598 research outputs found

    `Iconoclastic', Categorical Quantum Gravity

    Full text link
    This is a two-part, `2-in-1' paper. In Part I, the introductory talk at `Glafka--2004: Iconoclastic Approaches to Quantum Gravity' international theoretical physics conference is presented in paper form (without references). In Part II, the more technical talk, originally titled ``Abstract Differential Geometric Excursion to Classical and Quantum Gravity'', is presented in paper form (with citations). The two parts are closely entwined, as Part I makes general motivating remarks for Part II.Comment: 34 pages, in paper form 2 talks given at ``Glafka--2004: Iconoclastic Approaches to Quantum Gravity'' international theoretical physics conference, Athens, Greece (summer 2004

    Infinity

    Get PDF
    This essay surveys the different types of infinity that occur in pure and applied mathematics, with emphasis on: 1. the contrast between potential infinity and actual infinity; 2. Cantor's distinction between transfinite sets and absolute infinity; 3. the constructivist view of infinite quantifiers and the meaning of constructive proof; 4. the concept of feasibility and the philosophical problems surrounding feasible arithmetic; 5. Zeno's paradoxes and modern paradoxes of physical infinity involving supertasks

    `Third' Quantization of Vacuum Einstein Gravity and Free Yang-Mills Theories

    Get PDF
    Based on the algebraico-categorical (:sheaf-theoretic and sheaf cohomological) conceptual and technical machinery of Abstract Differential Geometry, a new, genuinely background spacetime manifold independent, field quantization scenario for vacuum Einstein gravity and free Yang-Mills theories is introduced. The scheme is coined `third quantization' and, although it formally appears to follow a canonical route, it is fully covariant, because it is an expressly functorial `procedure'. Various current and future Quantum Gravity research issues are discussed under the light of 3rd-quantization. A postscript gives a brief account of this author's personal encounters with Rafael Sorkin and his work.Comment: 43 pages; latest version contributed to a fest-volume celebrating Rafael Sorkin's 60th birthday (Erratum: in earlier versions I had wrongly written that the Editor for this volume is Daniele Oriti, with CUP as publisher. I apologize for the mistake.

    Quantum evolution of scalar fields in Robertson-Walker space-time

    Get PDF
    We study the λϕ4\lambda \phi^4 field theory in a flat Robertson-Walker space-time using the functional Sch\"odinger picture. We introduce a simple Gaussian approximation to analyze the time evolution of pure states and we establish the renormalizability of the approximation. We also show that the energy-momentum tensor in this approximation is finite once we consider the usual mass and coupling constant renormalizations.Comment: Revtex file, 19 pages, no figures. Compressed ps version available at http://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-912.ps.Z or at ftp://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-912.ps.

    Introduction to Loop Quantum Gravity

    Full text link
    This article is based on the opening lecture at the third quantum geometry and quantum gravity school sponsored by the European Science Foundation and held at Zakopane, Poland in March 2011. The goal of the lecture was to present a broad perspective on loop quantum gravity for young researchers. The first part is addressed to beginning students and the second to young researchers who are already working in quantum gravity.Comment: 30 pages, 2 figures. arXiv admin note: substantial text overlap with arXiv:gr-qc/041005

    Gravity and the Quantum

    Full text link
    The goal of this article is to present a broad perspective on quantum gravity for \emph{non-experts}. After a historical introduction, key physical problems of quantum gravity are illustrated. While there are a number of interesting and insightful approaches to address these issues, over the past two decades sustained progress has primarily occurred in two programs: string theory and loop quantum gravity. The first program is described in Horowitz's contribution while my article will focus on the second. The emphasis is on underlying ideas, conceptual issues and overall status of the program rather than mathematical details and associated technical subtleties.Comment: A general review of quantum gravity addresed non-experts. To appear in the special issue `Space-time Hundred Years Later' of NJP; J.Pullin and R. Price (editors). Typos and an attribution corrected; a clarification added in section 2.

    The Nobel Prize in Physics 1999

    Get PDF
    The last Nobel Prize of the Millenium in Physics has been awarded jointly to Professor Gerardus 't Hooft of the University of Utrecht in Holland and his thesis advisor Professor Emeritus Martinus J.G. Veltman of Holland. According to the Academy's citation, the Nobel Prize has been awarded for 'elucidating the quantum structure of electroweak interaction in Physics'. It further goes on to say that they have placed particle physics theory on a firmer mathematical foundation. In this short note, we will try to understand both these aspects of the award. The work for which they have been awarded the Nobel Prize was done in 1971. However, the precise predictions of properties of particles that were made possible as a result of their work, were tested to a very high degree of accuracy only in this last decade. This was done in a series of measurements in the experiments in the accelerator laboratories at CERN (Geneva) and Fermilab. To understand the full significance of this Nobel Prize, we will have to summarise briefly the developement of our current theoretical framework about the basic constituents of matter and the forces which hold them together. In fact the path can be partially traced in a chain of Nobel prizes starting from one in 1965 to S. Tomonaga, J. Schwinger and R. Feynman, to the one to S.L. Glashow, A. Salam and S. Weinberg in 1979, and then to C. Rubia and Simon van der Meer in 1984 ending with the current one.Comment: 5 pages, LateX, no inline figures. Six 'boxes' included separately as six jpg files. These jpg files as well as 10 separate pdf files (one for each printed page) can be accessed from http://144.16.74.196/~www/resonance/npp99res.htm. added journal re

    Area spectrum of the Schwarzschild black hole

    Full text link
    We consider a Hamiltonian theory of spherically symmetric vacuum Einstein gravity under Kruskal-like boundary conditions in variables associated with the Einstein-Rosen wormhole throat. The configuration variable in the reduced classical theory is the radius of the throat, in a foliation that is frozen at the left hand side infinity but asymptotically Minkowski at the right hand side infinity, and such that the proper time at the throat agrees with the right hand side Minkowski time. The classical Hamiltonian is numerically equal to the Schwarzschild mass. Within a class of Hamiltonian quantizations, we show that the spectrum of the Hamiltonian operator is discrete and bounded below, and can be made positive definite. The large eigenvalues behave asymptotically as~2k\sqrt{2k}, where kk is an integer. The resulting area spectrum agrees with that proposed by Bekenstein and others. Analogous results hold in the presence of a negative cosmological constant and electric charge. The classical input that led to the quantum results is discussed.Comment: 30 pages, REVTeX v3.0. (Minor additions, several added references.

    Reduction, Emergence and Renormalization

    Get PDF
    In previous work, I described several examples combining reduction and emergence: where reduction is understood a la Ernest Nagel, and emergence is understood as behaviour or properties that are novel (by some salient standard). Here, my aim is again to reconcile reduction and emergence, for a case which is apparently more problematic than those I treated before: renormalization. Renormalization is a vast subject. So I confine myself to emphasizing how the modern approach to renormalization (initiated by Wilson and others between 1965 and 1975), when applied to quantum field theories, illustrates both Nagelian reduction and emergence. My main point is that the modern understanding of how renormalizability is a generic feature of quantum field theories at accessible energies gives us a conceptually unified family of Nagelian reductions. That is worth saying since philosophers tend to think of scientific explanation as only explaining an individual event, or perhaps a single law, or at most deducing one theory as a special case of another. Here we see a framework in which there is a space of theories endowed with enough structure that it provides a family of reductions.Comment: 43 pages, no figure
    corecore