238 research outputs found

    Modelling of doubly fed induction generator connected with a wind turbine

    Get PDF
    There has been a tremendous rise in the use of the renewable energy resources. Global wind energy capacity soared by a fifth to 238GW at the end of 2011. India is the 5th largest player globally, accounted for 16 GW. Wind energy is an important form of renewable energy as there is no greenhouse gas emission compared to non-renewable fossil fuels. There has been a rising demand for wind energy ever since its first implementation.This project work studies the power-speed characteristics and the torque-speed characteristics and the fundamentals of wind electrical systems along with the modeling of the various wind turbine features and simulation of the same using MATLAB-SIMULINK. This paper develops a simple DFIG wind turbine model . This paper deals in conversion theory of (d – q) model . By using the equations of d-q model, dfig equations are simulated in matlab Simulink

    A Unified Power Control Method for Standalone and Grid Connected DFIG-DC System

    Get PDF

    Optimizing the Dynamic Performance of a Wind Driven Standalone DFIG Using an Advanced Control Algorithm

    Get PDF
    The article seeks to improve the dynamic performance of a standalone doubly fed induction generator (DFIG) which driven by a wind turbine, with the help of an effective control approach. The superiority of the designed predictive controller can be confirmed through evaluating the performance of the DFIG under other control algorithm, which is the model predictive direct torque control (MPDTC), model predictive current control (MPCC) as classic types of control. Firstly, the operating principles of the two controllers are described in details. After that, a comprehensive comparison is performed among the dynamic performances of the designed MPDTC, MPCC techniques and the predictive control strategy, so we can easily present the merits and deficiencies of each control scheme to be able to easily select the most appropriate algorithm to be utilized with the DFIG. The comparison is carried out in terms of system simplicity, dynamic response, ripples’ content, number of performed commutations and total harmonic distortion (THD). The results of the comparison prove the effectiveness and validation of our proposed predictive controller; as it achieves the system simplicity, its dynamic response is faster than that of MPDTC and MPCC, it presents a lower content of ripples compared to MPDTC and MPCC. Moreover, it can minimize the computational burden, remarkably. Furthermore, the numerical results are showing a marked reduction in the THD with a percentage of 2.23 % compared to MPDTC and 1.8 % compared to MPCC. For these reasons, it can be said that the formulated controller is the most convenient to be used with the DFIG to achieve the best dynamic performance

    Direct Power Magnitude Control of DFIG-DC System Without Orientation Control

    Get PDF

    Contribution to the Control of Doubly Fed Induction Machine DFIM

    Get PDF
    -IIAbstract Currently, doubly fed induction generators (DFIGs) are widely used for wind turbines. Compared to other variable-speed generators; the main advantage of the DFIG is that the power electronic devices must deal with only about a third of the generator power, compared to full power converters used in synchronous generators . This difference reduces the costs and losses in the power electronic components, rather than other solutions, such as fully converting systems; finally, the overall efficiency is improved. Furthermore, among all the induction generator configurations for generation systems the use of (DFIG) configuration with back to back pulse width modulated voltage source converters (VSC) is one of the best topologies available and it is suitable for both grid connected systems as well as standalone systems. Here only stand-alone application of DFIG is considered. In this thesis, mathematical modelling of doubly fed induction machine is presented. Two control approaches are proposed to improve the control of the rotor side converter which give the best solution to overcome the drawbacks of the recent control methods and provide a high performance stator- voltage magnitude and frequency regulation for all possible operation scenarios (voltage magnitude, load, and rotor speed variations). Various aspects of standalone DFIG generation system such as stator-voltage magnitude and frequency regulation, computational requirement minimization, sensors number reduction, from rotor side converter control is carried out. All proposed control methods have been verified in both simulation and 3 kW DFIG laboratory experimental bench

    A Novel Power-Angle Control Method of DFIG-DC System Based on Regulating Air Gap Flux Vector

    Get PDF

    A simple maximum power point tracking based control strategy applied to a variable speed squirrel cage induction generator

    Get PDF
    This paper presents a comprehensive modelling and control study of a variable speed wind energy conversion system based on a squirrel-cage induction generator (SCIG). The mathematical model of the SCIG is derived in Park frame along with the indirect field oriented control (IFOC) scheme based on a proportional and integral speed controller. A simple maximum power point tracking strategy is used to determine the optimal speed under variable wind speed conditions which is then used as the reference in the IFOC scheme. Power flow between the supply and the inverter is regulated via simultaneous control of the active and reactive currents of the grid and the DC link voltage. The simulation results show that the proposed control technique is able to maximise the energy extracted from the wind during the simulation scenarios considered. The results also demonstrate good transient response characteristics in the decoupled real and reactive powers.Peer reviewedFinal Accepted Versio

