lower bound for the number of calls in a black-box construction of a pseudorandom generator from a one-way function. We then show that the same technique yields the upper tail bound for the number of copies of a fixed graph in an Erd\H{o}s-R\'enyi random graph, matching the one given by Janson, Oleszkiewicz and Ruci\'nski (Israel J. Math, 2002).Comment: Full version of the paper from STACS 201

    High Dimensional Random Walks and Colorful Expansion

    Get PDF
    Random walks on bounded degree expander graphs have numerous applications, both in theoretical and practical computational problems. A key property of these walks is that they converge rapidly to their stationary distribution. In this work we {\em define high order random walks}: These are generalizations of random walks on graphs to high dimensional simplicial complexes, which are the high dimensional analogues of graphs. A simplicial complex of dimension dd has vertices, edges, triangles, pyramids, up to dd-dimensional cells. For any 0i<d0 \leq i < d, a high order random walk on dimension ii moves between neighboring ii-faces (e.g., edges) of the complex, where two ii-faces are considered neighbors if they share a common (i+1)(i+1)-face (e.g., a triangle). The case of i=0i=0 recovers the well studied random walk on graphs. We provide a {\em local-to-global criterion} on a complex which implies {\em rapid convergence of all high order random walks} on it. Specifically, we prove that if the 11-dimensional skeletons of all the links of a complex are spectral expanders, then for {\em all} 0i<d0 \le i < d the high order random walk on dimension ii converges rapidly to its stationary distribution. We derive our result through a new notion of high dimensional combinatorial expansion of complexes which we term {\em colorful expansion}. This notion is a natural generalization of combinatorial expansion of graphs and is strongly related to the convergence rate of the high order random walks. We further show an explicit family of {\em bounded degree} complexes which satisfy this criterion. Specifically, we show that Ramanujan complexes meet this criterion, and thus form an explicit family of bounded degree high dimensional simplicial complexes in which all of the high order random walks converge rapidly to their stationary distribution.Comment: 27 page

    A Matrix Expander Chernoff Bound

    Full text link
    We prove a Chernoff-type bound for sums of matrix-valued random variables sampled via a random walk on an expander, confirming a conjecture due to Wigderson and Xiao. Our proof is based on a new multi-matrix extension of the Golden-Thompson inequality which improves in some ways the inequality of Sutter, Berta, and Tomamichel, and may be of independent interest, as well as an adaptation of an argument for the scalar case due to Healy. Secondarily, we also provide a generic reduction showing that any concentration inequality for vector-valued martingales implies a concentration inequality for the corresponding expander walk, with a weakening of parameters proportional to the squared mixing time.Comment: Fixed a minor bug in the proof of Theorem 3.

    Phase Transitions of Best-of-Two and Best-of-Three on Stochastic Block Models

    Get PDF
    This paper is concerned with voting processes on graphs where each vertex holds one of two different opinions. In particular, we study the \emph{Best-of-two} and the \emph{Best-of-three}. Here at each synchronous and discrete time step, each vertex updates its opinion to match the majority among the opinions of two random neighbors and itself (the Best-of-two) or the opinions of three random neighbors (the Best-of-three). Previous studies have explored these processes on complete graphs and expander graphs, but we understand significantly less about their properties on graphs with more complicated structures. In this paper, we study the Best-of-two and the Best-of-three on the stochastic block model G(2n,p,q)G(2n,p,q), which is a random graph consisting of two distinct Erd\H{o}s-R\'enyi graphs G(n,p)G(n,p) joined by random edges with density qpq\leq p. We obtain two main results. First, if p=ω(logn/n)p=\omega(\log n/n) and r=q/pr=q/p is a constant, we show that there is a phase transition in rr with threshold rr^* (specifically, r=52r^*=\sqrt{5}-2 for the Best-of-two, and r=1/7r^*=1/7 for the Best-of-three). If r>rr>r^*, the process reaches consensus within O(loglogn+logn/log(np))O(\log \log n+\log n/\log (np)) steps for any initial opinion configuration with a bias of Ω(n)\Omega(n). By contrast, if r<rr<r^*, then there exists an initial opinion configuration with a bias of Ω(n)\Omega(n) from which the process requires at least 2Ω(n)2^{\Omega(n)} steps to reach consensus. Second, if pp is a constant and r>rr>r^*, we show that, for any initial opinion configuration, the process reaches consensus within O(logn)O(\log n) steps. To the best of our knowledge, this is the first result concerning multiple-choice voting for arbitrary initial opinion configurations on non-complete graphs

    Gap Amplification for Small-Set Expansion via Random Walks

    Get PDF
    In this work, we achieve gap amplification for the Small-Set Expansion problem. Specifically, we show that an instance of the Small-Set Expansion Problem with completeness ϵ\epsilon and soundness 12\frac{1}{2} is at least as difficult as Small-Set Expansion with completeness ϵ\epsilon and soundness f(ϵ)f(\epsilon), for any function f(ϵ)f(\epsilon) which grows faster than ϵ\sqrt{\epsilon}. We achieve this amplification via random walks -- our gadget is the graph with adjacency matrix corresponding to a random walk on the original graph. An interesting feature of our reduction is that unlike gap amplification via parallel repetition, the size of the instances (number of vertices) produced by the reduction remains the same
    corecore