1,891 research outputs found

    Chains of coupled square dielectric optical microcavities

    Get PDF
    Chains of coupled square dielectric cavities are investigated in a 2-D setting, by means of a quasi-analytical eigenmode expansion method. Resonant transfer of optical power can be achieved along quite arbitrary, moderately long rectangular paths (up to 9 coupled cavities are considered), even with individual standing-wave resonators of limited quality. We introduce an ab-initio coupled mode model, based on a simple superposition of slab mode profiles as a template for the field of individual cavities. Although no loss mechanisms are built in, the model can still help to interprete the results of the former numerical experiments

    Effective index approximations of photonic crystal slabs: a 2-to-1-D assessment

    Get PDF
    The optical properties of slab-like photonic crystals are often discussed on the basis of effective index (EI) approximations, where a 2-D effective refractive index profile replaces the actual 3-D structure. Our aim is to assess this approximation by analogous steps that reduce finite 2-D waveguide Bragg-gratings (to be seen as sections through 3-D PC slabs and membranes) to 1-D problems, which are tractable by common transfer matrix methods. Application of the EI method is disputable in particular in cases where locally no guided modes are supported, as in the holes of a PC membrane. A variational procedure permits to derive suitable effective permittivities even in these cases. Depending on the structural properties, these values can well turn out to be lower than one, or even be negative. Both the “standard” and the variational procedures are compared with reference data, generated by a rigorous 2-D Helmholtz solver, for a series of example structures.\u

    JCMmode: An Adaptive Finite Element Solver for the Computation of Leaky Modes

    Full text link
    We present our simulation tool JCMmode for calculating propagating modes of an optical waveguide. As ansatz functions we use higher order, vectorial elements (Nedelec elements, edge elements). Further we construct transparent boundary conditions to deal with leaky modes even for problems with inhomogeneous exterior domains as for integrated hollow core Arrow waveguides. We have implemented an error estimator which steers the adaptive mesh refinement. This allows the precise computation of singularities near the metal's corner of a Plasmon-Polariton waveguide even for irregular shaped metal films on a standard personal computer.Comment: 11 page

    Design, fabrication and evaluation of chalcogenide glass Luneburg lenses for LiNbO3 integrated optical devices

    Get PDF
    Optical waveguide Luneburg lenses of arsenic trisulfide glass are described. The lenses are formed by thermal evaporation of As2S3 through suitably placed masks onto the surface of LiNbO3:Ti indiffused waveguides. The lenses are designed for input apertures up to 1 cm and for speeds of f/5 or better. They are designed to focus the TM sub 0 guided mode of a beam of wavelength, external to the guide, of 633 nm. The refractive index of the As2S3 films and the changes induced in the refractive index by exposure to short wavelength light were measured. Some correlation between film thickness and optical properties was noted. The short wavelength photosensitivity was used to shorten the lens focal length from the as deposited value. Lenses of rectangular shape, as viewed from above the guide, as well as conventional circular Luneburg lenses, were made. Measurements made on the lenses include thickness profile, general optical quality, focal length, quality of focal spot, and effect of ultraviolet irradiation on optical properties

    Properties of nematic LC planar and smoothly-irregular waveguide structures: research in the experiment and using computer modeling

    Get PDF
    Nematic liquid crystal planar and smoothly-irregular waveguide structures were studied experimentally and by the computer modeling. Two types of optical smoothly-irregular waveguide structures promising for application in telecommunications and control systems are studied by numerical simulation: liquid crystal waveguides and thin film solid generalized waveguide Luneburg lens. Study of the behavior of these waveguide structures where liquid crystal layer can be used to control the properties of the entire device, of course, promising, especially since such devices are also able to perform various sensory functions when changing some external parameters, accompanied by a change in a number of their properties. It can be of interest to researchers not only in the field of the integrated optics but also in some others areas: nano-photonics, optofluidics, telecommunications, and control systems. The dependences of the attenuation coefficient (optical losses) of waveguide modes and the effective sizes (correlation radii) of quasi-stationary irregularities of the liquid-crystal layers on the linear laser radiation polarization and on the presence of pulse-periodic electric field were experimentally observed. An estimate was made of the correlation radii of liquid-crystal waveguide quasi-stationary irregularities. The obtained results are undoubtedly important for further research of waveguide liquid crystal layers, both from the theoretical point of view, and practical – in the organization and carrying out new experimental researches, for example, when developing promising integrated-optical LC sensors.The publication has been prepared with the support of the “RUDN University Program 5-100” (Sevastyanov L.A.) and funded by RFBR according to the research projects No. 18-07-00567, No. 18-51-18005 and No. 19-01-00645

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    Single-mode propagation of adiabatic guided modes in smoothly irregular integral optical waveguides

    Get PDF
    This paper investigates the waveguide propagation of polarized electromagnetic radiation in a thin-film integral optical waveguide. To describe this propagation, the adiabatic approximation of solutions of Maxwell’s equations is used. The construction of a reduced model for adiabatic waveguide modes that retains all the properties of the corresponding approximate solutions of the Maxwell system of equations was carried out by the author in a previous publication in DCM & ACS, 2020, No 3. In this work, for a special case when the geometry of the waveguide and the electromagnetic field are invariant in the transverse direction. In this case, there are separate nontrivial TEand TM-polarized solutions of this reduced model. The paper describes the parametrically dependent on longitudinal coordinates solutions of problems for eigenvalues and eigenfunctions - adiabatic waveguide TE and TM polarizations. In this work, we present a statement of the problem of finding solutions to the model of adiabatic waveguide modes that describe the stationary propagation of electromagnetic radiation. The paper presents solutions for the single-mode propagation of TE and TM polarized adiabatic waveguide waves.В работе представлено исследование волноводного распространения поляризованного электромагнитного излучения в тонкоплёночном интегральнооптическом волноводе. Для описания этого распространения используется адиабатическое приближение решений уравнений Максвелла. Построение редуцированной модели для адиабатических волноводных мод, сохраняющей все свойства соответствующих приближённых решений системы уравнений Максвелла, было проведено автором в предыдущей публикации в DCM&ACS, 2020, № 3. В настоящей работе исследование проведено для частного случая, когда геометрия волновода и электромагнитное поле инвариантны в поперечном направлении. В этих условиях существуют раздельные нетривиальные ТЕи ТМ-поляризованные решения указанной редуцированной модели. В работе описываются параметрически зависящие от продольных координат решения задач на собственные значения и собственные функции - адиабатические волноводные ТЕи ТМ-поляризации. В работе приводится постановка задачи отыскания решений модели адиабатических волноводных мод, описывающих стационарное распространение электромагнитного излучения. Представлены решения для одномодового распространения ТЕи ТМ-поляризованных адиабатических волноводных волн
    corecore