195 research outputs found

    Review of Materialized Views Selection Algorithm for Cyber Manufacturing

    Get PDF
    Technological advancement in data transfer and connection has driven massive data growth. Within the semiconductor cyber manufacturing environment, in order to cope with rapid data transfer enabled by the Internet of Things (IoT) technology, rapid query processing becomes a priority. Especially, in the era of Industry 4.0, semiconductor manufacturing that operates within cyber-physical systems (CPS) relies heavily on the reporting function to monitor delicate wafer processing. Thus, delay in reporting which is usually caused by slow query processing is intolerable. Materialized views (MVs) are usually used in order to improve query processing speed. Nevertheless, as MVs requires database space and maintenance, the decision to use MVs is not determined by time factor only. Thus, MVs selection is a problem that calls for an efficient selection algorithm that can deal with several constraints at a time. In this paper, we reveal the criteria of optimisation algorithms that were proposed to deal with MVs selection problem. In particular, this paper attempts to evaluate the coverage and limitations of the algorithm under study

    Review Of Materialized Views Selection Algorithm For Cyber Manufacturing

    Get PDF
    Technological advancement in data transfer and connection has driven massive data growth.Within the semiconductor cyber manufacturing environment,in order to cope with rapid data transfer enabled by the Internet of Things (IoT) technology,rapid query processing becomes a priority.Especially,in the era of Industry 4.0, semiconductor manufacturing that operates within cyber-physical systems (CPS) relies heavily on the reporting function to monitor delicate wafer processing.Thus,delay in reporting which is usually caused by slow query processing is intolerable.Materialized views (MVs) are usually used in order to improve query processing speed. Nevertheless,as MVs requires database space and maintenance,the decision to use MVs is not determined by time factor only.Thus,MVs selection is a problem that calls for an efficient selection algorithm that can deal with several constraints at a time.In this paper,we reveal the criteria of optimisation algorithms that were proposed to deal with MVs selection problem.In particular,this paper attempts to evaluate the coverage and limitations of the algorithm under study

    Ant colony optimization approach for stacking configurations

    Full text link
    In data mining, classifiers are generated to predict the class labels of the instances. An ensemble is a decision making system which applies certain strategies to combine the predictions of different classifiers and generate a collective decision. Previous research has empirically and theoretically demonstrated that an ensemble classifier can be more accurate and stable than its component classifiers in most cases. Stacking is a well-known ensemble which adopts a two-level structure: the base-level classifiers to generate predictions and the meta-level classifier to make collective decisions. A consequential problem is: what learning algorithms should be used to generate the base-level and meta-level classifier in the Stacking configuration? It is not easy to find a suitable configuration for a specific dataset. In some early works, the selection of a meta classifier and its training data are the major concern. Recently, researchers have tried to apply metaheuristic methods to optimize the configuration of the base classifiers and the meta classifier. Ant Colony Optimization (ACO), which is inspired by the foraging behaviors of real ant colonies, is one of the most popular approaches among the metaheuristics. In this work, we propose a novel ACO-Stacking approach that uses ACO to tackle the Stacking configuration problem. This work is the first to apply ACO to the Stacking configuration problem. Different implementations of the ACO-Stacking approach are developed. The first version identifies the appropriate learning algorithms in generating the base-level classifiers while using a specific algorithm to create the meta-level classifier. The second version simultaneously finds the suitable learning algorithms to create the base-level classifiers and the meta-level classifier. Moreover, we study how different kinds on local information of classifiers will affect the classification results. Several pieces of local information collected from the initial phase of ACO-Stacking are considered, such as the precision, f-measure of each classifier and correlative differences of paired classifiers. A series of experiments are performed to compare the ACO-Stacking approach with other ensembles on a number of datasets of different domains and sizes. The experiments show that the new approach can achieve promising results and gain advantages over other ensembles. The correlative differences of the classifiers could be the best local information in this approach. Under the agile ACO-Stacking framework, an application to deal with a direct marketing problem is explored. A real world database from a US-based catalog company, containing more than 100,000 customer marketing records, is used in the experiments. The results indicate that our approach can gain more cumulative response lifts and cumulative profit lifts in the top deciles. In conclusion, it is competitive with some well-known conventional and ensemble data mining methods

    Applications of river formation dynamics

    Get PDF
    River formation dynamics is a metaheuristic where solutions are constructed by iteratively modifying the values associated to the nodes of a graph. Its gradient orientation provides interesting features such as the fast reinforcement of new shortcuts, the natural avoidance of cycles, and the focused elimination of blind alleys. Since the method was firstly proposed in 2007, several research groups have applied it to a wide variety of application domains, such as telecommunications, software testing, industrial manufacturing processes, or navigation. In this paper we review the main works of the last decade where the river formation dynamics metaheuristic has been applied to solve optimization problems

    An overview on structural health monitoring: From the current state-of-the-art to new bio-inspired sensing paradigms

    Get PDF
    In the last decades, the field of structural health monitoring (SHM) has grown exponentially. Yet, several technical constraints persist, which are preventing full realization of its potential. To upgrade current state-of-the-art technologies, researchers have started to look at nature’s creations giving rise to a new field called ‘biomimetics’, which operates across the border between living and non-living systems. The highly optimised and time-tested performance of biological assemblies keeps on inspiring the development of bio-inspired artificial counterparts that can potentially outperform conventional systems. After a critical appraisal on the current status of SHM, this paper presents a review of selected works related to neural, cochlea and immune-inspired algorithms implemented in the field of SHM, including a brief survey of the advancements of bio-inspired sensor technology for the purpose of SHM. In parallel to this engineering progress, a more in-depth understanding of the most suitable biological patterns to be transferred into multimodal SHM systems is fundamental to foster new scientific breakthroughs. Hence, grounded in the dissection of three selected human biological systems, a framework for new bio-inspired sensing paradigms aimed at guiding the identification of tailored attributes to transplant from nature to SHM is outlined.info:eu-repo/semantics/acceptedVersio

    Determining Additional Modulus of Subgarde Reaction Based on Tolerable Settlement for the Nailed-slab System Resting on Soft Clay.

    Get PDF
    Abstract—Nailed-slab System is a proposed alternative solution for rigid pavement problem on soft soils. Equivalent modulus of subgrade reaction (k’) can be used in designing of nailed-slab system. This modular is the cumulative of modulus of subgrade reaction from plate load test (k) and additional modulus of subgrade reaction due to pile installing (∆∆∆∆k). A recent method has used reduction of pile resistance approach in determining ∆∆∆∆k. The relative displacement between pile and soils, and reduction of pile resistance has been identified. In fact, determining of reduction of pile resistance is difficult. This paper proposes an approach by considering tolerable settlement of rigid pavement. Validation is carried out with respect to a loading test of nailed-slab models. The models are presented as strip section of rigid pavement. The theory of beams on elastic foundation is used to calculate the slab deflection by using k’. Proposed approach can results in deflection prediction close to observed one. In practice, the Nailed-slab System would be constructed by multiple-row piles. Designing this system based on one-pile row analysis will give more safety design and will consume less time
    • …
    corecore