    Robust control techniques for DFIG driven WECS with improved efficiency

    Get PDF
    Wind energy has emerged as one of the fastest growing renewable energy sources since mid-80‘s due to its low cost and environmentally friendly nature compared to conventional fossil fuel based power generation. Current technologies for the design and implementation of wind energy conversion systems (WECSs) include induction generator and synchronous generator based units. The doubly fed induction generator (DFIG) is chosen in this thesis because of its economic operation, ability to regulate in sub-synchronous or super-synchronous speed and decoupled control of active and reactive powers. Among the major challenges of wind energy conversion system, extraction of maximum power from intermittent generation and supervision on nonlinear system dynamics of DFIG-WECS are of critical importance. Maximization of the power produced by wind turbine is possible by optimizing tip-speed ratio (TSR), turbine rotor speed or torque and blade angle. The literature reports that a vast number of investigations have been conducted on the maximum power point tracking (MPPT) of wind turbines. Among the reported MPPT control algorithms, the hill climb search (HCS) method is typically preferred because of its simple implementation and turbine parameter-independent scheme. Since the conventional HCS algorithm has few drawbacks such as power fluctuation and speed-efficiency trade-off, a new adaptive step size based HCS controller is developed in this thesis to mitigate its deficiencies by incorporating wind speed measurement in the controller. In addition, a common practice of using linear state-feedback controllers is prevalent in speed and current control of DFIG-based WECS. Traditional feedback linearization controllers are sensitive to system parameter variations and disturbances on grid-connected WECS, which demands advanced control techniques for stable and efficient performance considering the nonlinear system dynamics. An adaptive backstepping based nonlinear control (ABNC) scheme with iron-loss minimization algorithm for RSC control of DFIG is developed in this research work to obtain improved dynamic performance and reduced power loss. The performance of the proposed controller is tested and compared with the benchmark tuned proportional-integral (PI) controller under different operating conditions including variable wind speed, grid voltage disturbance and parameter uncertainties. Test results demonstrate that the proposed method exhibits excellent performance on the rotor side and grid side converter control. In addition, the compliance with the modern grid-code requirements is achieved by featuring a novel controller with disturbance rejection mechanism. In order to reduce the dependency on system‘s mathematical model, a low computational adaptive network fuzzy interference system (ANFIS) based neuro-fuzzy logic controller (NFC) scheme is developed for DFIG based WECS. The performance of the proposed NFC based DFIG-WECS is tested in simulation to regulate both grid and rotor side converters under normal and voltage dip conditions. Furthermore, a new optimization technique known as grey wolf optimization (GWO) is also designed to regulate the battery power for DFIG driven wind energy system operating in standalone mode. In order to verify the effectiveness of the proposed control schemes, simulation models are designed using Matlab/Simulink. The proposed model for MPPT and nonlinear control of grid-connected mode and GWO based power control of standalone DFIG-WECS has been successfully implemented in the real-time environment using DSP controller board DS1104 for a laboratory 480 VA DFIG. The comparison among different controllers suggests that each control technique has its own specialty in wind power control application with specific merits and shortcomings. However, the PI controller provides fast convergence, the ANFIS based NFC controller has better adaptability under grid disturbances and ABNC has moderate performance. Overall, the thesis provides a detailed overview of different robust control techniques for DFIG driven WECS in grid-connected and standalone operation mode with practical implementation

    Power Quality Improvement and Low Voltage Ride through Capability in Hybrid Wind-PV Farms Grid-Connected Using Dynamic Voltage Restorer

    Get PDF
    © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission.This paper proposes the application of a dynamic voltage restorer (DVR) to enhance the power quality and improve the low voltage ride through (LVRT) capability of a three-phase medium-voltage network connected to a hybrid distribution generation system. In this system, the photovoltaic (PV) plant and the wind turbine generator (WTG) are connected to the same point of common coupling (PCC) with a sensitive load. The WTG consists of a DFIG generator connected to the network via a step-up transformer. The PV system is connected to the PCC via a two-stage energy conversion (dc-dc converter and dc-ac inverter). This topology allows, first, the extraction of maximum power based on the incremental inductance technique. Second, it allows the connection of the PV system to the public grid through a step-up transformer. In addition, the DVR based on fuzzy logic controller is connected to the same PCC. Different fault condition scenarios are tested for improving the efficiency and the quality of the power supply and compliance with the requirements of the LVRT grid code. The results of the LVRT capability, voltage stability, active power, reactive power, injected current, and dc link voltage, speed of turbine, and power factor at the PCC are presented with and without the contribution of the DVR system.Peer reviewe
    corecore